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Mobiprox: Supporting Dynamic Approximate
Computing on Mobiles

Matevž Fabjančič , Octavian Machidon , Hashim Sharif , Yifan Zhao , Saša Misailović , and Veljko Pejović

Abstract—Runtime-tunable context-dependent network com-
pression would make mobile deep learning (DL) adaptable to
often varying resource availability, input “difficulty”, or user
needs. The existing compression techniques significantly reduce
the memory, processing, and energy tax of DL, yet, the resulting
models tend to be permanently impaired, sacrificing the infer-
ence power for reduced resource usage. The existing tunable
compression approaches, on the other hand, require expensive
re-training, do not support arbitrary strategies for adapting the
compression and do not provide mobile-ready implementations.

In this paper we present Mobiprox, a framework enabling
mobile DL with flexible precision. Mobiprox implements tun-
able approximations of tensor operations and enables runtime-
adaptable approximation of the individual network layers. A
profiler and a tuner included with Mobiprox identify the most
promising neural network approximation configurations leading
to the desired inference quality with the minimal use of resources.
Furthermore, we develop control strategies that depending on
contextual factors, such as the input data difficulty, dynamically
adjust the approximation levels across a mobile DL model’s
layers. We implement Mobiprox in Android OS and through
experiments in diverse mobile domains, including human activity
recognition and spoken keyword detection, demonstrate that it
can save up to 15% system-wide energy with a minimal impact
on the inference accuracy.

Index Terms—approximate computing, context-awareness, mo-
bile deep learning, ubiquitous computing.

I. INTRODUCTION

POWERFUL services enabled by deep learning, such as
real-time camera-based object detection, online transla-

tion, and human activity recognition (HAR), are becoming
increasingly available on mobile devices. Indeed, DL is an
integral part of more than 12% of application downloads from
the Android store platform [1]. However, the new affordances
do not come for free – large DL models may overload the
limited memory of mobile devices, the computational burden
may lead to significant delays before the results are available,
and the power needed for processing may quickly deplete the
mobile’s battery.
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Reducing the complexity of neural networks (NNs) is the
primary means of making DL mobile friendly. Such com-
plexity reduction may be inherent to the network design –
MobileNet [2], EfficientNet [3], and ShuffleNet [4] represent
some of the architectures that are specifically designed for
the mobile’s limited memory resources. Yet, the computational
burden of these networks may still be overwhelming for a wide
range of heterogeneous edge devices [5]. Both memory and
computational complexity can be further reduced by a gamut
of NN compression techniques. These include parameter quan-
tization [6], weight pruning [7], NN distillation [8], to name a
few. The key issue with such complexity reduction is that the
network parameters are permanently changed. Thus, in case
that the resulting inference accuracy is reduced, that reduction
remains permanent.

On mobiles, on the other hand, deep learning compression
needs to be adaptable to the context of use: a compressed
model that reliably recognises a user’s speech commands when
used in a quiet indoor location, might completely fail in noisy
outdoor environments; similarly, a user might tolerate a more
compressed model that occasionally misclassifies her physical
activity during her daily routine, but would require a more
accurate model while exercising. A rigid approach to DL
compression is against the often dynamic nature of mobile
computing, where both a user’s requirements with respect to
the result accuracy [9], as well as the difficulty of given NN
input [10], may vary as the context of use changes.

Recently, proposals have been made to enable dynamic
accuracy/complexity adaptation of NNs. Examples include dy-
namic quantization by AnyPrecision [11], dynamic adjustment
of layer width through Slimmable Neural Networks [12], or
dynamic pruning proposed in [13]. Common for all of the
above dynamic adaptation approaches is that they do not
support prebuilt networks, but require specialized training that
can take days or weeks for large datasets and architectures
before real-time adaptation can be used. Furthermore, despite
targeting dynamic environments, the above works do not
actually provide mobile-ready implementations. Translating
the benefits provided by high-level demonstrations (often
implemented in PyTorch) to mobile energy savings requires
significant engineering effort, as modern mobile DL frame-
works such as TensorFlow Lite do not support the versatility
of high-level frameworks such as PyTorch.

Advances in a different research area – compilers for
heterogeneous systems – have recently addressed the issue of
”optimal” NN compilation, where individual tensor operations
are implemented in accordance with underlying hardware
capabilities. Along these lines, ApproxHPVM [14] enables the
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execution of convolutional neural network (CNN) operations
with varying degrees of approximation, provided that the
hardware/OS supports approximate computation. However,
ApproxHPVM targets server environments, generates only
CUDA-ready binaries, and does not support compilation for
mobile hardware (Android or iOS). With the help of Approx-
Tuner [15], approximation levels within ApproxHPVM can be
dynamically adapted, yet, the provided adaptation method is
simple, reactive and context-oblivious.

In this paper we present Mobiprox – a novel framework
that enables context-adaptable approximation of DL operations
executed on the mobile platform. Our guiding vision is that
data scientists are not mobile system experts. Therefore, deep
learning modeling should be disentangled from system-level
performance optimization. Mobiprox aims to support efficient
on-device execution of an arbitrary pre-trained mobile network
architecture. Furthermore, we do not require that a developer
knows which optimizations (in our case – execution approxi-
mations) are available on the device. Still, we give a developer
an option of (dynamically) setting an operational point along
the inference accuracy vs. resource usage trade-off curve, yet,
in the limit case, the developer need not even set this point,
but merely let Mobiprox tune the execution according to its
internal approximation adaptation algorithms.

We implement Mobiprox at low levels of the comput-
ing stack to support a wide range of NN architectures and
embrace various approximation techniques exposed by the
underlying hardware and the OS1. To support context-sensitive
runtime adaptation Mobiprox identifies Pareto-optimal approx-
imation configurations during the off-line tuning stage. The
system then enables the network to glide across different
speedup/accuracy trade-off points during the runtime. The key
novelty of Mobiprox are also the adaptation algorithms that
guide the runtime approximation adaptation according to a
given goal, e.g. maximal energy savings.

With Mobiprox, we address multiple challenges that stand
in the way towards adaptable approximate mobile DL:

• The difficulty of implementing approximate opera-
tions at an appropriate level of the mobile computing
stack; Over the past two decades, a number of approxi-
mate computing techniques have been developed – from
approximate adders and multipliers to loop perforation
and task skipping [16]. Because of their small form factor,
however, mobile devices can rarely accommodate both
approximate and accurate versions of hardware circuits.
Software techniques, on the other hand, often require
strong developer involvement, e.g., in marking loops
eligible for perforation. Therefore, we focus on software-
level approximation of tensor operations. Since mobile
DL frameworks (e.g., TensorFlow Lite) and even libraries
of specialized functions for mobile DL (e.g., ARM Com-
pute Library) aggregate tensor operations, we implement
both approximate and precise tensor operations from
basic linear algebra subprogram (BLAS) primitives;

1The specific implementation presented in this paper supports perforated
convolution, filter sampling, and half-precision quantisation.

• The issue of modifying neural network operation
at runtime on a mobile device; mobile DL frame-
works do not support dynamic graph reconfiguration, thus
even the existing dynamic approximation schemes (such
as Slimmable Neural Networks [12]) do not work on
mobiles; to overcome this limitation, we implemented
our custom approximations at a fine-grained level and
exposed the calls for setting the approximation level at
runtime through Java Native Interface;

• The lack of algorithms and tools for context-aware
adaptation of mobile DL; a certain classification accu-
racy level might be acceptable in some situations, but
not in others; in addition, an approximated DL model
that works well for certain inputs, might not provide cor-
rect classification for some other inputs; finally, gauging
model performance at runtime is challenging; we first
devise proxies for measuring classification performance
(the same-class instance counting-based and the softmax
confidence-based) and then develop algorithms (state-
based, and confidence-based) for dynamically adapting
the approximation.

Towards this end, we present the following contributions:
• We develop an end-to-end approximate configuration

search, selection, and compilation pipeline for mobile
devices. Our solution integrates state-of-the-art hetero-
geneous compilation infrastructure, approximate config-
uration search framework, and a widely used LLVM
compiler into an Android-ready pipeline; furthermore, our
solution supports dynamic configuration loading;

• We devise novel strategies for runtime approximation
configuration adaptation; based on the problem prop-
erties or the classifier confidence, our solutions ensure
that the desired inference accuracy is achieved with the
minimal use of a mobile’s resources;

• We implement selected approximate computing prim-
itives at a low-level of the mobile computing stack,
supporting both on-CPU and on-GPU approximate exe-
cution of different tensor operations for mobile devices.

• Our evaluation shows that Mobiprox brings sub-
stantial energy savings while preserving the classi-
fication accuracy. We perform experiments on both a
single-board computer (for precise energy measurements)
and on commodity smartphones performing real-time
inference, using different NN architectures and multiple
application domains, including human activity classifi-
cation and spoken keyword recognition. Our evaluation
demonstrates that, by adapting to the varying context
(i.e. input data difficulty), Mobiprox can achieve energy
savings while preserving the inference accuracy.

II. RELATED WORK

Resource-efficient deep learning on mobiles. The ex-
pansion of mobile deep learning (DL) applications has been
hindered by the high resource consumption of DL models
and the difficulty of the edge computing devices, such as
battery-powered smartphones, to meet the resource and energy
requirements of such applications [17]. Model representations
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may including hundreds of millions of parameters and per-
forming the classification of a single input vector can easily
overwhelm the available computing and memory resources of
edge computing platforms [18].

Efforts have, thus, focused on reducing the complexity,
while preserving the inference power of DL models through
weight quantization [6], pruning [7], [19], [20], knowledge
distillation [8] and other methods [21]. High-level DL frame-
works, such as PyTorch, do not readily support mobile plat-
forms, thus, there are relatively few demonstrations of an
on-device DL optimization. On the pruning front, PatDNN
enables real-time inference using large-scale DL models (e.g.,
VGG-16, ResNet-50) on mobile devices by harnessing pattern-
based model pruning [7], while DeepIoT [22] uses reinforce-
ment learning to guide the pruning process. Both solutions
lead to significant model size reductions (90% to 98.9% in
case of DeepIoT) and speedups (up to 44.5× in case of
PatDNN) with no inference accuracy degradation in certain
settings, demonstrating vast opportunities for mobile DL op-
timisation. Parameter quantization, on the other hand, despite
being actively researched [6], [23], [24], sees only limited
implementation in the mobile realm. The main reason is the
lack of support for arbitrary bit-width computation in today’s
mobile hardware.

Dynamic compression adaptation. All of the above ap-
proaches share a common drawback: once the approximation
is applied, the resulting network remains unchanged during
runtime. Thus, such approaches enable operation at a single
fixed point on the accuracy-resource usage trade-off curve
regardless of how the context in which inference is performed
changes during runtime. However, this operation is inappropri-
ate for the mobile domain, since the changing context of use
is a defining trait of mobile computing and can significantly
affect the requirements imposed on the DL inference. For
instance, a smartphone may or may not be connected to a
charger, calling for more or less energy-efficient operation;
sensor data may be more or less noisy, requiring more or less
complex DL models; depending on the intended use, a user
may require more or less accurate inference results from a
mobile app. Recent research therefore focuses on enabling
accuracy-resource usage trade-off by dynamically adjusting
the compression level without the need for re-training the
network.

The initial solutions enabling dynamic adaptivity, such as
MCDNN [25], relied on having several differently-compressed
candidate DL models in the cloud and downloading the most
appropriate model on the device according to the current
context. While enabling context-adaptation, this strategy adds
substantial overheads of model transfer. Early exit networks
can dynamically reduce the computational complexity of a
single model by not traversing all network layers and halting
the computation at one of intermediate exit points in the
network instead [26]. SPINN [27] introduces a scheduler that
co-optimises the early-exit policy and DL model splitting
at run time, in order to adapt to dynamic conditions and
meet user-defined service-level requirements in a cloud-edge
environment. The drawbacks of early-exit schemes include the
need for off-the-shelf models to be re-structured and re-trained

and the complexity of developing exiting policies that will
be suitable for a particular operational domain. Unfortunately,
despite intended to work in dynamic environments, neither
MCDNN nor SPINN have been implemented on mobiles.
DeepX compresses network layers using singular value de-
composition and enables execution on heterogeneous mobile
hardware. However, it supports only fully connected NN layers
and the project code is not publicly available.

Finally, pruning and quantization have also been revised to
support dynamic adaptation. Runtime Neural Pruning (RNP)
framework [13] enables bottom-up, layer-by-layer pruning
guided by a Markov decision process and reinforcement learn-
ing. The importance of each convolutional kernel is assessed
and based on it channel-wise pruning is performed, where the
network is pruned more when classifying an “easy-to-classify”
input instance. A different approach for dynamic compression
adaptation is the Slimmable Neural Network (SNN) [12].
The method trains a single CNN and then executes it at
different widths (number of channels in a layer), permitting
runtime adaptive accuracy-efficiency trade-offs at runtime.
There is no need for re-training or loading different models:
the network adjusts its width on the fly, based on the resource
constraints, input difficulty, or other contextual factors. Any-
Precision approach [11] proposes a CNN training method that
allows the network to adapt its numerical precision during
inference to support dynamic speed and accuracy trade-off.
Yet, neither RNP, SNN, nor Any-Precision apply to already
trained networks, nor have these techniques been implemented
in the mobile realm. The reason for this is that, unlike our
approach, the above methods were not originally planned with
mobile platform restrictions in mind. SNNs, for instance, rely
on dynamic neural network graph reconfiguration, something
that none of the mobile DL frameworks (e.g. TensorFlow Lite,
Pytorch Mobile, etc.) supports at the moment.

III. PRELIMINARIES

Mobiprox builds upon the existing work on heterogeneous
and approximate computing compilers:

HPVM (Heterogeneous Parallel Virtual Machine) [28] is
a compiler infrastructure targeting heterogeneous hardware. It
introduces HPVM-C, a programming language for defining
data flow graphs (DFGs), directed graphs in which nodes
represent a computation task and edges represent inputs and
outputs of a computation task. Computation workloads are
defined using HPVM’s intrinsic functions used to specify the
target device the node will be executed on, node inputs, node
outputs, and any compute operations (e.g. addition). HPVM
compiler achieves parallel execution of produced binaries by
identifying dependencies among the nodes in a DFG and
generating compute code for specified target devices (CPU,
GPU) for each node.

ApproxHPVM [14] expands HPVM by introducing support
for NN tensor operations: multiplication, convolution, addi-
tion, pooling, and activation functions. Additionally, ApproxH-
PVM enables transforming high level descriptions of convolu-
tional neural networks (in frameworks such as Keras, PyTorch)
into DFGs in the form of generated HPVM-C source files.
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(a) Row perforation (b) Column perforation

Fig. 1. Perforated convolution. Coloured sections indicate convolution coor-
dinates. Dashed squares indicate the area of the first and the final convolution.

However, while HPVM generates code for computation nodes
in a DFG, ApproxHPVM’s tensor operations are mapped to
functions defined in the HPVM Tensor Runtime library. In
ApproxHPVM individual tensor operations can be marked
with the maximum allowed level of approximation, and the
compiler then ensures that these are mapped to the appropriate
underlying approximate computing techniques (either software
or hardware-based). Yet, ApproxHPVM’s tensor operations
are supported for Nvidia CUDA-enabled devices only. In
this paper we introduce a novel OpenCL implementation that
enables approximate tensor operation execution on Android
devices (Section IV-B2).

ApproxTuner [15] delivers heuristic-based search of the
space of possible approximations of each individual network
layer, so that a comprehensive speedup-inference accuracy
trade-off curve is charted and the list of the most promising
sets of approximations is identified. Yet, ApproxTuner does
not take into account the peculiarities of the mobile platform
and the predicted trade-off curves it draws do not reflect the
actual performance observed on the mobiles. Consequently,
in this paper we build a new cross-platform approximation
profiler based on ApproxTuner (Section IV-B3).

A. Approximation techniques

We identified the following generally-applicable approxima-
tion techniques that can be employed at a level of a single NN
operation and are supported by commodity mobile hardware,
and we implemented them in Mobiprox:

Convolution perforation [29] is an approximation that
skips certain input matrix coordinates when calculating con-
volution, as shown in Figure 1. Due to the nature of con-
volutions, this does not necessarily mean that the inputs at
skipped coordinates are never used – indeed, the inputs are
used in neighboring convolutions. This, in turn, makes it
feasible to interpolate convolution results at skipped coor-
dinates by computing the average of computed neighboring
cells. We support two types of convolution perforation –
row perforation and column perforation. The parameter
offset defines the index of the first omitted row or column,
while parameter stride defines the interval between the
skipped rows/columns. In Figure 1, parameters stride=2
and offset=1 were used.

Filter sampling approximates the filters that the convolu-
tions are performed with. In CNNs filters are 4-dimensional
tensors with dimensions [N,C,H,W ]. N represents the num-
ber of filters in the convolution, C is the number of feature
channels in the input and the filter, and H and W represent
the height and width of the filter, respectively. Each filter is
therefore composed of nelm = C ·H ·W components. Filter
sampling with stride k removes every k-th component of
the filter’s nelm components, starting at element specified by
offset. The technique, thus, reduces the amount of computa-
tion by keeping only nelm−samp = nelm− nelm−offset

stride filter
components at the cost of the overall convolution accuracy. To
interpolate missing values, each retained filter component is
multiplied by a factor of nelm/nelm−samp.

Finally, Mobiprox also provides an optional half-precision
quantization that can be used to approximate any floating
point tensor operation. While such quantization is meaningful
only if the underlying hardware supports it, we opted for
enabling it as modern mobile GPUs, such as those of Arm
Mali series, natively support the IEEE FP16 16-bit format.

IV. MOBIPROX FRAMEWORK

Mobiprox, our novel framework for enabling dynamic ap-
proximation of mobile DL, is sketched in Figure 2. An
Android app compiled with Mobiprox can use an arbitrary
runtime approximation adaptation strategy for its DL models
(e.g., “run low quality network when battery is low”, “run
high quality inference when user is at a specific location”,
etc.). To achieve this, Mobiprox operates with approximation
configurations, i.e. combinations of per-layer approximations
of a pre-trained DL model. Mobiprox first uses Approx-
Tuner to examine the impact of different configurations on
the inference accuracy and the speedup. Each approximation
configuration yields a point in the accuracy–speedup space,
and Mobiprox identifies the most promising configurations that
form the Pareto front in this space and then profiles their actual
performance on the mobile platform using the novel HPVM
Profilier for Android. Mobiprox’s Android-based OpenCL
runtime then enables execution of and dynamic switching
between approximation configurations on a mobile device.
Using the JNI interface library generated by the framework,
the mobile application can control the approximation level of
the NN. Finally, as part of Mobiprox, we also devise Ap-
proximation adaptation strategies that leverage the generated
trade-off curves to match the required and delivered quality
of computation, thus enable energy-efficient DL on mobile
devices.

A. Charting approximation space

Each of the approximation techniques described in Sec-
tion III-A exposes one or more approximation knobs that
can change the level of approximation and thus adjust the
accuracy and the execution time (consequently the energy
efficiency) of a tensor operation. These knobs are offset and
stride for convolution perforation and filter sampling, and
an indicator _fp16 of whether an operation is executed using
half-precision quantization. An approximation configuration

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3365957

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



5

Fig. 2. Mobiprox overview. OpenCL run-time supports running the inference
binary (controlled either directly from the C code, or via JNI from the main
Java/Kotlin app) with a varying level of approximation. The HPVM Profiler
for Android helps us chart the approximation – resource usage space, so
that the Approximation adaptation strategy wihtin the Android app can set
the approximation level dynamically at runtime. Main Mobiprox modules are
colored green, while the supporting pre-existing modules are grayed out.

is a set of pairs ⟨Op.,KnobValue⟩ for all operations in a given
NN. Each of the configurations leads to a single trade-off
point on an speedup-accuracy trade-off curve.

The tuner heuristically searches the space of possible ap-
proximations and determines a Pareto frontier of approxima-
tion configurations that maximise the execution speedup at
different quality of service (QoS) loss points. This loss is a
real number defined as a difference between the classification
accuracy, over a representative validation dataset, of a non-
approximated and an approximated DL model.

However, the method described above for determining the
optimal approximation configurations does not readily trans-
late to mobile devices. The mobile platform is substantially
different from the server used for fast heuristic-based approx-
imation configuration profiling. The specifics of GPU-based
execution (e.g., CUDA vs OpenCL), heterogeneous CPUs with
fewer cores, and other factors mean that the results of the
configuration search performed on a server are a rather poor
representation of the actual approximated NN performance on
a mobile. In Figure 3b, on the example of a MobileNetV2
model used for HAR (detailed in Section VI), we show the
actual on-mobile-device speedup and QoS loss achieved by
the approximation configurations that ApproxTuner identified
as the most promising. While the Pareto points obtained on
a server generally remain relevant, the achieved on-device
speedup is about 50% lower on the mobile.

Mobiprox therefore introduces a novel configuration iden-
tification approach. First, we perform tuning on a computer
cluster to identify candidate approximation configurations.
Then, we develop an Android-based profiler (described in Sec-
tion IV-B3) that runs each candidate configuration on a mobile
device and obtains a realistic picture of the approximated neu-
ral network performance. The resulting picture of the speedup
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Fig. 3. Comparison of the achieved speedup and the resulting QoS (inference
accuracy) loss for approximation configurations selected by the on-server
tuning with the same configurations ran on a mobile platform. Note the
different scaling of the y-axis.

– QoS loss space charted by these configurations is then used
to guide the dynamic adaptation of the approximation. As a
final result, the profiler creates a file listing configurations that
will be switched during the mobile app runtime (according to
a strategy, e.g. from Section V), yet only a single network
model definition gets deployed on a mobile.

B. Mobiprox – Android implementation

Mobiprox, as a concept, is not tied to a particular mobile
platform. Yet, amassing 75% of the smartphone market share
Android is the most common mobile deep learning platform
and that stands to gain the most from dynamically adaptable
approximation, thus, in this section we develop a full Mo-
biprox compilation pipeline targeting Android devices.

1) Mobiprox Android Compiler: Mobile application devel-
opment with Mobiprox involves compiling the tuning binary
and the inference binary (Figure 2). While the tuning binary
is confined to the server environment and is handled by the
ApproxHPVM compilation pipeline, the inference binary is
cross-compiled from a server to a mobile (Android). We imple-
ment a mechanism for turn-taking between ApproxHPVM and
Android NDK LLVM compiler toolchains (Algorithm 1). We
enable this by clearly partitioning the compilation steps and
harnessing the fact that LLVM-based compilers apply trans-
formations to an intermediate representation termed LLVM-
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IR. Note that ApproxHPVM extends LLVM-IR by defining
HPVM-IR to which approximation-related transformations are
applied. This clear division allows us to use Android NDK
for generating the initial LLVM-IR suitable for Android ap-
plications and for generating the machine code containing
approximate NN operations suitable for mobile GPUs in the
final compilation step, while using HPVM-IR transformations
for the internal part of the compilation pipeline to insert the
description of the desired approximate tensor operations.

Algorithm 1: Mobiprox compilation. Compilers used
at each step are shown in comments.

1 IRLLV M ← Transform source code into LLVM-IR ; // Android LLVM
2 IRHPV M ← Transform IRLLV M into HPVM-IR ; // ApproxHPVM
3 for each IR transformation Ti of the compiler do
4 IRHPV M ← Ti(IRHPV M ) ; // ApproxHPVM
5 end
6 IRLLV M ← Transform IRHPV M into LLVM-IR ; // ApproxHPVM
7 Compile IRLLV M to machine code ; // Android LLVM

2) OpenCL Tensor Runtime for Android: A core component
of Mobiprox Android is a Tensor Runtime, which implements
tuneable approximable tensor operations for NN inference.
The existing support for approximate NN operations for
Nvidia CUDA GPUs [14] is not suitable for mobiles, which
seldom host such hardware. Instead, Mobiprox implements an
own tensor runtime using OpenCL, an open standard for GPU-
accelerated computation which is available on a wide variety
of hardware, including mobile platforms.

To enable an enhanced control over low-level concepts (such
as memory allocation), we implemented the tensor runtime
for Android using CLBlast [30], an OpenCL implementation
of basic linear algebra subprograms (BLAS). However, this
library is not intended for deep learning: it does not implement
operations commonly used in NNs. Therefore we extended
CLBlast with the following operators: i) Point-wise tensor
addition, ii) Bias addition, iii) Activation functions (ReLU,
clipped ReLU, tanh), iv) FP-16 – FP-32 tensor conversion, v)
Batch normalisation, vi) Pooling (min, max, average), vii)
Convolution approximations operators optimized with tiling
and vectorization: Image-to-Column (im2col) transformations
with row perforation, column perforation, and filter sampling,
Kernel-to-Row (kn2row) transformation with filter sampling,
and Interpolation of missing values in convolution perfora-
tion. Finally, during the mobile app compilation Java Native
Interface (JNI) is exposed, enabling the tensor runtime initial-
ization and destruction, NN inference invocation, and dynamic
approximation configuration loading.

3) HPVM Profiler for Android: To assess the speedups and
consequently the energy efficiency of approximated NNs we
implement a profiler tool. The profiler, in the form of a Python
library, for a given NN binary measures the accuracy, softmax
confidence, and execution time of NN inference on a given
test dataset. Due to a high discrepancy between the speedup
observed on a mobile device and on a server for the same
approximated network (Figure 3), the profiler uses the Android
Debug Bridge (ADB) [31] to run measurements on an actual
Android device and to transfer the profiling information files
back to the host machine for analysis.

V. APPROXIMATION ADAPTATION STRATEGIES

Mobiprox’s key strength is its support for context-based
adaptation of mobile DL approximation. The framework itself
deliberately does not prescribe the adaptation strategy allowing
a developer to implement an arbitrary set of rules driven by
energy needs (e.g. “use higher approximation when battery
level falls below 10%”), the purpose of use (e.g. “use more
accurate HAR models when a user is exercising”), or even
business models (e.g. “use input-adaptable approximation for
premium users”). Programming such strategies is trivial, yet,
one can envision a more challenging-to-achieve goal, such as
“minimize the energy usage without sacrificing the inference
accuracy”. In this section we harness the natural temporal
dependence of the instances of sensed data that is charac-
teristic in many mobile computing applications, and devise
two strategies demonstrating that a widely applicable goal of
energy minimization can be met with Mobiprox.

A. State-driven

Many mobile sensing domains deal with the recognition of
states that do not vary rapidly over time: human physiological
signals do not change erratically, people have conversations,
not random utterances, movement is continuous in space, etc.
Our state-driven adaptation strategy is based on the observation
that rapid variations, especially in human behavior, are rare
(e.g. [32]). We hypothesise that inputs that are less difficult
to classify can be processed with more “aggresive” energy-
saving approximation configurations, whereas more difficult-
to-classify inputs require computationally more expensive,
more accurate configurations, and that the “difficulty” of the
input correlates with the class an instance belongs to.

Starting from this assumptions we implement an adaptation
algorithm that adjusts the approximation configuration based
on the reliability of classification determined by looking at
a subset of the most recent predictions made by the network.
After each inference, a vote is cast on the measure of reliability
V , which is increased by 1 if all previous N predictions are
equal, and decreased by 1 otherwise. The functionality of this
approach is described in detail in Algorithm 2.

In this algorithm, VL refers to the number of required votes
that need to be cast consecutively in order to change the ap-
proximation configuration – this parameter avoids the situation
where the configuration is changed at every inference point.
The second parameter N defines the capacity of the FIFO
memory M . A larger memory would increase the robustness
of the algorithm to classification errors (since it will consider
a larger subset of previous predictions), but at the same time
would hinder switching to more approximate configurations
after a change in the observed/modeled phenomenon.

B. Confidence-driven

In the second adaptation strategy, we use the classifier’s
confidence as a proxy for accuracy. The softmax layer proba-
bility can accurately reflect the actual confidence of the clas-
sifier [33]. However, Guo et al. [34] point out that calibration
is required to achieve a high correlation between the softmax
confidence and the expected inference accuracy. Hence, we
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Algorithm 2: State-driven adaptation engine
1 M = [] ; // FIFO memory with maximal capacity N
2 V = 0 ; // Reliability index on interval [−VL, VL]
3 while p = nextPrediction() do
4 push(M,p);
5 if len(M) < N then
6 continue;
7 end
8 if all predictions in M are equal then
9 V = max(0, V ) + 1;

10 end
11 else
12 V = min(0, V )− 1;
13 end
14 if V ≤ −VL then
15 Approximate less;
16 end
17 else if V ≥ VL then
18 Approximate more;
19 end
20 pop(M);
21 end

perform calibration by applying the temperature scaling during
softmax confidence calculation. More specifically, for an N -
class classification task where the N -dimensional vector z
contains class scores, for any class i, its calibrated softmax
confidence is computed as:

σi(z;T ) =
ezi/T∑N
j=1 e

zj/T
(1)

where T is a scalar temperature parameter, which “softens”
the softmax (raises the output entropy) when T > 1 and is
optimized with respect to negative log likelihood on the vali-
dation dataset, so that the confidence value for the datapoints
classified with accuracy p is as close a possible to p [34].

Our adaptation strategy then uses the calibrated softmax
confidence to identify incorrect classifications. The Android
profiler (Section IV-B3) also reports per-class confidence
averages for correct (C(i)

+ ) and incorrect (C(i)
− ) predictions

and adds this information to approximation configuration files.
The algorithm is then driven by a hysteresis outlined by two
thresholds C

(i)
less and C

(i)
more, where C

(i)
− > C

(i)
less > C

(i)
more >

C
(i)
+ . If the classification confidence of the predicted class of

the immediately preceding instance is higher than C
(i)
more, the

algorithm moves towards more aggressive approximation. If
it is lower than C

(i)
less, the algorithm moves towards less ap-

proximated configuration. We empirically find that the values
of C

(i)
less halfway and C

(i)
more three-quarters-way between C

(i)
−

and C
(i)
+ , respectively, perform well in our experiments.

VI. EXPERIMENTAL SETUP

To evaluate our framework we first, through a series of
microbenchmarks, assess the energy savings and speedup
achieved through approximate neural networking operations
implemented in Mobiprox, and also evaluate the overhead
incurred by the accuracy–speedup profiling that Mobiprox
relies on. Then, we evaluate Mobiprox’s dynamic adaptation
in two domains – human activity recognition and spoken key-
word recognition. Finally, we deploy Mobiprox on commodity
Android phones and demonstrate its usability for real-time
adaptable DL inference.

Microbenchmarks with standard architectures. We eval-
uate Mobiprox first through a series of experiments aiming
to assess the energy savings and speedup achieved through
different approximate NN operations over a selection of net-
works. We first investigate the performance on standard image
recognition architectures (AlexNet, VGG16, and MobileNet)
and the CIFAR-10 dataset. However, since Mobiprox primarily
targets dynamic mobile environments and inference from time-
series sensor data, we also include two NN architectures
(MobileNet and ResNet50) trained on UCI-HAR human ac-
tivity recognition dataset [35]. We implement all networks in
PyTorch.

Mobiprox is fully compliant with consumer off-the-shelf
Android devices. Yet, modern unibody smartphones do not
allow for batteries to be easily removed, precluding the use
of high-accuracy power metering. Therefore, when energy
consumption is examined, we use ASUS TinkerBoard S2

single-board computer running Android 7 OS. We power
it through the high-frequency Monsoon Power Monitor and
use the accompanying PowerTool3 measurement processing
software. Our Python-based profiler using ADB runs compiled
approximated NNs on the board. The approximation’s main,
yet not the only (as we will see in Section VII-B) impact on the
energy consumption stems from the decreased DL processing
time. The profiling for each network is, thus, executed on a
predefined fraction of the data in 10 batches for UCI-HAR
networks and in 8 batches for CIFAR-10. This was done to
i) reduce overall time requirement, and ii) obtain more robust
measurements by measuring each batch separately. We report
the mean and standard deviation of each configuration’s energy
consumption.

Real-world human activity recognition traces. We assess
the expected energy savings Mobiprox brings in real-world
environments by taking a recent trace of human activity ob-
tained through a body-mounted mobile sensing platform [36].
The dataset contains traces of 21 participants (13m, 8f), with
an average age of 29 (std. dev 12) years. The traces consist of
the acceleration and angular velocity in all three axes sampled
at 50 Hz from an UDOO Neo Full board4, a compact IoT
embedded computing device equipped with an accelerometer
and a digital gyroscope, strapped to each participant’s waist.

In this study, which took place at a university campus, the
participants performed the six activities in a row. First the
static ones – sitting, standing still, and lying – for 2 minutes
each. Then, the dynamic activities – walking up and down
a hallway (summing up to two to three minutes for each
participant) and walking down and up the stairs (about 45
seconds in each direction, the duration being limited by the
total number of stairs). This experiment features the same six
activities that are present in the original UCI-HAR dataset. Yet,
by using traces collected with a different device, in a different
environment, and with different participants than the original
experiment, we aim to obtain a realistic picture of Mobiprox’s
ability to adapt to previously unseen users. Separately, we

2https://tinker-board.asus.com/product/tinker-board-s.html
3https://www.msoon.com/hvpm-software-download
4https://shop.udoo.org/en/udoo-neo-full.html
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conduct an experiment with Mobiprox running directly on
Android smartphones that further assesses the performance of
our framework with human activity recognition in unscripted
scenarios (ellaborated below).

Real-world spoken keyword recognition traces. We also
examine the savings Mobiprox brings in real-world envi-
ronments by considering the problem of a spoken keyword
recognition from microphone recordings. For this we use
the Google Speech Commands (GSC) v0.01 [37], a dataset
containing 65,000 one-second long utterances of 30 short
words by thousands of different speakers. Interested in the
recognition of keywords in realistic situations, where a word
has to be spotted in sound segments that may also contain
words we are not interested in as well as recordings of silence,
we follow the approach presented in [38] and use twelve
classes for ten selected keywords (yes, no, up, down, left,
right, on, off, stop and go) and two extra classes: “unknown”
(for the remaining 20 words in the dataset) and “silence”. In
Section VII we evaluate Mobiprox’s ability to bring energy
savings when a compact NN is used for on-device spoken
keyword recognition within the GSC-based trace.

Live smartphone-based human activity recognition. We
recruit ten users (all students or staff at University of Ljubl-
jana, 7 female/3 male) to perform a 10-minute experiment
during which they are given an option of conducting six activ-
ities – sitting, standing still, lying, walking, going up the stairs
and going down the stairs. Unlike with the lab-based studies,
such as [35], the order and the duration in which the activites
were to be performed, was not in any way prescribed in our
experiment. A Samsung Galaxy M21 smartphone, in the por-
trait orientation with the screen facing forward, was attached
to each user’s waist. The phone sampled accelerometer and
gyroscope at 50Hz, and ran Mobiprox for live on-device infer-
ence of human activity using dynamically approximated neural
network. The model used was mobilenet_uci-har pre-
trained on UCI-HAR dataset without any further re-training.
Finally, accelerometer and gyroscope samples were stored and
re-ran through a non-approximated mobilenet_uci-har
model to obtain the baseline activity prediction (the output of
the non-approximated model is not the ground truth, as due to
the unscripted nature of the experiment we do not know the
exact activity a user performed at a given moment).

VII. EVALUATION

In our evaluation of the Mobiprox framework we aim
answer to the following research questions:

• RQ1: Usability: time to find configurations and general-
izability across different devices?

• RQ2: Generalizability across NN models: how does Mo-
biprox perform across different neural network models
and classification tasks, in terms of accuracy, speedup,
and energy saved?

• RQ3: What energy savings would Mobiprox bring in a
real world scenario and at what trade-off with regard to
inference accuracy?

A. Configuration identification time and generalizability

In Mobiprox, the identification of suitable approximation
configurations is split into two phases: i) identifying the
candidate Pareto front among all possible configurations and
ii) measuring each configuration’s speedup and inference accu-
racy on the target platform. The first part of the configuration
identification process relies on ApproxTuner and is performed
on a CUDA GPU-enabled machine. The second part of the
process must be executed on a machine (e.g. a PC or a laptop)
that connects to the target mobile platform via Android Debug
Bridge (ADB). In this step, the candidate configurations get
executed directly on the mobile, thus, what matters are the
capabilities of the connected mobile platform, not the machine
that controls the execution.

In our experiments we use a single node of a grid super-
computer equipped with Nvidia Quadro GV100 GPUs for the
first phase of the configuration identification process. The node
uses a single GPU for the tuning task, which is executed in
a batch processing mode. In Table I we list the times needed
for finding the Pareto front of the configurations for different
networks used in our experiments. The heuristic search done
by ApproxTuner is not deterministic, thus different runs may
be completed in slightly different amounts of time. In addition,
subsequent tunings of the same network often take signifi-
cantly less time, as they build upon already cached results. In
any case, we observe that the even the most complex tuning
(for resnet50 uci-har) completes in less than 30 minutes.

TABLE I
TIME NEEDED FOR IDENTIFYING PARETO-OPTIMAL CONFIGURATIONS

USING A SINGLE GPU ON A SUPERCOMPUTER. STANDARD DEVIATIONS
ARE IN THE PARENTHESES. THE DURATION MAY VARY WITH DIFFERENT

SEARCH PARAMETERS

DL model Initial tuning time [s] Subsequent tuning time [s]
alexnet2 cifar 574 (97) 184 (6)
mobilenet cifar10 1301 (226) 370 (18)
vgg16 cifar10 1216 (62) 264 (2)
resnet50 uci-har 1602 (316) 276 (14)
mobilenet uci-har 1203 (246) 253 (1)

For the second phase of configuration identification we use
an ASUS TinkerBoard S, which, with its Rockchip RK3288
system-on-chip released in 2014, represents a lower-end plat-
form. In Table II we list the times needed for measuring the
classification accuracy and the speedup for all Pareto front
configurations found in the first phase of the identification
process. The size of the test dataset, the batch size, as well as
the number of configurations in the Pareto front varied for dif-
ferent networks. Nevertheless, this one-off process completes
in less than 58 mins. even on our low-end mobile platform,
thus, we conclude that Mobiprox can be comfortably used
within the existing Android application compilation process.

To answer RQ1, we now discuss the generalizability of an
application compiled with Mobiprox. Mobiprox requires an
actual mobile hardware for the second part of the configuration
identification. Tens of thousands of different Android devices
exist on the market, however, the choice of which to use should
not have a major impact on the approximate configuration
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TABLE II
TIME NEEDED FOR PROFILING PARETO-OPTIMAL CONFIGURATIONS’

SPEEDUP AND ACCURACY ON A LOW-END MOBILE DEVICE.

DL model Dataset (batch) Configs. Profiling time [mins]
alexnet2 cifar 800 (100) 20 36
mobilenet cifar10 800 (100) 20 58
vgg16 cifar10 200 (25) 20 42
resnet50 uci-har 250 (50) 20 26
mobilenet uci-har 1450 (145) 10 42

profiling. First, despite different hardware, the platforms use
the same OpenCL-based primitives we developed in Sec-
tion IV-B2. Second, while the speed at which NN will be
executed may differ among different devices, there is no
reason to expect that speedups (relative to a non-approximated
network) will be different for the same configuration ran on
different devices. This is especially true if these devices belong
to the same architectural category. Currently, Android apps
can be built for four such categories, i.e. Application Binary
Interfaces (ABIs). Yet, 99% of the smartphones rely on one of
the two ARM-based ABIs5, armeabi-v7a and arm64-v8a, both
of which we successfully tested on ASUS TinkerBoard S and a
range of phones (Samsung Galaxy M21, Samsung Galaxy S21,
Xiaomi Pocophone) in our lab. For the deep learning models
presented in this paper we have not observed any differences in
ordering among speedups obtained by different configurations
on the platforms we have experimented with.

B. Popular CNN benchmarks

To answer RQ2, we obtain approximation configuration
sets for NNs trained on CIFAR-10 and UCI-HAR datasets
using the Mobiprox tuner6 and present the profiling results in
Figures 4a and 4b. The reported energy consumption reduction
is system-level, i.e., idle consumption has not been subtracted.
We can observe a key difference between the approximation
configurations of different NN architectures – larger net-
works, such as VGG and AlexNet, are more amenable to
approximation, and Mobiprox yields higher energy savings for
these networks. This may suggest that certain models that are
prohibitively expensive for mobile DL can be made mobile-
ready using Mobiprox even without retraining.

It is interesting to juxtapose the measured energy savings
with the speedup expected at the tuning time. In Figure 3a
in Section IV-A, we show that server-based profiling indicates
that our approximations can lead to more than 2.5× speedup
of inference on the MobileNet architecture trained on the UCI-
HAR dataset. The actual reduction in energy consumption is
much smaller and is consistent with the speedup measurements
presented in Figure 3b. We believe that realising the full
potential of the approximation on the mobile platform requires
careful consideration of the mobile processing hardware. The
overheads and thread scheduling inefficiencies in the ARM
Cortex-A17 computing architecture on which the experiments
were performed may be a likely culprit [39].

5https://stackoverflow.com/questions/46453457/
which-android-abis-cpu-architectures-do-i-need-to-serve

6For clarity, we limit the number of configurations and instruct the tuner
not to consider configurations that result in QoS loss below a given threshold.

(a) CIFAR-10

(b) UCI-HAR

Fig. 4. System-wide energy consumption (relative to no approximation) of
an ASUS TinkerBoard S running inference on NNs trained different datasets.
Different point types correspond to different NN architectures; each point
represents a single approx. configuration. The x-axis represents the actual
QoS loss from the model deployed on a mobile device.

In Figure 5 we analyse how speedups translate to en-
ergy consumption reduction. We observe a clear relationship
between the two lines indicating that a higher speedup in-
deed reduces energy consumption. Due to dynamic voltage-
frequency scaling this relationship does not necessarily hold
for any general computing task, as at light loads the CPU/GPU
governor might lower the CPU/GPU frequency, and thus,
the power consumption. This would lead to a more complex
relationship among power, energy, and speedup. However, DL
computation is, based on our experience with mobile devices,
highly demanding leaving no space for the governor to reduce
the frequency and make the speedup – energy consumption
relationship non-trivial.

The adaptation strategy calculation, i.e. deciding which
approximation level to use, plays virtually no role in the overall
energy consumption. Irrespective of which of the two strate-
gies presented in Section V we employ, the process boils down
to either assessing the equality of M predictions, where M is
a small integer, and comparing the updated integer reliability
metric V with a constant threshold (“state-driven” strategy), or
comparing the softmax confidence with a constant threshold
(“confidence-driven” strategy). Each of these calculations is
performed in a constant time that is negligible compared to
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Fig. 5. Relative energy consumption compared to relative inference time re-
duction for mobilenet_uci-har at various approximation configurations.
The x-axis shows the actual QoS loss from the model deployed on a mobile.

an execution time of even a single NN operation. The choice
of the strategy, however, impacts the levels that the NN will be
approximated with. Thus, in the remainder of the evaluation
we examine the mobile DL accuracy and energy efficiency
afforded by different approximation adaptation strategies.

C. Adaptation strategy evaluation

To answer RQ3, we assess the Mobiprox’s ability to deliver
energy savings when adaptation according to the strategies
developed in Section V is performed in realistic dynamic
scenarios. This we evaluate in two mobile DL domains:

1) Human activity recognition (HAR): We run the
MobileNet-V2 dynamically approximable NN on the HAR
traces described in Section VI. These traces were collected
in a completely different session and by different authors than
the original UCI-HAR traces used for the network training.
We evaluated the adaptation strategies from Section V and
compared the results with the ones obtained by the non-
approximated MobileNet-V2 (Table III). For each strategy we
choose the option for moving to more aggressive approxima-
tions (linear vs. exponential) that yielded the best results.

TABLE III
INFERENCE ACCURACY AND ENERGY CONSUMPTION ON THE HAR

TRACES FROM [36] FOR MOBILENET-V2 TRAINED ON THE UCI-HAR
DATASET.

Adaptation Incr. Accuracy Relative Energy
Non-approximated - 0.65 1.0
Confidence-based Expon. 0.63 0.854
State-based (VL = 2) Linear 0.63 0.867

These results show that all adaptation engines are more
energy efficient than the vanilla MobileNet-V2 with a small
drop in average accuracy. The optimal trade-off between the
energy saved and the drop in accuracy is obtained using the
Confidence-based adaptation engine, which is 15% more en-
ergy efficient with just a 2% drop in overall average accuracy.
The accuracy results are modest (the accuracy of the non-
approximated network on the UCI-HAR test set was 90%),

which is to be expected given that we used a network trained
on a dataset collected in one environment for performing
human activity inference on data collected in a completely
different environment. Thus, the results are more in line with
other efforts involving HAR on free-living data for using
networks trained on the UCI-HAR dataset [40].

Finally, to understand whether the accuracy-energy impact
is uniform across the users, in Figure 6 we show the average
accuracy vs. average energy consumption for each user trace
for both the non-approximated network and the approximated
network using the confidence-based adaptation engine. There
is a general trend in the reduction of the energy consumption
while maintaining the comparable classification accuracy.

Fig. 6. Average accuracy vs. average energy consumption for each user for
the non-approximated network and the confidence-based adaptation.

2) Spoken keyword recognition (SKR): Mobiprox approx-
imation strategies are not restricted to a particular domain.
Thus, we also demonstrate approximation adaptation of a
SKR DL model. Understanding voice commands is a critical
affordance in many ubiquitous computing settings, such as, for
providing driving assistance, or smart home functionalities.

From a number of DL models have been crafted for SKR
we focus on CNN-based models introduced by Sainath and
Parada [41]. The family of models presented in this work is
light-weight, both in terms of memory usage and computation
requirements, thus, well-suited for mobile devices. We adopt
a particular PyTorch implementation of a model from this
family consisting of two convolutional layers and one fully-
connected layer with the softmax output presented in [38].
The code accompanying [38] already contains the DL model
weights obtained through training on the 80% of the GSC
dataset (validation on 10%), and we reuse these weights in
our model. This model is then funneled to Mobiprox’s on-
server and later on-device tuning on the ASUS Tinkerboard S
to obtain a 10-point Pareto front of approximate configurations
of the network. For tuning we use a half of the 10% of the
GSC that was not used for the training/validation.

Opportunities for dynamic approximation in SKR come
with a naturally-varying level of background noise. For in-
stance, it has been show that when different levels of noise
are present, a different complexity of a DL model is needed
to successfully recognize spoken keywords [42]. In our exper-
iments we examine how the adaptation strategies developed
in Section V cope with time-varying noise levels. For this,
we first construct a trace consisting of 160 word utterances
from a previously unseen part of the GSC dataset mixed
with time-varying white noise whose level corresponds to the

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3365957

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



11

level measured in a realistic environment over 24 hours [43]
(Figure 7). The trace is then used for SKR with our mobile
DL model, while a Mobiprox’s adaptation strategy decides on
which approximation configuration to use at subsequent infer-
ence step. Unlike in the HAR experiment, in this experiment
there is no notion of “state” (e.g. a period of time during which
a user is likely to keep performing the same activity), rather,
keywords are randomly distributed in the trace. Thus, we do
not evaluate the state-based adaptation method, but focus on
the confidence-based adaptation.

Fig. 7. Noise distribution for the SKR trace: 160 noise level values, one for
each sample in the trace. Each sample contains one random utterance (from
the 12 classes) on which noise is added with the level specified according to
the distribution of the ambient noise during a regular day [43].

TABLE IV
INFERENCE ACCURACY AND ENERGY CONSUMPTION ON THE SPOKEN

KEYWORD RECOGNITION TASK FOR A NETWORK INTRODUCED IN [38].

Adaptation Incr. Accuracy Relative Energy
Non-approximated - 0.96 1.0
Confidence-based Expon. 0.96 0.852
Confidence-based Linear 0.96 0.852

We run the above trace on ASUS Tinkerboard S connected
to a Monsoon power meter. We run both the original com-
pact network from [38] and the same network dynamically
approximated with two flavors of our confidence-based adap-
tation scheme (with a linear and an exponential increase in
approximation level). The results are shown in Table IV. Both
the original network and the two flavors of the approximated
network achieve the same accuracy 96.3%, while Mobiprox
adaptation leads to 15% system-wide energy savings.

D. Smartphone-based adaptation in an unscripted scenario

We investigate how Mobiprox performs on a battery-
powered commodity Android phone when the scenario of
use is not prescribed. On all ten phones Mobiprox suc-
cessfully ran real-time adaptation and the inference of
mobilenet_uci-har for human activity recognition. In
addition, we re-ran the collected sensor traces on the same
phone with both state-based and confidence-based approxi-
mation strategy employed. Analyzing the logs we have not
observed any discrepancies (in terms of inference delay or

inferred class mismatch) between on-device sampling and
inference, and trace-based inference, confirming that Mo-
biprox affords smooth real-time approximation of mobile deep
learning.

TABLE V
AVERAGE RELATIVE ACCURACY (AGREEMENT WITH BASELINE) AND

RELATIVE ENERGY CONSUMPTION ON 10 USER TRACES COLLECTED IN AN
UNSCRIPTED SCENARIO FOR MOBILENET-V2 TRAINED ON THE UCI-HAR

DATASET. STANDARD DEVIATIONS ACROSS USERS ARE IN PARENTHESIS.

Adaptation Incr. Agreement w. baseline Rel. energy
Confidence-based Expon. 0.83 (0.04) 0.85 (0.01)
State-based (VL = 2) Linear 0.91 (0.02) 0.88 (0.01)

In Table V we compare the inference performance and
energy savings for the confidence-based adaptation engine
with exponential increase of approximation and the state-
driven adaptation strategy with the linear increase. Since the
experiments were unscripted and we do not have the ground
truth labels, we show the relative accuracy (i.e., the agree-
ment with the non-approximated baseline model) and relative
energy consumption (i.e., compared to the consumption of
the non-approximated model). From the table we observe that
the state-based adaptation engine achieves a higher average
agreement with the baseline non-approximated model – 91%,
while consuming 12% less energy than the baseline. The
confidence-based engine allows for more energy savings –
up to 15% – but with the downside of a lower agreement
with the non-approximated network – 83%.

To further understand the functioning of the approximation
adaptation strategy, in Figure 8 we show an example of the
adaptation timeline for one of the user traces collected in
this experiment. The black dotted line presents the adaptation,
where the higher approximation configuration number (right
y-axis) indicates a higher level of approximation. We com-
pare the activities inferred (left y-axis) by the baseline non-
approximated model (green dots) with the activities inferred by
the currently used approximation configuration. Should these
differ, we plot a red triangle indicating the mismatched activity
inferences. Finally, we show the cumulative energy savings
(compared to the non-approximated model and normalised to
the graph dimensions) extrapolated from the currently used
configuration and the precise energy measurements from the
ASUS Tinkerboard.

The figure confirms that the Mobiprox adaptation strategy
harnesses the accuracy-energy consumption trade-off points
determined during the tuning phase. The state-driven strategy
remains cautious (i.e. uses more accurate configurations) when
a user performs dynamic activities that are more difficult to
classify (e.g. walking, walking up or down the stairs), thus
when long periods of uniform classification results are not
present. The strategy jumps to more aggressive approximation
configurations when a user lingers in an easier-to-classify
static activities (e.g. standing, lying, sitting). In terms of the
mismatches with the baseline, we observe that the differences
are often in individual timesteps (i.e., they agree soon again)
and that diverging prediction are between similar activities
(walk upstairs vs walking and sitting vs lying).
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Fig. 8. State-driven adaptation timeline with linear increase of approximation.

VIII. DISCUSSION AND LIMITATIONS

Static training-time optimization is stifling further prolifer-
ation of mobile DL. Mobiprox builds upon the existing efforts
towards dynamic DL optmisation [11], [12], [27], [13], yet dif-
fers from them in three important ways: i) being implemented
at the compiler-level and exposed as an end-to-end pipeline,
Mobiprox is not limited to a particular network architecture,
supports various layer types present in NNs, supports models
written in either PyTorch or Keras, and does not require
any previous involvement from a data scientist designing
and training the network; ii) Mobiprox supports quantization,
perforated convolutions, and filter sampling, but is created
to be easily extensible to a wide range of approximation
techniques; iii) Mobiprox allows context-dependent runtime
adaptation of the approximation level; while we include two
adaptation algorithms with the Mobiprox codebase, virtually
any policy can be used. To facilitate future research and usage,
we release Mobiprox as open-source software7.

Mobiprox, is subject to certain limitations. First, despite
implementing an on-device profiler to better gauge the ef-
fect of different approximations on the QoS loss, Mobiprox
cannot provide guarantees that the expected QoS will indeed
be achieved, nor can it predict the maximal expected QoS
loss on yet-to-be-seen data. Somewhat related is the issue
of potentially reduced reliability of approximated models.
While compression can, in certain situations, improve the
generalizability of a model [44], different compression levels
can lead to widely varying reliability outcomes [45].

Second, our measurements show the maximum speedup
Mobiprox achieves on a mobile device remains relatively
modest at 1.25×, while the same NN architecture achieves
twice the speedup on a server. This discrepancy likely stems
from the lack of optimised support for running (approximate)
deep learning on mobile devices. The goal of the prototype

7https://gitlab.fri.uni-lj.si/lrk/mobiprox/

version of Mobiprox presented in this paper is to, for the
first time, demonstrate dynamic mobile DL approximation
adaptation. To unlock further benefits, we plan to examine
integration with mobile DL compiler stacks that are already
hand-optimized by large engineering teams in production
environments, such as TVM [46], Pytorch Mobile, or TF
Lite8. Since the approximations in Mobiprox reduce both the
number of compute operations and memory loads and stores,
the performance improvements of these approximations should
seamlessly translate, if efficient library and compiler imple-
mentations listed above are used. Not only would this likely
lead to improved speedup gains, but would also ameliorate the
need for time-inefficient development of custom approximable
tensor runtimes for various architectures.

Third, Mobiprox is general and can be applied to any neural
network architecture, yet, the richness of the approximate con-
figurations and the efficiency of the approximation depends on
the presence of convolutional layers in the network. Mobiprox
specifically targets these layers with convolution perforation
and filter sampling approximations, as convolutional layers
tend to consume the majority of computational time and
energy in mobile neural networks [47]. For non-convolutional
layers, Mobiprox allows only one type of approximation –
half-precision quantization – leading to at most 2L possible
approximation configurations in an L-layer network. To ex-
pand the range of approximation techniques, in future we plan
to investigate the integration of dynamic pruning [13] of fully-
connected layers in Mobiprox. Techniques requiring up-front
modification or specialized training to support approximation,
such as Slimmable neural networks [12], remain unsuitable, as
with Mobiprox we provide a service that allows the integration
of pre-built networks oblivious to approximation, for instance,
those acquired through Google Cloud AutoML, into mobile
apps.

Finally, with respect to Mobiprox’s adaptation algorithms
(Section V), these were developed for commonly encoun-
tered situations where the context does not fluctuate rapidly.
Such behavior is present in numerous domains, including
two examined in the previous section – the human activity
recognition where an activity a person is performing often
stays the same over a certain time period, and the spoken
keyword recognition, where the background noise gradually
changes throughout the day. However, harnessing the slow-
changing nature of many real-world phenomena, our adapta-
tion strategies may not be suitable for tasks such as anomaly
detection where sudden changes of the target phenomena are
expected [48]. Note that this does not restrict the general
domain in which Mobiprox can be applied. Indeed, with minor
modifications, the strategies presented in this paper can be used
for adapting approximation of models built for tracking objects
in live video [49], for instance.

8This is also the key reason why a direct comparison between Mobiprox and
current mobile DL compression implementations (e.g. quantization in TFLite)
is impossible – neither do these approaches provide dynamic approximation
adaptation, nor is Mobiprox optimized for performance.
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IX. CONCLUSION

In this paper we introduced Mobiprox, to the best of
our knowledge, the first end-to-end framework that enables
dynamically adaptable, rather than static, approximation of
mobile DL. Furthermore, Mobiprox works with arbitrary ar-
chitectures, even with networks not initially designed with
approximation in mind. To accomplishing this, we first im-
plemented low-level support for approximate computing on
mobile CPU and GPUs through compiler-level primitives. We
then integrated the heterogeneous compilation infrastructure,
the approximate configuration search framework, and our
novel profiler into an Android-ready end-to-end approximate
configuration search, selection, and compilation pipeline. We
ran different deep learning architectures, such as MobileNet,
AlexNet, VGG, and ResNet through the pipeline and in two
different domains – human activity recognition and computer
vision – demonstrated that Mobiprox identifies approxima-
tion configurations that enable a trade-off between inference
accuracy and energy consumption. Finally, we implemented
approximation adaptation strategies for dynamic selection of
energy-preserving DL configurations while ensuring that the
quality of the resulting classification is not hurt. Experiments
in human activity and spoken keyword recognition domains
demonstrate that the adaptation strategies successfully ac-
commodate varying context, reducing the system-wide energy
usage by 15% in both domains, while sacrificing only 2% of
the accuracy in the HAR domain, and leading to no loss of
accuracy in the spoken keyword recognition domain.
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