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ABSTRACT To further extend the applicability of wearable sensors, methods for accurately extracting 

subtle psychological information from the sensor data are required. However, accessing subjective 

information in everyday life, such as cognitive load, remains challenging. To bring consensus on methods for 

cognitive load monitoring, a machine learning challenge is organized. The participants developed machine 

learning methods for cognitive load classification using wrist-worn physiological sensors’ data, namely heart 

rate, R-R intervals, skin conductance, and skin temperature. The data from subjects solving cognitive tasks 

of varying difficulty was used for the challenge. This article presents a systematic comparison and multi-

strategic performance evaluation of the thirteen methods submitted to this challenge. A systematic 

comparison of preprocessing, classifiers, and implementation techniques is presented. Performance variations 

for different task difficulty levels, different subjects, and different experiment periods are evaluated.  The 

results indicate that the most robust methods used multimodal sensor data, classical classification approaches 

such as decision trees and support vector machines or their ensembles, and Bayesian hyperparameter 

optimization for hyperparameter tuning. The most accurate models used handcrafted features that are further 

selected using sequential backward floating search and evaluated using stratified person-aware cross-

validation strategy. Moreover, the results indicated better classification performance for specific test subjects, 

the tasks with the highest difficulty, and in some cases, the time elapsed since the start of the experiment. 

This dependency is likely due to model overfitting or due to the subjective nature of the psychophysiological 

process. The intersubject variability in responses is challenging to be captured through objective binary labels 

for cognitive load, thereby warranting more sophisticated annotation approaches.  

INDEX TERMS cognitive load, machine learning, wearable sensors

I. INTRODUCTION 

The availability of small, wearable, and low-cost sensors 

combined with advanced signal processing and information 

extraction capabilities is driving the revolution in mobile 

behavior monitoring for applications such as sports 

analytics, ambient-assisted living, and lifestyle monitoring 

[1]. The applicability of wearable sensors is enhanced by the 

extraction of subtle physiological information that can serve 

as the basis of psychological monitoring. However, assessing 

psychophysiological information in everyday life remains 

challenging [2] since the association of wearable sensor data 

to human psychophysiological states is not as explicit as it is 

for physical states. For instance, smartphones can count steps 

and distinguish human physical activities (e.g., running vs. 

walking), but cannot recognize emotions and other affective 

states (e.g., cognitive load). Additionally, the inability of 

humans to recognize their psychophysiological states in a 
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timely and accurate manner poses a challenge for the 

development of affect recognition systems.  

The psychophysiological state addressed in this paper is 

the cognitive load. It refers to the utilization of one’s mental 

resources and is strongly related to attention. Since mental 

resources are limited, when they are utilized by a demanding 

task, they are not available for new tasks. Consequently, the 

person cannot pay attention to these new tasks, or must 

interrupt the current task. Wearable devices and mobile 

applications should be aware of the user’s cognitive load 

when the user is occupied with a demanding task. This can 

prevent undesirable effects of attention-grabbing. For 

instance, nearly 25,000 lives are lost annually on the EU 

roads where a vast majority of accidents are caused by a 

human error, often by a distracted driver1. Intelligent 

solutions to detect cognitive load and other mental states, and 

provide warning when needed, may decrease the loss of 

human lives, thereby contributing to the EU's goal of zero 

fatalities and severe injuries by 20502. Additionally, 

monitoring affective states can help improve mental well-

being [4] and productivity (e.g., avoiding notifications while 

the user is in the optimal flow state) [5]. 

When humans experience a psychophysiological load in 

the form of a demanding task, the sympathetic nervous 

system is activated. Depending on the load intensity, this 

activation increases the heart rate, sweating rate, breathing 

rate, and blood pressure; the pupils dilate, the saliva flow 

decreases, the heartbeats become equidistant, the blood flow 

is restricted from the extremities, and is redirected towards 

the vital organs. These signals can be measured accurately in 

controlled environments, such as hospitals, using specialized 

equipment. However, less obtrusive and less expensive 

devices are required to capture these signals in daily life 

through practical and large-scale experimentation [7]. 

Moreover, ecological momentary assessment that reveal user 

experiences are necessary to infer mental states from such 

measurements in daily life [6]. Recent advances in sensing 

technology have enabled relatively unobtrusive vital sign 

monitoring, thereby, bringing us closer towards unobtrusive 

mental state monitoring [26]. A significant part of research in 

mental state recognition and monitoring with wearables 

focuses on mental stress. For instance, Mozos et al. [54] used 

wearable and sociometric sensors to detect stress using a 

standard stress induction protocol. Similarly, Gjoreski et al. 

[30] used commercially available Empatica wristbands to 

detect stress with up to 92% accuracy using heart rate 

variability, blood volume pulse, galvanic skin response 

(GSR), skin temperature, and acceleration. Stress often 

overlaps with cognitive load but can be potentially 

distinguished from it [27]. Inferencing cognitive load from 

physiological signals is an important research field that is less 

researched compared to the recognition of physical states and 

activities, as well as the inference of several psychological 

                                                 
1 https://ec.europa.eu/commission/presscorner/detail/en/IP_19_1793 

states (e.g., stress, affect). To promote this field, a machine 

learning (ML) challenge was organized in which the 

participants built pipelines to infer cognitive load. Since the 

same dataset was used for the ML pipelines, performances 

of the algorithms could be compared and the best methods 

for cognitive load inferencing could be ascertained. 

This article has the following contributions:  i) it presents 

a systematic comparison of approaches of the thirteen 

successful machine learning pipelines submitted to the 

aforementioned challenge, ii) it provides a detailed 

evaluation of their overall performance and their 

performances for different subjects, different tasks and their 

difficulty levels, and iii) it summarizes the learnings from the 

challenge and presents them as suggestions for ML model 

development to infer cognitive load.  

 
II. CHALLENGE DATASET DESCRIPTION 

In order to collect physiological signals in situations where a 

subject is cognitively engaged, an experiment was conducted 

in which the subjects solved cognitive tasks of varying 

difficulty. The experiment was performed in a quiet, normal-

temperature office with one subject at a time under the same 

circumstances. Twenty-three subjects (four female) were 

recruited through the institutional communication channels 

(e.g. mailing lists, social network posts) and personal links. 

Their mean age was 29.5. The subjects had various degrees of 

educational qualification – high school (7), B.Sc (6), M.Sc (6), 

and Ph.D (4). studies. All subjects were (self-assessed) healthy 

adults and no other criteria were used for limiting the 

participation. The subjects wore a commercial wristband 

(refer Figure 1) on their non-dominant arm and sat on a 

comfortable chair in front of a computer monitor. The 

experiment session was recorded without any restrictions on 

the subject’s hand gestures, thereby reproducing sedentary 

workstyle. The experiment protocol is depicted in Figure 2. 

The subjects were briefed about the experiment. The 

remaining protocol comprised of two sets of tests – cognitive 

capacity tests and cognitive load estimation tests. A 

demographic questionnaire was filled in between the two tests. 

Cognitive capacity tests consisted of n-back tasks where n ∈ 
{2, 3} (2B and 3B in Figure 2). An n-back task consisted of 

 

Figure 1. Wristband Microsoft Band 2 used for dataset collection. 
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3x3 grid cells, one of which was colored at each time step. The 

subjects decided whether the colored cell at a time step was  

the same as the one colored n steps ago. The ratio of correct 

and incorrect answers depicted the cognitive capacity of the 

subject. Cognitive load estimation tests were comprised of six 

elementary cognitive tasks (ECTs) (denoted by x in Txy in 

Figure 2). These tasks are designed to elicit perceptual 

cognitive engagement, often used to demonstrate individual 

differences among people [35]. Haapalainen et al. [9] 

developed a software with these ECTs to assess visual-

perception-based cognitive load factors. A variation of this 

software was utilized for the data collection. The six ECTs 

were: i) Gestalt Completion test (T1) to identify incomplete 

drawings, ii) Hidden Pattern test (T2) to identify if a given 

model image is hidden in the composition of other images,    

iii) Finding A’s test (T3) to capture the speed of identification 

of letter ‘a’s in a text, iv) Number Comparison test (T4) to 

gauge the subject’s speed of comparison of two multidigit 

numbers, v) Pursuit test (T5) to visually track irregularly-

curved overlapping lines from the numbers on left to letters on 

the right side of a rectangle, and vi) Scattered X’s test (T6) to 

find the letter ‘x’ placed randomly, crowded with other letters. 

The first four ECTs were obtained from a manual for reference 

tests for cognitive factors [36], a popular standard for 

educational psychology research. The last two ECTs were 

originally devised by Thurstone and Thurstone [37].   

Furthermore, each ECT had three variations in difficulty 

(easy, medium and hard difficulty levels denoted by y in Txy in 

Figure 2) and were presented in a randomized order. After 

each task, a NASA-TLX [8] questionnaire was filled by the 

subjects to assess subjective cognitive load. The participants 

rested for three minutes after filling each questionnaire.  

The following wristband data was recorded with 1Hz 

sampling rate: R-R (or inter-beat) intervals, galvanic skin 

response (GSR), heart rate (HR), skin temperature (ST), 

barometer data, accelerometer and UV index data. However, 

the focus of the challenge is limited to the data from the 

                                                 
3 https://www.ubittention.org/2020/data/Cognitive-load challenge description.pdf 

following physiological sensors: R-R, GSR, ST, and HR. The 

data from the wristband was transmitted via Bluetooth and a 

mobile phone to a server for offline data analysis. Figure 3 

depicts the signals for a subject in a single session.  

Due to excessive noise, affected segments in the original 

dataset were disregarded. The dataset used for the challenge 

consisted of 825 instances from 23 participants. The instances 

of rest were labelled as ‘no load’ whereas the task instances 

were labelled as ‘cognitive load’. Each instance was 

composed of 30-seconds data of four modalities: R-R, GSR, 

ST, and heart rate. The dataset was split into training and test 

datasets with 632 instances from 18 subjects in the former. In 

the training set, 49.6% of the instances had a label ‘0’ or ‘no 

load, hence leading to a nearly balanced dataset. Each 

subject’s data was assigned a unique subject ID. Furthermore, 

the dataset is the first labeled dataset for cognitive load 

monitoring with a wristband and is made publicly available 

following the ML challenge3.  

 
III. MACHINE LEARNING CHALLENGE 

The goal of this challenge was to recognize two levels of 

cognitive load – Cognitive load vs. no load, using four 

physiological signals – R-R, GSR, ST, and HR. The 

participants of the challenge had access to a labeled training 

dataset and an unlabeled test dataset. The participants 

developed ML pipelines that processed the sensor data, 

created models, and recognized the cognitive load. The 

problem is deliberately reduced to the binary recognition of 

whether a subject is engaged in a task (irrespective of whether 

the task is easy, medium, or hard) or resting, as the previous 

efforts demonstrate that fine-grain distinction among different 

cognitive load levels from physiological signals might be 

impossible [32][26]. The results were presented at 

UbiTtention workshop at ACM UbiComp 2020 conference, 

and the three best-performing teams received prizes. The 

following subsections describe the specifications of ML 

pipelines submitted to this challenge in further detail. 

Figure 2. Dataset collection protocol. 

Figure 3. Sample sensor data for a subject. NASA-TLX questionnaire 

periods have been excluded.  
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TABLE 1 

COMPARISON OF THE METHODS ADOPTED BY THE CHALLENGE PARTICIPANTS.  

 

 
A. Methods 

This subsection describes the methods adopted by the 

participants of the ML challenge to infer cognitive load. The 

challenge received thirteen submissions from nine different 

teams. In the following sections, each submission is regarded 

as a method and denoted by a roman number. Further details 

on the team names are presented in the Appendix. Table 1 

provides an overview of the methods. Nine methods involved 

preprocessing techniques such as standardization or 

normalization. Notably, more than half of them used 

subjectwise preprocessing. A majority, i.e., ten out of thirteen 

methods, were based on classical ML approaches, including 

tree-based algorithms (I, V, VI, X), support vector machines 

and their ensembles (II, III, IX), and logistic regression (IV, 

VIII, XIII). The remaining three were based on neural-

networks: a multilayer perceptron (VII), a recurrent neural 

network (XII), and an autoencoder based on convolutional 

neural network (XI). However, only two of these three were 

end-to-end learning approaches. The small dataset size was 

noted as a major motivation behind the choice of classical ML 

approaches over approaches based on neural-networks. To 

overcome the shortcoming posed by the dataset size during 

training, three methods adopted dataset augmentation 

techniques, whereas the transfer-learning-based approach in 

method XI used an external, yet similar dataset to pretrain the 

model. Synthetic Minority Over-sampling Technique 

(SMOTE) was used in method VII to enlarge the dataset as 

well as to introduce variability. Meanwhile in method XII, a 

particular class was upsampled to counteract the input-induced 

bias in the network. Method X used B-spline interpolation of 

instances to compensate for the effects of low sampling 

frequency. All the methods considered the four modalities 

provided.  

A majority (eleven) of the methods involved handcrafted 

feature extraction. Among the extracted features, the 

prominent ones encompassed time domain statistical measures 

such as mean, variance, kurtosis, median, sum, etc. and 

frequency-domain measures such as power spectral density 

ratio of heart rate variability. Several extracted features were 

modality-specific, e.g., skin conductance peak amplitudes 

were derived from GSR, and heart rate variability in terms of 

root mean square of successive differences was derived from 

R-R intervals. The total number of extracted features varied 

between 4 and 129. However, six approaches did not utilize 

all the extracted features. Instead, feature selection techniques 

Method Preprocessing Features Feature Selection Proposed Classifier 

I - Handcrafted: general Sequential backward 

floating search  

Ensemble of 7 Gradient boosting 

decision trees 

II - Handcrafted: features [34] - Support vector machine 

III Standardization 

(subjectwise) 

Handcrafted: general and domain-

specific  

Sequential forward 

floating search 

Ensemble of support vector machines 

[33] 

IV Standardization  Handcrafted: general and domain-

specific 

- Logistic regression 

V Min-max normalization 

(overall and subjectwise) 

Handcrafted: general and domain-

specific (partially automated) 

Feature discovery 

platform 

Random forest 

VI Standardization Handcrafted: general and domain-

specific 

- Weighted sum of individualized and 

global logistic regression models  

VII Min-max normalization  Handcrafted: general and domain-

specific 

Maximal information 

coefficient 

Multilayer perceptron 

VIII - Handcrafted: general and domain-
specific 

- Logistic regression  

IX Standardization 
(subjectwise) 

Handcrafted: general and domain-
specific 

Gini impurity Support vector machine [37] 

X - Handcrafted: correlation dimension - XGBoost classifier 

XI Standardization Automated: pretrained on a larger 
dataset [35] 

- Convolutional neural network (6 layers 
per sensor data, each layer with batch 

normalization and ReLU activation) 

XII Min-max normalization 
(subjectwise) 

Automated - Recurrent neural network [36] 

XIII Standardization 

(subjectwise) 

Handcrafted: general and domain-

specific 

Gini impurity  Logistic regression  
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TABLE 2 

METHOD IMPLEMENTATION TOOLS AND EVALUATION STRATEGIES BASED 

ON INFORMATION PROVIDED BY PARTICIPANTS.  
 

 

such as maximal information coefficient, sequential forward 

or backward floating selection, and Gini impurity method 

were used to select the most informative features. Method V 

performed feature extraction and selection using an in-house 

feature discovery platform. ML algorithms rely heavily on 

hyperparameters. Hence, hyperparameter optimization plays a 

vital role. Three methods optimized the hyperparameters with 

a grid search (IX), Bayesian optimization (I), and their 

combination (III). 
 
B. Implementation Framework 

Python was the most prominent programming language used 

by the participants and scikit-learn library was commonly 

used for classical ML algorithms. The hyperparameter 

optimization library hyperopt is utilized in two methods. The 

models were internally evaluated on a validation set. Twelve 

out of thirteen methods have mentioned the use of a cross-

validation strategy for evaluation. Most of them used the 

leave-k-subjects-out strategy, while others used a leave-k-

folds-out strategy or a combination of both (see Table 2). The 

resulting models vary in size depending on the algorithm. The 

logistic regression model developed in method IV resulted in 

the smallest size (845 B), whereas the convolutional neural 

network model developed in method XI resulted in the largest 

size (37 MB). 
 

IV. CLASSIFICATION PERFORMANCE EVALUATION 

We evaluated the methods on the test dataset using various 

strategies:  

i) Overall classification performance: Average binary 

classification accuracies of the methods on the entire 

test dataset are computed. Further, highest achievable 

performance is obtained through voting ensembles of 

multiple methods.  

ii) Subject-related performance: Binary classification 

accuracy is computed for the five test subjects. This 

evaluation strategy potentially depicts the user-

generalization capability of the model. 

iii) Task-difficulty-related performance: This strategy 

focuses on binary classification accuracy for the three 

task difficulty levels. This strategy depicts the variation 

of classification complexity based on task difficulty.   

iv) Experiment-period-related performance: This strategy 

focuses on binary classification accuracy for each of the 

two halves of the experiment period, potentially 

depicting the influence of the duration of the 

experiment on the performance of the model. 

 
A. Evaluation Metrics 

The methods are evaluated on the instances in the test dataset. 

One of the following two performance metrics is used 

depending on the aforementioned strategies: accuracy (Acc) 

for the first evaluation strategy and partial accuracy (pAcc) for 

the remaining strategies. Accuracy is the standard ML score 

defined as: 

𝐴𝑐𝑐 =
# 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠

# 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠
 

Partial accuracy is used for the remaining evaluation 

strategies, and is accuracy calculated over a subset of instances 

x as: 

𝑝𝐴𝑐𝑐(𝑥) =  
# 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑. 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 𝑓𝑟𝑜𝑚 𝑥 

# 𝑡𝑒𝑠𝑡 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 𝑓𝑟𝑜𝑚  𝑥
 

Depending on the evaluation strategy, x can represent any of 

the following: instances from a test subject, instances from a 

task with specific difficulty (e.g., rest, easy, medium or hard), 

or instances from a portion of the experimental period (e.g., 

first half vs. second half). Though the ML methods are initially 

developed for a binary classification (rest vs. cognitive load), 

the partial accuracy allows for a better granularity in the 

analysis of the methods. Additional evaluation scores such as 

precision, recall, and F1-score for overall performance are 

presented in the appendix. 

 
B. Inference Accuracy 

Table 3 presents the average accuracy achieved by each 

method on the test dataset. The accuracies spread gradually 

from baseline 0.5 to the highest accuracy of 0.69. However, 

none of the methods significantly outperformed the remaining 

methods. The top-ranked method achieved an accuracy of 

0.694, which is 0.15 higher than the second-best method and 

0.2 higher than the third-ranked method.  

Method Tools/framework Evaluation strategy 

Model 

Size 
(bytes) 

I scikit-learn, pandas, 

lightgbm, hyperopt.  

5-Fold CV 3 M 

II mlxtend Leave-1-subject-out - 

III tsfresh, scikit-learn, 
mlxtend, hyperopt 

Leave-3-subjects-out 
Leave-1-subject-out 

1 M 

IV scikit-learn, 

PyWavelets, SciPy, 

eda-explorer 

5-fold CV 845  

V MATLAB, Signal 

Properties based 

Generic Features. 

10-fold CV 

Leave-2-subjects-out 

5 M 

VI scikit-learn, 

PyWavelets, SciPy, 

eda-explorer 

Leave-5-subjects-out 7 K 

VII scikit-learn, pandas, 

SciPy 

Leave-4-subjects-out 19 K 

VIII scikit-learn 10-fold nested CV - 

IX scikit-learn, SciPy 6-fold CV 
Leave-3-subjects-out 

279 K 

X - - - 

XI Tensorflow, mlxtend Leave-1-subject-out 37 M 

XII Keras Leave-3-subjects-out 34 K 

XIII scipy, scikit-learn 6-fold CV 
Leave-3-subjects-out 

4 K 
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TABLE 3 

OVERALL CLASSIFICATION PERFORMANCE: AVERAGE ACCURACY OF 

METHODS ON THE TEST DATA IN DECREASING ORDER. 

Method/Rank Accuracy 

I 
0.694 

II 
0.679 

III 
0.674 

IV 
0.663 

V 
0.653 

VI 
0.653 

VII 
0.648 

VIII 
0.648 

IX 
0.627 

X 
0.580 

XI 
0.560 

XII 
0.554 

XIII 
0.503 

 

Table 4 presents the accuracies achieved by voting 

ensembles of the top-x ranked methods. The highest accuracy 

of 0.71 is achieved using a voting ensemble of the top-3 

methods.  

Table 5 presents the partial accuracy per subject in the test 

dataset for each of the methods. The results are seen to be 

subject-dependent and most of the methods perform well for 

specific subjects (e.g., subjects with IDs iz3x1 and bd47a). For 

subjects 3caqi and f1gjp, most of the methods do not perform 

well. The dependency on the subjects is less obvious for the 

higher-ranked methods than for the lower-ranked methods. 

For instance, method I achieved the highest accuracy of 0.789 

and lowest accuracy of 0.615, resulting in a difference of 

0.174. This difference is much higher for the rest of the 

methods, including the second-ranked and the third-ranked 

methods. This indicates good user-generalization capabilities 

of method I.  

Table 6 presents the partial accuracy per designed task 

difficulty. The results show that most of the high-ranked 

methods perform better for the instances belonging to higher 

task difficulty. Exception to this are methods III, V, and XI. 

The rest periods are the most challenging to detect for all of 

the methods. Since the difficulty levels are presented in a 

random order, the rest periods are further analyzed by 

segregating them based on the preceding task difficulty to 

identify whether the prior difficulty influences the accuracy of 

rest detection. 
 

TABLE 4 

ACCURACY ACHIEVED BY VOTING ENSEMBLES OF TOP-X METHODS. VOTES 

FROM TOP 3 METHODS RESULT IN THE BEST PERFORMANCE. 

 Voting of Top 

x 1 3 5 7 9 11 13 

Accuracy 0.694 0.710 0.694 0.668 0.679 0.674 0.679 

TABLE 5 

SUBJECT-RELATED PERFORMANCE: PARTIAL ACCURACY OF EACH METHOD 

PER TEST SUBJECT. 

 Subject ID 

Method bd47a 6frz4 iz3x1 3caqi f1gjp 

I 
0.711 0.718 0.789 0.641 0.615 

II 
0.763 0.744 0.763 0.641 0.487 

III 
0.816 0.692 0.658 0.564 0.641 

IV 
0.763 0.641 0.895 0.564 0.462 

V 
0.842 0.667 0.763 0.513 0.487 

VI 
0.737 0.590 0.895 0.641 0.410 

VII 
0.816 0.615 0.737 0.615 0.462 

VIII 
0.684 0.692 0.737 0.564 0.564 

IX 
0.789 0.564 0.632 0.538 0.615 

X 
0.658 0.615 0.605 0.564 0.462 

XI 
0.632 0.615 0.711 0.359 0.487 

XII 
0.447 0.718 0.526 0.564 0.513 

XIII 
0.421 0.538 0.421 0.410 0.718 

 
TABLE 6 

TASK-DIFFICULTY-RELATED PERFORMANCE: PARTIAL ACCURACIES PER 

TASK DIFFICULTY. BETTER CLASSIFICATION PERFORMANCE IS OBSERVED 

FOR HARDER TASKS. 

Method 

Designed Task Difficulty 

Rest Easy Medium Hard 

I 0.632 0.679 0.714 0.857 

II 0.600 0.714 0.771 0.771 

III 0.695 0.679 0.686 0.600 

IV 0.632 0.607 0.657 0.800 

V 0.663 0.571 0.657 0.686 

VI 0.579 0.571 0.686 0.886 

VII 0.611 0.643 0.600 0.800 

VIII 0.642 0.714 0.629 0.629 

IX 0.621 0.571 0.714 0.600 

X 0.674 0.429 0.457 0.571 

XI 0.453 0.607 0.657 0.714 

XII 0.632 0.643 0.457 0.371 

XIII 0.516 0.607 0.343 0.543 

 

Table 7 presents the partial accuracy for rest periods 

followed by easy, medium, and hard tasks. It can be seen that 

there is no specific pattern depicting the influence of task 

difficulty on rest period accuracies. 

Table 8 presents the partial accuracy with respect to the 

experiment period, i.e., the first half of the experiment vs. the 

second half of the experiment. The results show that the 

methods such as III and IV are sensitive to the experiment 

period as they have larger variation in the accuracies achieved 

for the two halves of the experiment in comparison with the 

other methods. 
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TABLE 7 

PARTIAL ACCURACIES FOR REST PERIODS FOLLOWING DIFFERENT TASK 

DIFFICULTIES. 

Method 

Rest Period 

Rest after 

Easy task 

Rest after 

med. task 

Rest after 

hard task 

I 0.593 0.667 0.600 

II 0.519 0.636 0.600 

III 0.741 0.727 0.667 

IV 0.593 0.636 0.633 

V 0.778 0.576 0.600 

VI 0.519 0.636 0.533 

VII 0.630 0.636 0.533 

VIII 0.556 0.667 0.667 

IX 0.481 0.636 0.667 

X 0.667 0.697 0.633 

XI 0.333 0.576 0.367 

XII 0.741 0.667 0.467 

XIII 0.444 0.636 0.467 
 

 

TABLE  8 

EXPERIMENT-PERIOD-RELATED PERFORMANCE: PARTIAL ACCURACIES FOR 

EXPERIMENT PERIOD HALVES 

 Experiment Period 

Method First half Second half 

I 0.682 0.716 

II 0.671 0.682 

III 0.706 0.636 

IV 0.694 0.625 

V 0.671 0.659 

VI 0.671 0.602 

VII 0.647 0.659 

VIII 0.635 0.659 

IX 0.647 0.625 

X 0.624 0.523 

XI 0.588 0.489 

XII 0.541 0.534 

XIII 0.518 0.500 

 
C. Possible Causes of Overfitting 

Multi-strategic evaluation of models uncovered possible 

influences of training/test splitting on the performance. Table 

6 depicted the dependency of methods’ performance on the 

subjects in the test dataset. The inter-subject performance 

variation was lower for the top-ranked methods, indicating 

higher generalizability. Performance variation of lower-

ranked methods is likely a sign of overfitting, which needs to 

be considered by the researchers during model selection. One 

possible solution is to include the inter-subject performance 

variation as an additional optimization parameter during the 

model training. Results in Table 8 depicted higher sensitivity  

 
Figure 4. Overview of validation (predicted) accuracies of submitted 
models and the corresponding accuracy on test set (actual). 

 
of low-ranked methods to the experimental period. This 

additionally indicates overfitting where the experiment design 

influenced the ML models. Possible solutions to these 

problems include optimal tuning of the ML models and better 

feature selection methods to remove the features sensitive to 

the experiment period.  

Finally, a higher predicted accuracy achieved on a 

validation set (or using the cross-validation on the train data) 

compared to the test set accuracy indicates overfitting (see 

Figure 4). Such overfitting may appear when hyperparameter 

tuning is performed using the same cross-validation scheme 

that has been used for evaluating the final models. A possible 

solution to this problem for small datasets could be a nested 

cross-validation approach. For larger datasets, the traditional 

train-validation-test splits are often sufficient. 

 
D. Method Similarity 

Performing a statistical-significance analysis over the 

presented results is challenging because all the methods were 

tested only once on the final test data. To present some 

intuition about the method’s differences, we performed 

hierarchical clustering using Euclidean distance and complete 

linkage applied over the methods’ predictions (see Figure 5).  

  

Figure 5. Hierarchical clustering using Euclidean distance and complete 
linkage applied over the methods’ predictions. 
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From the figure it can be seen that the methods which use end-

to-end learning (XI and XII) are different compared to the 

feature-engineering-based methods. Additionally, the four of 

the top-5 (I, II, III, and V) belong to a same cluster.  
 
V. DISCUSSION AND LESSONS LEARNED 

Our meta-analysis presented in the previous section 

reveals the superiority of certain data processing techniques 

when it comes to the use of wrist-worn device-originated 

physiological signals for cognitive load inference. Namely, 

we observe that sequential backward floating search feature 

extraction method, ensemble-based ML algorithms, 

Bayesian hyperparameter optimization, and evaluation 

founded in stratified person-aware cross-validation  

 
 TABLE 9 

 SUMMARY OF THE FINDINGS AND GUIDELINE FOR ACCURATE COGNITIVE 

LOAD MONITORING MODELS 

Dataset augmentation No significant role 

Preprocessing Subjectwise standardization  

ML approach Ensemble of ML models  

Features Time-frequency domain, statistics, HRV 

Feature selection Sequential backward floating search  

Hyperparameters Bayesian optimization 

Evaluation Stratified subject-aware cross-validation  

Other - High-ranked methods have lower inter-subject 

accuracy difference. 

- High-ranked methods perform better for the 

instances that have a higher designed task 

difficulty. 
- Low-ranked methods are more sensitive to the 

different experiment periods. 

 

outperform alternative approaches. To move beyond head-

on pitting of different methods, and to guide future efforts in 

automated cognitive load inference, certain peculiarities of 

sensor data elicited during human cognitive engagement are 

listed below. They imply a particular manner in which 

cognitive load inference pipelines should be constructed. 

The inferences are as follows: i) physiological response to 

increased cognitive load is relatively subtle, represented by 

changes that may be symptomatic to other phenomena (e.g. 

a subject’s health status, emotions, physical stress, etc.), and 

prone to noise, especially when collected via cheap wearable 

sensors. Consequently, while deep learning-based automatic 

feature extraction excels in numerous other domains, 

cognitive load inference still requires carefully handcrafted 

features and guided feature selection to avoid focusing a 

learner’s attention on irrelevant signals. Evidently, the three 

neural network-based submissions are among the low-

ranked methods. ii) The methods analyzed in this paper 

perform relatively well when a subject is highly cognitively 

engaged yet fail when a subject is resting or engaged in an 

easy task. It appears that the physiological signal variation 

captured by commercial wearable devices is rather miniscule 

to allow fine-grain detection of cognitive load levels. These 

findings are in line with the related work [30][32]. iii) Test 

subject analysis reveals that one-size-fits-all solution may 

not be feasible. Different approaches are successful when 

inferring cognitive engagement of different subjects. 

Confounding variables likely related to a subject’s 

demographics or personality, may result in different 

physiological reactions. Hence, development of suitable ML 

model for a particular subject is an interesting avenue for 

future research. iv) This analysis demonstrates 

irreplaceability of a separate evaluation set when 

physiological signals are considered. Despite the popularity 

and practicality of cross-validation, independent evaluation 

with well-stratified data initially separated from the training 

set is crucial to avoid unintentional overfitting.  

Besides the observations presented so far, it should be noted 

that additional challenges exist for an in-the-wild cognitive 

load monitoring system. The dataset analyzed in this study 

was collected in a sedentary environment. On the other hand, 

Schmalfus et al. [14] explored the potential of wearable 

devices for mental workload detection in different 

physiological activity conditions. The study included 32 

participants, 2 mental stressors and 4 physical stressors. The 

statistical analysis indicated that wearable devices are not fully 

capable of identifying mental workload when physical activity 

is present.  

In our experiments we used tasks specifically geared 

towards eliciting different levels of cognitive load. These tasks 

have been a part of the standard psychological toolbox since 

the 1940s [53], while the actual implementation we rely on 

(introduced by Haapalainen et al. [9]) has been used in other 

studies as well (e.g., [26] and [16]), making us confident that 

it was indeed cognitive load that our subjects were subjected 

to. 

Physiological signals captured by the Microsoft Band 

wristband include heart activity-related signals, acceleration, 

skin temperature, and skin conductance. More than one 

confounding factor may affect the change in these signals. For 

instance, heart activity can increase due to a subject’s health 

state, emotion, stress, and other factors. However, the 

relationship between the heart activity-related signals and 

cognitive load is well documented in the existing literature 

(e.g. [16], [23]). To a certain extent, the relationship between 

the cognitive load and the skin conductance has also been 

researched (e.g., [17] and [18]), as well as between the 

cognitive load and the skin temperature [16]).  
 
VI. RELATED WORK 

A variety of psychophysiological measures can be used for 

assessing cognitive states: electroencephalography (EEG), 

electrocardiogram (ECG), heart rate and heart rate variability, 

optical imaging, blood pressure, skin conductance, 

electromyography, thermal imaging, pupilometry [10]. The 

majority of the efforts related to cognitive load monitoring 

with wearable sensors, however, focused on EEG devices. 

This is a natural choice as the brain is the most informative 

source of information for monitoring human psychological 

states using sensors. Usually, features are extracted from the 

EEG sensor data (e.g.,  intensity of different frequency bands), 
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and those features are analyzed using correlation analysis [11] 

or ML models (Naive Bayes, Linear Discriminant Analysis, 

SVM, Convolutional Neural Network – CNN, Logistic 

Regression) [19][20][25]. Moving further towards multimodal 

sensing, Jimenez-Molina et al. [23] explored 

photoplethysmography (PPG), EEG, temperature and pupil 

dilation sensors to assess mental workload of 61 participants 

during web browsing. Differently to the studies based on 

physiological sensors, Chen et al. [21] used gyroscope-based 

atomic head movement analysis for task load recognition. All 

of these studies involving EEG and head mounted-devices can 

be quite useful for cognitive load monitoring movement-

restricted scenarios, or for example in VR based scenarios, but 

their application still remains limited in real life. 

Additionally, chest-mounted devices, which are less 

obtrusive than head-mounted devices but still have real-life 

limitations, have been proven useful for cognitive load 

monitoring [13][22][15][9].  

Compared to head- and chest-mounted devices, wrist-worn 

devices are probably the least obtrusive because subjects are 

already accustomed to wrist watches. For example, 

Johannessen et al. [13] analyzed cognitive load in 5 physician 

team leaders during trauma resuscitation. They collected 

glasses-based eye-tracking data and wrist-based GSR, and 

heart rate data, during five trauma resuscitations. A correlation 

and a regression analysis showed that multiple physiological 

measures should be employed to most accurately measure 

cognitive load in a real-world setting. Kohout et al. [24] 

proposed an approach for detecting cognitive load (relaxed vs. 

loaded) by collecting data from 8 participants wearing wrist 

sensors and additionally carrying a smartphone as a sensor in 

their pocket while performing a pill sorting task. They stressed 

their participants by introducing a dual-task situation. They 

used an SVM classifier to achieve 90% accuracy. Novak et al. 

used wristbands to infer cognitive load in a simulated driving 

environment [28]. Similarly, Gjoreski et. al used combined 

physiological sensors with video-based sensors to detect 

increased cognitive load while driving [31]. Schaule et al. [29] 

used the same wristbands and an N-back task to elicit different 

levels of cognitive load among office workers.  

Barua et al. [38] used the n-back task to assess cognitive 

load in drivers while measuring their physiological signals 

(ECG, GSR, respiration, EEG, electrooculography). The 

authors used various ML models, including k-nearest neighbor 

(k-NN), SVM and random forest for classifying cognitive 

load, and random forest outperformed other methods. Yoshida 

et al. [40] collected measurements on eye movements in 

drivers and compounded it with data on braking, acceleration 

and steering. Reasonable accuracies were obtained by using 

SVM and random forest methods for recognizing abnormal 

driving situations through cognitive load of the drivers. 

Fridman et al. [41] tried to estimate cognitive load in real-life 

driving situations by employing vision-based methods, 

captured in a video. The best implemented method with high 

accuracy was a 3D convolutional neural network. Appel et al. 

[42] experimented with participants in various game 

simulation environments, collecting data on interaction 

metrics, pupil dilation, eye-fixation behavior, and heart rate 

data. Participant-specific random forest achieved the best 

accuracy in classifying cognitive load. Chen et al. [43] 

measured cognitive load by four methods: subjective rating of 

task difficulty, task completion time, performance accuracy 

and eye activity based physiological measurement. ANOVA 

tests and Gaussian mixture model classification resulted in the 

best classification accuracy in classifying five levels of 

cognitive load. The authors noted that eye activity is the best 

measure for cognitive load due to real-time accessibility. 

Nourbakhsh et al. [44] focused on GSR and eye blinks as their 

measurements for cognitive load. The participants in the study 

took an arithmetic test with four different difficulty levels 

while the measurements were taken. Naive Bayes achieved the 

best accuracy for binary classification, while SVM achieved 

the best accuracy for 4-level classification. Yin et al. [45] 

estimated three different levels of cognitive load from speech 

in a speaker-independent setting. The best accuracy was 

produced by a Gaussian mixture model with 256 mixtures 

using a background model with maximum  a-posteriori 

estimation technique for different levels of cognitive load, 

using  Mel-Frequency Cepstral Coefficients, prosodic 

features, acceleration features, and feature warping. Van 

Segbroeck [46] extracted static and dynamic features from 

speech to estimate three levels of cognitive load. By 

performing a feature-level fusion on various features 

(prosodic, spectral, voice quality, lexical information, 

speaking rate) with i-vector modelling, they produced better 

results than existing SVM models. 

Furthermore, least obtrusive approaches, but probably most 

challenging ones, are those approaches that infer cognitive 

load using remote sensing [40] [26]. Cognitive load inference 

may also be beneficial in future, for people with various brain-

related disorders, e.g. Parkinson’s disease or multiple sclerosis 

[51][52]. 

All of these studies demonstrate the usability of wearable 

sensors for monitoring cognitive load and related 

psychophysiological constructs (e.g., stress, distractions, etc.).  

Typically, in all of these studies, one novel approach is 

compared against a few baselines on a dataset that is not 

publicly available. In our study, thirteen novel methods were 

analyzed and evaluated against the same benchmark data, 

which is publicly available, thus allowing for reproducible and 

systematic advancement of the field.  

 
VII. CONCLUSIONS 

In this paper, we analyzed thirteen methods for cognitive 

load inference from wrist-worn physiological sensors that 

were submitted to an online ML challenge. The methods 

were compared and evaluated against the same benchmark 

data, and a systematic comparison was presented with 

respect to: preprocessing techniques, dataset augmentation 

techniques, extracted features, feature selection algorithms, 
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classification algorithms, hyperparameter optimization 

techniques, evaluation approaches, and technical 

implementation. While Weiser’s vision of a computer fully 

understandable of its subjects might appear to be wishful 

thinking in early 21st century [48], we believe that this 

paper’s identification of the most promising approaches for 

cognitive load inference (summarized in Table 9), conducted 

upon unbiased analysis of solutions submitted to a global 

machine learning challenge, provides a sound basis for the 

future work towards the realization of this vision.  

REFERENCES 

[1] C. Marco, and M. C. Varley, “Wearable training-monitoring 

technology: applications, challenges, and opportunities,” International 

journal of sports physiology and performance, 2017. 

[2] D. Heaven, “Why faces don't always tell the truth about feelings,” 

Nature. 2020. 

[3] B. Felix, A. Paeschke, M. Rolfes, W. F. Sendlmeier, and B. Weiss, “A 

database of German emotional speech,” European Conference on 

Speech Communication and Technology, 2005. 

[4] G.-C. Enrique, M. Riegler, T. Nordgreen, P. Jakobsen, K. J. 

Oedegaard, and J. Tørresen, “Mental health monitoring with 

multimodal sensing and machine learning: A survey,” Pervasive and 

Mobile Computing 51, 1-26, 2018. 

[5] K. J. Leslie, and A. J. Ehrenberg, “The productivity vampires,” 

Information Systems Frontiers 22, no. 1, 11-15, 2020. 

[6] Y. Rogers, K. Connelly, L. Tedesco, W. Hazlewood, A. Kurtz, R. E. 

Hall, J. Hursey, and T. Toscos, “Why it’s worth the hassle: The value 

of in-situ studies when designing ubicomp,” In International 

Conference on Ubiquitous Computing, pp. 336-353. Springer, Berlin, 

Heidelberg, 2007. 

[7] M. Gjoreski, T. Kolenik, T. Knez, M. Luštrek, M. Gams, H. Gjoreski 
and V. Pejović, “Datasets for cognitive load inference using wearable 

sensors and psychological traits,” Applied Sciences, 10(11), 2020. 

[8] S.G. Hart, and L.E.  Staveland, “Development of NASA-TLX (Task 

Load Index): Results of Empirical and Theoretical Research,” Adv. 

Psychol, 52, 139–183, 1988. 

[9] E. Haapalainen, S. Kim, J.F. Forlizzi, and A.K., Dey, “Psycho-

physiological measures for assessing cognitive load,” In Proceedings 

of the 12th ACM international conference on Ubiquitous computing 

pp. 301-310, 2010. 

[10] M. Lohani, B. R. Payne, and D. L. Strayer, “A review of 

psychophysiological measures to assess cognitive states in real-world 

driving,” Frontiers in human neuroscience 13, 57, 2019. 

[11] Y. Wu, T. Miwa, and M. Uchida, “Using physiological signals to 

measure operator’s mental workload in shipping–an engine room 

simulator study,” Journal of Marine Engineering & Technology 16, 

no. 2, 61-69, 2017. 

[12] P. K S. Mohanavelu, D. Ravi, P. K. Singh, M. Mahajabin, K. 

Ramachandran, U. K. Singh, and S. Jayaraman, “Cognitive Workload 

Analysis of Fighter Aircraft Pilots in Flight Simulator Environment,” 

Defence Science Journal 70, no. 2, 131, 2020. 

[13] E. Johannessen, A. Szulewski, N. Radulovic, M. White, H. Braund, D. 

Howes, D. Rodenburg, and C. Davies, “Psychophysiologic measures 

of cognitive load in physician team leaders during trauma 

resuscitation,” Computers in Human Behavior, 106393, 2020. 

[14] F. Schmalfuß,  S. Mach, K. Klüber, B. Habelt, M. Beggiato, A. Körner, 

and J. F. Krems, “Potential of wearable devices for mental workload 

detection in different physiological activity conditions,” Proceedings 

of the Human Factors and Ergonomics Society Europe, 179-191, 

2018. 

[15] T. Fritz, A. Begel, S. C. Müller, S. Yigit-Elliott, and M. Züger, “Using 

psycho-physiological measures to assess task difficulty in software 

development,” In Proceedings of the 36th international conference on 

software engineering, pp. 402-413, 2014. 

[16] M. Myrtek, E. Deutschmann-Janicke, H. Strohmaier, W. 

Zimmermann, S. Lawerenz, G. Bru ̈gner, and W. Mu l̈ler “Physical, 

mental, emotional, and subjective workload components in train 

driversm” Ergonomics, 37(7), 1195–1203, 1994. 

[17] M. El Komy, Y. Abdelrahman, M. Funk, T. Dingler, A. Schmidt, and 

S. Abdennadher, “ABBAS: an adaptive bio-sensors based assistive 

system,” In Proceedings of the 2017 chi conference extended abstracts 

on human factors in computing systems (pp. 2543–2550), 2017. 

[18] Y. Shi, N. Ruiz, R. Taib, E. Choi, and F. Chen, “Galvanic skin 

response (GSR) as an index of cognitive load. In Chi’07 extended 

abstracts on human factors in computing systems (pp. 2651–2656), 

2007. 

[19] M. Bilalpur, M. Kankanhalli, S. Winkler, and R. Subramanian, “EEG-

based evaluation of cognitive workload induced by acoustic 

parameters for data sonification,” In Proceedings of the 20th ACM 

International Conference on Multimodal Interaction, pp. 315-323. 

2018. 

[20] D. Dearing, A. Novstrup, and Te. Goan, “Assessing workload in 

human-machine teams from psychophysiological data with sparse 

ground truth,” In International Symposium on Human Mental 

Workload: Models and Applications, pp. 13-22. Springer, 2018. 

[21] S. Chen, and J. Epps, “Atomic Head Movement Analysis for Wearable 

Four-Dimensional Task Load Recognition,” IEEE journal of 

biomedical and health informatics 23, no. 6, 2464-2474, 2019. 

[22] K. Ross, P. Sarkar, D. Rodenburg, A. Ruberto, P. Hungler, A. 

Szulewski, D. Howes, and A. Etemad, “Toward dynamically adaptive 

simulation: Multimodal classification of user expertise using wearable 

devices,” Sensors 19, no. 19, 4270, 2019. 

[23] A. Jimenez-Molina, C. Retamal, and H. Lira, “Using 

psychophysiological sensors to assess mental workload during web 

browsing,” Sensors 18, no. 2, 458, 2018. 

[24] L. Kohout, M. Butz, and W. Stork, “Using Acceleration Data for 

Detecting Temporary Cognitive Overload in Health Care Exemplified 

Shown in a Pill Sorting Task,” In 2019 IEEE 32nd International 

Symposium on Computer-Based Medical Systems (CBMS), pp. 20-

25, 2019. 

[25] M. Mazher, A. Abd Aziz, A. S. Malik, and H. U. Amin, “An EEG-

based cognitive load assessment in multimedia learning using feature 

extraction and partial directed coherence,” IEEE Access 5, 14819-

14829, 2017. 

[26] T. Matkovič, and V. Pejović, V Wi-mind: Wireless mental effort 

inference,” In Proceedings of the 2018 ACM International Joint 

Conference and 2018 International Symposium on Pervasive and 

Ubiquitous Computing and Wearable Computers, Singapore, pp. 

1241–1249, 2018. 

[27] C. Setz, B. Arnrich, J. Schumm, R. La Marca, G. Tröster, and U. 

Ehlert, “Discriminating stress from cognitive load using a wearable 

EDA device,” IEEE Trans. Inf. Technol. Biomed, 14 410–417, 2009. 

[28] G. J. K. Novak, K. Stojmenova and J. Sodnik, “Assessment of 

Cognitive Load through Biometric Monitoring,” Society for 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3093216, IEEE Access

 

6 VOLUME XX, 2021 

Information Systems and Computer Networks: Ljubljana, Slovenia, 

2017. 

[29] F. Schaule, J.O. Johanssen, B. Bruegge, and V. Loftness, “Employing 

Consumer Wearables to Detect Office Workers’ Cognitive Load for 

Interruption Management,” In Proceedings of the ACM on Interactive, 

Mobile, Wearable and Ubiquitous Technologies, Singapore, 2, pp. 

32:1–32:20, 2018. 

[30] M. Gjoreski, M. Luštrek, M. Gams, and H. Gjoreski, “Monitoring 

stress with a wrist device using context,” J. Biomed. Inform, 73, 159–

170, 2017. 

[31] M. Gjoreski, M. Gams, M. Luštrek, Pelin Genc, J.-U. Garbas, and T 

Hassan, “Machine Learning and End-to-End Deep Learning for 

Monitoring Driver Distractions from Physiological and Visual 

Signals,” IEEE Access 8, 70590-70603, 2020. 

[32] M. Gjoreski, M. Luštrek and V. Pejović, “My watch says I'm busy : 

inferring cognitive load with low-cost wearables,” 

UbiComp/ISWC'18 adjunct proceedings of the 2018 ACM 

International joint Conference on Pervasive and Ubiquitous 

Computing, 2018. 

[33] T. Jaakko, K. Pettersson, and J. Mäntyjärvi. "Ultra-Short Window 

Length and Feature Importance Analysis for Cognitive Load 

Detection from Wearable Sensors." Electronics 10, no. 5 : 613, 2021. 

[34] S. Banerjee, T. Chattopadhyay, A. Pal, and U. Garain. "Automation of 

Feature Engineering for IoT Analytics," ACM SIGBED Review, 

2018. 

[35] M. Dietz, I Aslan, D. Schiller, S. Flutura, A. Steinert, R. Klebbe, and 

E. André “Stress annotations from older adults-exploring the 

foundations for mobile ML-based health assistance,” In Proceedings 

of the 13th EAI International Conference on Pervasive Computing 

Technologies for Healthcare (pp. 149-158), 2019. 

[36] A. Salfinger “Deep learning for cognitive load monitoring: a 

comparative evaluation,” In Adjunct Proceedings of the 2020 ACM 

International Joint Conference on Pervasive and Ubiquitous 

Computing and Proceedings of the 2020 ACM International 

Symposium on Wearable Computers (pp. 462-467), 2020. 

[37] L, Xiling, and M. De Cock."Cognitive load detection from wrist-band 

sensors." In Adjunct Proceedings of the 2020 ACM International Joint 

Conference on Pervasive and Ubiquitous Computing and Proceedings 

of the 2020 ACM International Symposium on Wearable Computers, 

pp. 456-461, 2020. 

[38] S. Barua, M. U. Ahmed, and S. Begum, “Towards intelligent data 

analytics: A case study in driver cognitive load classification,” Brain 

sciences, 10(8), 526, 2020. 

[39] Y. Yoshida, H. Ohwada, F. Mizoguchi, and H. Iwasaki “Classifying 

cognitive load and driving situation with machine learning,” 

International Journal of Machine Learning and Computing, 4(3), 210, 

2014. 

[40] A. Yomna, E. Velloso, T.  Dingler, and A. Schmidt, and Frank Vetere, 

"Cognitive heat: exploring the usage of thermal imaging to 

unobtrusively estimate cognitive load., Proceedings of the ACM on 

Interactive, Mobile, Wearable and Ubiquitous Technologies 1, no. 3: 

1-20, 2017. 

[41] L. Fridman, B. Reimer, B. Mehler, and W.T. Freeman, “Cognitive 

load estimation in the wild,” In Proceedings of the 2018 chi conference 

on human factors in computing systems (pp. 1-9), 2018. 

[42] T. Appel, N. Sevcenko, F. Wortha, et al.  “Predicting cognitive load in 

an emergency simulation based on behavioral and physiological 

measures. In 2019 International Conference on Multimodal 

Interaction (pp. 154-163), 2019. 

[43] S. Chen, J. Epps, and F. Chen, “A comparison of four methods for 

cognitive load measurement,” In Proceedings of the 23rd Australian 

Computer-Human Interaction Conference (pp. 76-79), 2011. 

[44] N. Nourbakhsh, Y, Wang, and F. Chen, “GSR and blink features for 

cognitive load classification”, In IFIP conference on human-computer 

interaction (pp. 159-166). Springer, Berlin, Heidelberg, 2013. 

[45] B. Yin, N. Ruiz, F. Chen, M. A. Khawaja, “Automatic cognitive load 

detection from speech features,” In Proceedings of the 19th 

Australasian conference on computer-human interaction: Entertaining 

user interfaces (pp. 249-255), 2007. 

[46] M. V. Segbroeck, R. Travadi, C. Vaz, J. Kim, M. P.  Black, A. 

Potamianos, and S.S. Narayanan, “Classification of cognitive load 

from speech using an i-vector framework,” In Fifteenth Annual 

Conference of the International Speech Communication Association, 

2014. 

[47] D. McDuff, H. J. Hernandez, S. Gontarek, and Rosalind W “Picard. 

"Cogcam: Contact-free measurement of cognitive stress during 

computer tasks with a digital camera," Conference on Human Factors 

in Computing Systems, pp. 4000-4004. 2016. 

[48] M. Weiser, M. “The Computer for the 21st Century,” Scientific 

american, 265(3), 94-105, 1991. 

[49] J. B. Carroll et al. (1993). Human cognitive abilities: A survey of 

factor-analytic studies. Cambridge University Press. 

[50] J. W. French, R. B. Ekstrom, and L. A. Price, “Manual for kit of 

reference tests for cognitive factors,” John w. french; ruth b. ekstrom; 

leighton a. price. Educational Testing Service, 1969. 

[51] A. Marianna, L. Iuppariello, A. Iavarone, A. Fasano, R. Palladino, R. 

Rucco, Marina Picillo et al. "Step length predicts executive 

dysfunction in Parkinson’s disease: a 3-year prospective study." 

Journal of neurology 265, no. 10 2211-2220, 2018. 

[52] L. Marianna, M. Della Corte, R. Rucco, P. Sorrentino, M. Sparaco, R. 

Capuano, R. Minino et al. "Gait abnormalities in minimally disabled 

people with Multiple Sclerosis: A 3D-motion analysis study." 

Multiple sclerosis and related disorders 29,100-107, 2019. 

[53] L. L., Thurstone, and T. G. Thurstone, “Factorial studies of 

intelligence,” Psychometric monographs, 2, 94, 1941. 

[54] O. M. Mozos, V. Sandulescu, S. Andrews, D. Ellis, N. Bellotto, R. 

Dobrescu, and J. M. Ferrandez, “Stress Detection Using Wearable 

Physiological and Sociometric Sensors,” Int. J. Neur. Syst., vol. 27, 

no. 02, p. 1650041, Dec. 2016. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3093216, IEEE Access

 

6 VOLUME XX, 2021 

APPENDIX 

 

 

TABLE 10 

TEAMS PARTICIPATING IN COGNITIVE LOAD MONITORING CHALLENGE AND 

THEIR RANKINGS 

Method Ranking Team Name Affiliation 

I 1 major_tom University of Tuebingen 

II 2 HCM-feature Augsburg University 

III 3 Smart D.-D. L VTT Technical Research Centre 

IV 4 IdeasLabUT_1 University of Toledo 

V 5 TCS TCS Research & Innovation 

VI 6 IdeasLabUT_2 University of Toledo 

VII 7 TCS 2 TCS Research & Innovation 

VIII 8 Janus Indian Institute of Technology Delhi 

IX 9 Lynix 1 University of Washington 

X 10 DataVaders Indian Institute of Technology Mandi 

XI 11 HCM-auto Augsburg University 

XII 12 Sala Johannes Kepler University Linz 

XIII 13 Lynix 2 University of Washington 

 

TABLE 11 

ADDITIONAL EVALUATION SCORES (ACCURACY, PRECISION, RECALL AND 

F1-SCORE) 

Method Accuracy Precision Recall F1 (micro) 

I 0.694 0.714 0.632 0.694 

II 0.679 0.704 0.600 0.679 

III 0.674 0.660 0.695 0.674 

IV 0.663 0.667 0.632 0.663 

V 0.653 0.643 0.663 0.653 

VI 0.653 0.671 0.579 0.653 

VII 0.648 0.652 0.611 0.648 

VIII 0.648 0.642 0.642 0.648 

IX 0.627 0.621 0.621 0.627 

X 0.580 0.561 0.674 0.580 

XI 0.560 0.566 0.453 0.560 

XII 0.554 0.541 0.632 0.554 

XIII 0.503 0.495 0.516 0.503 
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