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ABSTRACT Access to reliable estimates of the wireless channel, such as the channel state information
(CSI) and the received signal strength would open opportunities for timely adaptation of transmission
parameters leading to increased throughput and transmission efficiency in vehicular communications. To
design the adaptive transmission schemes, it is important to understand the realistic channel properties,
especially in vehicular environments where the mobility of communication devices causes rapid channel
variation. However, getting CSI estimates is challenging due to the lack of support for obtaining CSI
from the chipset. In this paper, we present our efforts towards enabling reliable, up-to-date channel
estimates in vehicular communications. We begin by designing and conducting a measurement campaign
where we collect IQ (in-phase and quadrature) samples of the IEEE 802.11p transmission and implement
CSI extraction algorithms to obtain and analyze wireless channel estimates from various real-world
environments. We then propose a deep learning-based channel prediction for predicting future CSI and
received signal levels. Trace-based evaluation demonstrates that our prediction approach improves the future
power level estimate by 15% to 25% in terms of the root-mean-square-error (RMSE) compared to the
latest known channel properties, thus providing a sound basis for future efforts in anticipatory vehicular
communication transmission adaptation.

INDEX TERMS Channel state information, channel prediction, vehicular communications, neural net-
works, LSTM.

I. INTRODUCTION

ADAPTING wireless transmission based on the received
signal properties is one of the key paradigms enabling

us to achieve the communication performance of near Shan-
non limit. Information on the received signal to noise ra-
tio (SNR), for example, is the basis of the whole span
of transmission rate adaptation protocols [1]–[3]. Similarly,
fine-grain channel state information (CSI) in orthogonal
frequency division multiplex (OFDM) transmission enables
sophisticated adaptation of the channel width [4].

The received signal properties, such as SNR and CSI can
be estimated either through models, describing the propaga-
tion in the given environment, or through direct measure-
ments of the desired properties. The models are often con-

structed for a particular environment and assume a relative
stability of the setup. The measurements utilize a feedback
loop between the receiver, who measures the properties, and
the sender, who then uses the properties to adapt the trans-
mission. Consequently, the measurement-based approaches,
too, expect that the wireless channel does not change within
the period between the two consecutive packet receptions.

However, in the vehicle-to-vehicle (V2V) scenarios the
wireless environment varies rapidly. This, first, renders the
constructed models unusable, as it is difficult to generalize
the surroundings between vehicle nodes [5]; second, it calls
for a reconsideration of measurement-based approaches, as
the channel may vary significantly within the time between
consecutive packets. For example, the current channel infor-
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mation such as SNR and CSI can be easily outdated due to the
rapid variation of vehicular channels. In this case, the vehicle
node cannot adapt its transmission parameters based on the
current channel information. Furthermore, there are no CSI
feedback loops to adapt in vehicular ad hoc networks. Thus
in conventional vehicular communications, the only available
information the vehicle can utilize to adapt the transmission
parameters is the information based on the latest received
frame.

To facilitate future improvements in V2V transmission
understanding and adaptation, in this paper we develop an
approach for channel properties measurement and prediction
in real-world V2V settings. To achieve our goal, we first over-
come the challenge of the lack of the CSI estimation support
in commodity vehicular communication network cards. We
focus on IEEE 802.11p, a part of wireless access in vehicular
environments (WAVE), an OFDM-based WLAN standard
specially designed for vehicular communications [6]. IEEE
802.11p is comparatively mature technology in the market,
which is categorized by non-HT (high throughput) amend-
ments, compared to the latest amendments to the Wi-Fi
standard such as IEEE 802.11ax [7]. Utilizing the fact that
each WAVE frame contains a short training sequence (STS)
and a long training sequence (LTS) in a preamble [8], we
devise a measurement campaign method that uses off-the-
shelf on-board units (OBUs) and a spectrum analyzer to
produce CSI estimations for each received WAVE frame.
Next, we conduct measurement campaigns in actual driving
environments, obtaining, to the best of our knowledge, the
first dataset of WAVE CSI data from real-world V2V driving
scenarios. Finally, we investigate the short-term predictabil-
ity of CSI and received power in the dataset, and propose a
channel information prediction.

To summarize, the main contributions of this paper are:

• The design and the implementation of a process for CSI
extraction, which is able to process raw IQ (in-phase and
quadrature) samples containing IEEE 802.11p frames.
We verify the CSI extraction tool in static over-the-air
(OTA) and cable-connection lab scenarios.

• The collection of a real-world channel characteristics
dataset containing WAVE communication from differ-
ent V2V driving scenarios, including both line-of-sight
(LOS) and non-LOS (NLOS) environments.

• The construction and evaluation of a deep learning
method for subcarrier-level CSI and frame-level re-
ceived signal strength indicator (RSSI) data prediction
in vehicular environments.

II. RELATED WORK
For WLAN-based vehicular communications, a number of
adaptive transmission approaches have been implemented
and proposed to overcome the limitations and improve the
performance [9]. To maximize the performance of adaptive
transmissions, it is extremely important to obtain the corre-
sponding channel properties as accurately as possible.

In fast varying channel environments such as V2V driving
scenarios, the channel models may not be as effective as the
ones from other static environments. In the same context,
there have been many attempts to explore the V2V channels
not only in general cases, but also in special cases which are
not covered by general channel models [10]–[13]. To under-
stand the dynamic vehicular channel properties, monitoring
the variation of RSSI in real world measurements has been
popular in research fields of V2V communication due to its
simplicity [14], [15]. In most cases RSSI is available to users
so it is relatively easy to collect the RSSI measurement data.
However, RSSI is limited in its ability to capture channel
characteristics as it merely represents aggregated received
signal strength. For instance, information about subcarrier
performance in an OFDM system cannot be obtained through
RSSI analysis. Consequently, the performance of an adaptive
transmission such as link adaptation based on RSSI can be
degraded if the frequency selective fading is severe where a
few subcarriers have relatively weak responses compared to
others.

On the other hand, channel state information (CSI) is
able to represent the channel response in both time and fre-
quency domains, so called channel impulse response (CIR)
and channel frequency response (CFR), respectively. More
importantly, CSI is an actual metric of channel utilized in the
receiver, calculated with specific known sequence and it is
used for equalization of the channel effects. Therefore, for
understanding channel characteristics the investigation of the
CSI variation is far more useful than the investigation of RSSI
variation.

There have been some research efforts regarding the inves-
tigation of the CSI. Halperin et al. [16] have released a CSI
tool for IEEE 802.11n measurement and experimentation
as a firmware and drivers built on the specific commercial
network interface card (NIC). However, this tool is inappro-
priate for our purpose since it is restricted to the specific
NIC with IEEE 802.11n standard. Bloessl et al. [17] have
introduced the software defined radio (SDR) based IEEE
802.11p prototype. It contains CSI extraction functions, but
still we believe that the spectrum analyzer is more accurate
than the SDR when it comes to the measurement since the
main objective of the spectrum analyzer is the measurement
itself. Ye et al. [18] have shown the capability of deep learn-
ing for channel estimation and signal detection in OFDM
systems. This work focuses on the channel estimation itself
purely based on simulation data, while our main interest
is the channel prediction with measurement data. Yang et
al. [19] have introduced the inter-vehicle cooperative channel
estimation schemes for IEEE 802.11p.

Channel prediction has been studied in the past years.
Duel-Hallen [20] has analyzed fading prediction methods
and evaluated their performances. This work demonstrates
that auto-regression (AR) model-based linear prediction
method shows the best prediction performance in fading
channels, when compared to other algorithms such as sum-
of-sinusoids (SOS) model-based methods and band-limited
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FIGURE 1: Measurement campaign for channel measure-
ments in vehicular environments. Each vehicle is equipped
with off-the-shelf OBU and the antenna mounted on the roof
of the car. A signal power-triggered spectrum analyzer is
installed at the receiving end.

process model-based and other basis expansion algorithms.
Zeng et al. [21] also have utilized AR model-based linear
prediction method for the channel prediction in VANETs for
the scheduling of data dissemination. Zemen et al. [22] have
demonstrated time-variant channel prediction with dynamic
subspace selection in flat-fading channels. Navabi et al. [23]
have introduced a channel prediction using neural network,
which aims to predict the angle-of-departure (AoD) of domi-
nant path in base stations for mobile communications. Potter
et al. also have shown the channel prediction using recurrent
neural networks with extended Kalman filter [24]. Neverthe-
less, above works are based on simulation data generated
from the channel models. On the other hand, Luo et al. [25]
have proposed CSI prediction with measured channel data
using a deep learning approach. However, this work targets
5G wireless communications in static environments. There
have been few works that address channel prediction in
vehicular scenarios. Anderson et al. [26] claimed that the
channel prediction using neural networks is inappropriate
because of the randomness of channel properties, however,
it used channel data generated from the simulation with
channel models. In contrast, we experiment the possibility of
channel prediction using neural networks with our CSI data
from the measurement. To the best of our knowledge, this
is the initial attempt to predict the V2V channel with real-
world measurement data using both deep learning and AR
approaches.

III. VEHICULAR CHANNEL DATA COLLECTION
APPROACH
Wireless chip vendors enable only limited access to received
signal properties via software drivers. Knowing fine-grain
channel properties, such as CSI, is crucial for sophisticated
wireless transmission adaptation. Therefore, our first objec-

tive is to enable the collection of channel properties, such
as CSI and SNR for WAVE-based communication in V2V
settings.

We devise an approach that consists of two steps: 1) raw
IQ data collection (explained in this Section) and 2) channel
state extraction (explained in Section IV). We utilize two off-
the-shelf WAVE OBUs and one outdoor spectrum analyzer
(Fig. 1). For the experiments in outdoor V2V driving scenar-
ios, each OBU is installed in a separate car and connected to
the antenna mounted on the roof of the car. One OBU peri-
odically sends basic IEEE 802.11p safety messages (BSMs)
at a rate of 10 Hz, while the other OBU receives BSMs
and saves them into a log file. At the receiver, a spectrum
analyzer is additionally installed to record the IQ samples of
IEEE 802.11p frame. Raw samples would quickly overfill the
data storage, thus, we trigger the IQ recording only when the
signal power surpasses a certain threshold (above the noise
level which is set to -70 dBm in our measurement campaign)
and only for the time sufficient to capture a whole WAVE
frame. The complex baseband sampling rate of the spectrum
analyzer is 14 mega-samples per second (MS/s).

The transmission parameters used in our measurement
campaign are as follows. For configuring the communication
to be as robust as possible, we set the lowest data rate and the
highest transmission power since the lowest data rate utilizes
a modulation and coding scheme that is the least likely to
be affected by noise. The data rate is set to 3 Mbps which
means binary phase shift keying (BPSK) modulation with a
code rate of 1/2 in 10 MHz bandwidth. The center frequency
for BSM transmission is 5.86 GHz. A transmission power is
assigned to 23 dBm.

IV. CHANNEL PROPERTIES EXTRACTION FROM IQ
DATA
Once the IQ samples for the measurement are collected
from the spectrum analyzer, signal processing algorithms are
applied to extract CSI.

A. STRUCTURE OF IEEE 802.11P FRAME
Traces collected by our measurement approach (Section III)
contain IEEE 802.11p frames. The structure of an IEEE
802.11p frame is described in Fig. 2. The frame is composed
of three fields: a preamble, signal and data. A signal field
includes the information of data rate and the length of the
payload data that follows. Since our objective is to extract
the channel information from the frame, our focus remains
in the preamble only. The preamble consists of one known
STS and one known LTS, irrespective of the transmission
parameters used. STS is made of ten equal short symbols
and LTS is composed of a half of a long symbol (i.e. cyclic
prefix) and two consecutive long symbols. Often, wireless
protocols use STS for frame detection and coarse frequency
offset correction and LTS for alignment and fine frequency
offset correction.
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FIGURE 2: IEEE 802.11p frame structure.
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FIGURE 3: Magnitude of one example of received frame
(top) and its corresponding frame detection result (bottom).

B. CSI EXTRACTION
We implement the CSI extraction algorithms by the IEEE
802.11 standard as a reference. CSI extraction algorithms
include down sampling, frame detection, symbol alignment,
frequency offset correction and training sequence extrac-
tion [17].

According to the IEEE 802.11 standard, each STS and LTS
has 161 samples for 16 µs, respectively, implying 10 MS/s
of sampling rate. However, raw IQ measurement data in our
spectrum analyzer have 224 samples for 16 µs because of a
14 MS/s sampling rate. Thus, we need to downsample the
raw IQ measurement data with the ratio of Ntx/Nrx, where
Ntx and Nrx are the number of samples for a sequence in the
transmitter and the receiver, respectively.

After downsampling of the measured IQ samples, we have
to verify that the frame exists in the IQ data. We implement
the frame detection algorithm by applying the autocorrelation
function because STS is composed of ten repetitions of the
same pattern [27]. The autocorrelation rss[n] includes the
complex number multiplication and is calculated as follows.

rss[n] =

Nwin∑
k=0

s[n+ k]s̄[n+ k + lS] (1)

where s[n] and s̄[n] denote a received IQ sample and its
complex conjugate, respectively. lS represents the number
of IQ samples for one short symbol in STS and it is 16
in IEEE 802.11p. Nwin represents the window size for the
autocorrelation and we obtain the value of Nwin as 48 in
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FIGURE 4: Cross-correlation results between LTS and re-
ceived samples. The simulation result with perfect channel
condition (top) and the result of real-world measurement
(bottom).

our measurement data through experimentation with a ref-
erence [17]. Then the normalization is applied to rss[n] to
be independent from the input power level by dividing rss[n]
with the signal power. By comparing the peak value of the
result and the threshold 0.5 which is predefined through
experimentation with a reference [17], we can detect the
frame and obtain its rough starting point in the IQ trace.
Fig. 3 shows an example of conducting the frame detection
algorithm. The top graph depicts the magnitude of a received
frame and the bottom one depicts the result of the frame
detection.

Symbol alignment is the procedure to determine the start-
ing position of long symbols from LTS at a sample level. The
positions of two long symbols are identified by the peaks
from the result of cross-correlation between received IQ
samples and the whole pattern in LTS. As LTS is composed
of a half of pattern and two consecutive patterns, one low
peak and two high peaks are detected if the IEEE 802.11p
frame exists in the received IQ samples. Each peak indicates
the starting point of the patterns. The cross-correlation co-
efficients between two high peaks are suppressed due to the
sequence characteristic.

Fig. 4 illustrates the cross-correlation results between LTS
and received samples for symbol alignment. The top figure
shows the simulation result with a perfect channel condition
which is an identical result to the autocorrelation of LTS.
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FIGURE 5: Cross-correlation results between LTS and re-
ceived samples after the frequency offset correction. The
simulation result with perfect channel condition (top) and the
result of real-world measurement (bottom).

The bottom figure describes the cross-correlation result for
the over-the-air measurement in the laboratory. A part of the
discrepancy comes from the carrier frequency offset (CFO)
between the transmitter and the receiver.

To correct the CFO, we conduct both coarse and fine CFO
correction [28]. Coarse frequency offset correction utilizes
the repetition property of STS. As one sample in STS should
be the same as the sample that is 16 samples apart within the
STS, conjugate multiplication of these two samples produces
the frequency offset estimation. The calculation of the coarse
frequency offset utilizes the last five short symbols of STS
and is given by

∆fSTS =
1

lS
angle

(
5lS−1∑
n=0

s̄[n]s[n+ lS]

)
(2)

where angle() denotes the phase angle in radian. Therefore,
coarse frequency offset for LTS is compensated by

s[m]← s[m]e−jm∆fSTS (3)

where m = 0, 1, ..., 127 since LTS is composed of 128
samples. After coarse CFO correction, fine frequency offset
is obtained in a similar manner by

∆fLTS =
1

lL
angle

(
lL−1∑
n=0

s̄[m]s[m+ lL]

)
(4)

s[m]← s[m]e−jm∆fLTS (5)

where lL represents the number of samples for one long
symbol and in our case it is 64.

Fig. 5 describes the result of a symbol alignment after
the frequency offset correction. The result shows that the
noise effects are suppressed in LTS compared to the symbol
alignment result without the frequency offset correction in
Fig. 4.

We now have sufficient data to extract the CSI. From
the symbol alignment, starting points of LTS patterns are
determined by two peaks. Since IEEE 802.11p utilizes the
64-point fast Fourier transform (FFT), we apply the 64-point
FFT to the 64 samples from first peak and the 64 samples
from second peak, respectively, which yields a pattern of
LTS affected by the channel. Then in the frequency domain,
two CFRs from two long symbols are averaged and we
employ the minimum mean square error (MMSE) algorithm
to estimate channel [29]. To calculate the CSI with MMSE
channel estimation, we first utilize least square (LS) estimator
which minimizes (Y −XH)

H
(Y −XH) where Y denotes

the averaged CFR, X is the long symbol in the frequency
domain and H is the CSI. H operator means the conjugate
transpose. The LS estimator of H is given by

_

HLS = X−1Y (6)

Then the MMSE estimator of H is as follows.
_

HMMSE = RHH

{
RHH + σ2

(
XXH)−1

}−1 _

HLS (7)

where RHH can be calculated by

RHH = E
{
HHH} = E

{
(Fh) (Fh)

H
}

= FRhhF
H (8)

where E means the expectation and F is a discrete Fourier
transform (DFT) matrix.

V. VEHICULAR CHANNEL MEASUREMENT IN
REAL-WORLD ENVIRONMENTS
We conduct measurements in different environments. First,
for validation and reference purposes, we perform cable-
connected measurements. The second measurement is over-
the-air (OTA) measurement in the laboratory to verify the
functionalities of our measurement campaign. The third one
is conducted in an outdoor campus environment with two
realistically moving vehicles, in order to collect the data
and investigate channel variation in a V2V communication
setting.

A. WIRED TESTING WITH CABLE CONNECTION
To investigate our CSI extraction algorithms and identify
possible distortions that the spectrum analyzer may induce,
we eliminate the wireless channel effects by connecting a
cable between the transmitter and the receiver. Controlled
by the power-level trigger, the spectrum analyzer records
104 frames, all of which are correctly decoded by our CSI
extraction module.

CSI extraction results from the measurement conducted on
the cable connection are shown in Fig. 6. We show each of
the frame’s CSI overlapped in the same graph. As expected,
the CIRs from the measurement indicated one strong signal
path and the CFRs are practically flat over all subcarriers
indicating little frequency selectivity. A small peak is also
observed at the end of the CIRs due to the following repetitive
long symbol in LTS. A received power is around 22 dBm
indicating an almost 1 dB loss, as the transmission power in
our measurement campaign is set to 23 dBm.
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FIGURE 6: CSI extraction results from the measurement
conducted on cable connection between the signal generator
and the spectrum analyzer. The CIRs (top) and the CFRs (bot-
tom) acquired from the channel estimation in the frequency
domain.
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FIGURE 7: CSI extraction results from the measurement
conducted in the laboratory. The CIRs (top) and the CFRs
(bottom) acquired from the channel estimation in the fre-
quency domain.

B. WIRELESS TESTING IN THE LABORATORY
To further validate our measurement approach, we also con-
duct the measurement in the laboratory. In this measure-
ment, 74 frames are detected and recorded by the spectrum
analyzer, while also being correctly decoded by our CSI
extraction tool.

Fig. 7 describes the CSI extraction results with both CIR
in time domain and CFR in the frequency domain. CSI
patterns in the laboratory are similar to those in the cable-
connected measurement except the received power level. The
signal loss in this experiment is around 50 dB, considering
the transmission power of 23 dBm and received power of -

FIGURE 8: Snapshots taken in the receiver vehicle during the
experiments in campus driving V2V scenario. Yellow circle
marks the transmitter vehicle.

FIGURE 9: CSI extraction results from the measurement
conducted in campus driving V2V scenario. The CIRs (top)
and the CFRs (bottom) acquired from the channel estimation
in the frequency domain.

28 dBm. Flat fading is observed in the CFRs as well. The
extracted CSI results are almost identical for all frames,
which is expected having in mind that the environment is
static.

C. CAMPUS VEHICLE-TO-VEHICLE SCENARIO
After the validation of our measurement campaign and CSI
extraction tool, we extend the experiment to the campus V2V
scenario. One vehicle acts as a transmitter with OBU and the
other vehicle equipped with both the OBU for monitoring the
packet receptions and the spectrum analyzer for recording IQ
samples of the IEEE 802.11p frames. Two vehicles drive in
the campus of Kyungpook National University so there are a
variety of propagation environments due to the surrounding
buildings, parking lots, etc. Fig. 8 shows the campus driving
V2V scenario.
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FIGURE 10: CSI extraction results from the measurement conducted in campus driving V2V scenario.

Fig. 9 represents the CSI extraction results from the mea-
surement conducted in campus driving V2V scenario. Each
CSI is accumulated in the graph. In this measurement, 3,165
frames are detected and recorded at the spectrum analyzer,
but 1,886 frames are correctly decoded by our CSI extrac-
tion module. We consider that one of the main reasons for
these decoding failures is dynamic propagation environment
experienced in our measurements i.e., NLOS and multipath
induced by surrounding obstacles.

CSI patterns in the campus V2V scenario remain almost
same to those in cable-connected and laboratory measure-
ments. However, the CFRs vary dramatically compared to
previous two static experiments due to the dynamic envi-
ronment in the campus V2V scenario. Fig. 10 shows the
CSI variation of the campus V2V scenario in time with a
three dimensional representation. We observe both an overall
received power change (e.g. higher overall level of frames
received in the beginning, at the end, and around 300 seconds
into the drive), as well as frequency selective fading in
individual frames. Since the experiment in the campus V2V
scenario has diverse environments and numerous collected
frames, the CFR analysis in time domain is able to help
understanding the channel characteristics.

D. DISCUSSION
The CIRs extracted in previous three experiments exhibit a
similar form although we expected to observe multipath in
campus V2V driving scenario due to the surrounding obsta-
cles. We hypothesize that the reason lies in the temporal res-
olution of our channel sounding approach, which is limited
by the IEEE 802.11p frame structure. Paschalidis et al. [30]

report that the RMS delay spread of multipath for campus
V2V scenario is measured from minimum 0 ns to maximum
100 ns. An IEEE 802.11p frame, on the other hand, has 64
samples in 6.4 µs, leading to a 100 ns minimum resolution,
rendering it unsuitable for short-distance multipath inference.
For more sophisticated multipath analysis, a high-resolution
channel sounder should be used. Nevertheless, our goal is
to investigate channel properties extraction and prediction
in a practical setting that utilizes commodity WAVE com-
munication equipment, thus we continue our analysis while
acknowledging the above limitations.

VI. EXPERIMENTAL RESULTS OF CHANNEL
PREDICTION
Up-to-date knowledge of channel properties can greatly en-
hance the wireless communication by allowing sophisticated
rate adaptation and resource allocation. Often, the adaptation
is performed at the transmitter based on the last measured
properties piggybacked from the receiver. However, in a
dynamic environment, such as those observed in vehicular
communications, the piggybacked information may already
be stale by the time it reaches the sender. Therefore, in this
section we explore the opportunities for predicting channel
properties in a vehicular network setting.

We base our prediction method on the long short-term
memory (LSTM) network. LSTM network is a type of a
recurrent neural networks (RNN) well known for its time
series prediction capabilities, and while mostly used in other
domains, such as financial predictions [31], LSTM network
has recently gained attraction among wireless researchers as
well [32]. LSTM network is able to overcome the vanishing
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gradient problem which is the main issue for the conventional
RNN. The structure of LSTM unit is made by adding the cell
state with a forget gate layer, input gate layer and output gate
layer to a hidden state of the RNN unit. Input gate i controls
the level of cell state update. Forget gate f controls level of
cell state reset. Cell candidate g adds information to cell state
and output gate o controls the level of cell state added to
hidden state. Each component has the input weights W , the
recurrent weights R and the bias b and calculated as follows.

it = σg (Wixt +Riht−1 + bi)
ft = σg (Wfxt +Rfht−1 + bf )
gt = σc (Wgxt +Rght−1 + bg)
ot = σg (Woxt +Roht−1 + bo)

(9)

where σg denotes the state activation function which is the
hyperbolic tangent function and σc is the gate activation
function which is the sigmoid function. Therefore, the cell
state ct and the hidden state ht at time t is given by

ct = ft � ct−1 + it � gt
ht = ot � σc (ct)

(10)

where � denotes the Hadamard product which takes two
same-dimensional matrices and generates another matrix
where each element i, j is the product of elements i, j of the
original two matrices.

The neural network we utilize consists of four types of
layers: a sequence input layer with one dimension, a variable
number of LSTM layers with a variable number of hidden
units, a fully connected layer, and a regression output layer.
Data are standardized before the input layer. For the opti-
mization algorithm, Adam [33] is applied with a maximum
epoch of 250, a gradient threshold of 1, an initial learn rate of
0.005 and a learn rate drop period of 125 by the factor of 0.2.

In the rest of the paper we employ LSTM models for
channel prediction and compare their performance to the
baseline determined by the last observed (non-predicted)
channel property value.

A. CHANNEL PREDICTION IN CAMPUS V2V SCENARIO:
A SUBCARRIER LEVEL
As described in Section V-C, we have 1,886 frames-by-52
subcarriers of CSI data from the decoded frames. We first
examine the ability of the LSTM network to predict a single
carrier’s SNR variation using a single LSTM layer (we use
−26th subcarrier). In Fig. 11 we show the variation of CSI
of the subcarrier obtained in a real-world V2V campus drive
scenario. We use the first 60% of the CSI data, which is
the −26th subcarrier SNR values in the channel estimation
results, as a training dataset and the remaining 40% of CSI as
a test dataset for the prediction. The network state keeps up-
dating with the observed CSI since the actual values of time
steps between predictions are available in our environment.

Fig. 12 shows the root-mean-square error (RMSE) of
the baseline method and our channel prediction approach
built with a different number of hidden units in the LSTM
network. We calculate the RMSE using the actual measured
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FIGURE 11: SNR variation of -26th subcarrier calculated
from the CSI extraction in IQ samples measured in the
campus V2V scenario. First 60% of the data (blue line) are
used for training and remaining 40% of the data (orange line)
are used for testing.
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FIGURE 12: RMSE calculated between the channel pre-
diction results and the actual CSI values in the subcarrier
level campus V2V scenario. Legends describe the number
of hidden units for a single LSTM layer in our experiments.
Baseline represents the results utilizing the latest observed
channel metric without prediction.

power level at step ti and the predicted power level for step
ti so the unit for the RMSE in our case is dB. The time steps
values in the x-axis denote the number of frames in future
that the LSTM network is making a prediction for. Overall,
the prediction results show reduced RMSE compared to the
baseline. Interestingly, a smaller number of hidden units in
the LSTM network performs better implying that the training
CSI data and the test CSI data are less correlated, which
might be explained by the fact that the drive does not re-visit
locations. Considering the number of hidden units as 3, the
reduced RMSE margins between baseline and prediction are
same 20.47% for 1 time step and 3 time steps, 23.30% for 5
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FIGURE 13: RMSE calculated between the channel pre-
diction with AR results and the actual CSI values in the
subcarrier level campus V2V scenario.

time steps and 22.61% for 10 time steps, with the absolute
value of LSTM’s RMSE remaining almost the same. The
RMSE results in this experiment are uneven with the number
of hidden units due to a modest amount of data, but still we
observe the advantage of neural network approach for the
channel prediction.

We conducted the same experiment with 5 LSTM layers
for 1 time step to evaluate the impact of the number of LSTM
layers. The results are as follows: RMSE of 5.2759 with
3 LSTM units, 5.3759 with 5 units, 3.8906 with 10 units,
3.9299 with 20 units, 3.9170 with 30 units, respectively. The
results indicate modest improvement despite significantly
increased network complexity, thus it appears that using a
single LSTM layer is sufficient for our purpose.

For a reference of prediction performance using neural
networks, we provide not only a baseline with no prediction,
but also a prediction with linear AR using previous measure-
ment values. Fig. 13 shows the RMSE of prediction using AR
modeled by the previous observations. Our AR model utilizes
ordinary least squares, which minimizes the sum of squared
errors for the fitting. The results demonstrate that channel
prediction using an AR cannot achieve the performance of
neural networks even in modeling with large number of
previous measurements. For example with one time step, the
minimum RMSE values for the AR and neural networks are
4.2053 and 3.9364, respectively.

To compare the performance of channel prediction meth-
ods, we demonstrate the best results from a deep learning
and an AR in Fig. 14. In the subcarrier level campus V2V
scenario, two channel prediction methods outperform the
baseline but the difference between two methods is small. A
deep learning shows better performance for the time step of
1 while an AR shows better performance for the time step of
10.
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FIGURE 14: RMSE comparison between the best results
from the channel prediction with a deep learning and an AR
in the subcarrier level campus V2V scenario.
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FIGURE 15: SNR variation of a decoded frame in IQ samples
measured in the campus V2V scenario. First 60% of the data
(blue line) are used for training and remaining 40% of the
data (orange line) are used for testing.

B. CHANNEL PREDICTION IN CAMPUS V2V SCENARIO:
A FRAME LEVEL
A subcarrier-level SNR variation is highly fluctuating com-
pared to a frame-level received power variation. A frame-
level channel prediction is also useful as a subcarrier-level
channel prediction for the applications such as power alloca-
tion and power adaptation, etc. With IQ samples measured
in campus V2V scenario, We are able to analyze in not
only the subcarrier level but also the frame level. The frame
level power variation in campus V2V scenario is calculated
and illustrated in Fig. 15. Similarly with the subcarrier level
analysis, We use the first 60% of the CSI data as a training
dataset and the remaining 40% of CSI as a test dataset for the
prediction.

Fig. 16 shows the RMSE of the baseline method and
our channel prediction approach built with a different num-
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FIGURE 16: RMSE calculated between the channel predic-
tion results and the actual SNR values in the campus V2V
scenario. Legends describe the number of hidden units for a
single LSTM layer in our experiments. Baseline represents
the results utilizing the latest observed channel metric with-
out prediction.
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FIGURE 17: RMSE calculated between the channel predic-
tion with AR results and the actual SNR values in the campus
V2V scenario.

ber of hidden units in the LSTM network for frame level
SNR analysis in the campus V2V scenario. Considering the
number of hidden units as 5, the reduced RMSE margins
between baseline and prediction are 14.32% for 1 time step,
19.02% for 3 time steps, 21.82% for 5 time steps and 24.51%
for 10 time steps. Again, the results are uneven due to a
modest amount of data. Compared to the previous channel
prediction results in a subcarrier-level, the overall RMSEs for
channel prediction are lower in frame-level. We argue that,
compared to the subcarrier-level received power, the frame-
level received power is already averaged over subcarriers,
thus remains less sensitive to the noise leading to smoother
frame-to-frame SNR measurements.

Fig. 17 shows the RMSE of prediction using AR modeled
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FIGURE 18: RMSE comparison between the best results
from the channel prediction with a deep learning and an AR
in the frame level campus V2V scenario.

FIGURE 19: Snapshots taken in the receiver vehicle during
the experiments in the highway V2V scenario. Yellow circle
marks the transmitter vehicle.

by the previous observations as a performance reference. The
results also demonstrate that channel prediction using an AR
has lower performance than a deep learning approach.

We also present the best results from a deep learning and
an AR in Fig. 14 to compare the performance of channel
prediction methods. In the frame level campus V2V scenario,
a deep learning-based method shows better performance in
all time steps. For time step of 1, an AR shows worse RMSE
even compared to the baseline.

C. CHANNEL PREDICTION IN HIGHWAY V2V
SCENARIO: A FRAME LEVEL
Besides the campus scenario, we assess our method’s ability
to predict channel properties in a highway V2V scenario
depicted in Fig. 19. The experimental configurations are set
up the same way as the campus scenario. The average speed
of the cars in a highway is around 100 km/h and we collect
the measurement data for around 1 hour. Measurement cam-
paign for the received frame power collection is configured
with off-the-shelf WAVE OBUs. The number of transmitted
frames and received power information for collected frames
is 120,308 and 110,372, respectively. Received power of the
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FIGURE 20: Received power variation measured in the high-
way V2V scenario. First 60% of the data (blue line) are used
for training and remaining 40% of the data (orange line) are
used for testing.
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FIGURE 21: RMSE calculated between the channel predic-
tion results and the actual CSI values in the highway V2V
scenario. Legends describe the number of hidden units for a
single LSTM layer in our experiments. Baseline represents
the results utilizing the latest observed channel metric with-
out prediction.

frame in the highway V2V scenario are shown in Fig. 20. We
also apply the first 60% of received power data as a training
dataset and the last 40% of received power data as a test
dataset for the prediction. The network state keeps updating
with the observed value as well in this experiment.

Fig. 21 shows the RMSE results of baseline and received
power predictions for highway V2V data using different
number of hidden units for the LSTM network. Generally,
the prediction results show similar RMSE compared to the
baseline similar to the results of channel prediction in the
frame level campus V2V scenario. Considering the number
of hidden units as 5, the reduced RMSE margins between
baseline and prediction are 13.35% for 1 time step, 16.76%
for 3 time steps, 15.80% for 5 time steps and 16.35% for
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FIGURE 22: RMSE calculated between the channel predic-
tion with AR results and the actual CSI values in the highway
V2V scenario.

10 time steps. Compared to the previous channel prediction
results in a subcarrier-level, the overall RMSEs for chan-
nel prediction are lower in frame-level, same as described
in the campus V2V scenario. Another observation is that
the number of hidden units has a minimal effect on the
prediction performance when the training data are large
enough. Therefore choosing a small number of hidden units
is possible and should be used for the channel prediction to
reduce the amount of computation needed for neural network
training. In addition, the RMSE results in this experiment
are relatively evenly distributed with the increasing number
of hidden units compared to the results with campus V2V
scenario due to a relatively modest amount of data.

We conducted a same experiments with 5 LSTM layers for
1 time step to evaluate the impact of the number of LSTM
layers. The results are as follows: RMSE of 3.7138 with
3 LSTM units, 2.5709 with 5 units, 2.3104 with 10 units,
2.2679 with 20 units, 2.2496 with 30 units, respectively. We
consider these results as little improvements with a huge
additional complexity of the prediction system since the
performance is almost same to the results using a single
LSTM layer network.

Again, for a reference of prediction performance using
neural networks, Fig. 22 shows the RMSE of prediction using
AR modeled by the previous observations in the highway
V2V scenario. The results in the highway measurements
also demonstrate that channel prediction using an AR shows
lower performance than the neural network.

Likewise, to compare the performance of channel predic-
tion methods, we demonstrate the best results from a deep
learning and an AR in Fig. 23. In the highway V2V scenario,
a deep learning-based method shows better performance in
all time steps. More interestingly, an AR shows worse per-
formance than the baseline in all time steps in the highway
measurement data.

VOLUME 4, 2016 11



2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2901710, IEEE Access

Joo et al.: Deep Learning-based Channel Prediction in Realistic Vehicular Communications

0

1

2

3

4

5

6

1 3 5 10

R
M

S
E

Time Steps

Deep Learning

Auto-Regression

Baseline

FIGURE 23: RMSE comparison between the best results
from the channel prediction with a deep learning and an AR
in the highway V2V scenario.

VII. CONCLUSIONS
In this paper, we have developed the CSI extraction tool
and investigated the performance of channel prediction with
a deep learning approach and an AR approach based on
realistic measurement data in vehicular environments. We
first introduced our measurement campaign for recording IQ
samples in the outdoor environments and the CSI extraction
tool from measured IQ samples of IEEE 802.11p frame. The
detailed algorithms for CSI extraction in the implementa-
tion process have been provided with equations. The results
of CSI extraction in measured IQ samples have also been
presented for both static and dynamic environments. Fur-
thermore, we have exhibited the initial experimental results
for channel prediction based on the real-world measured
wireless channels in both subcarrier-level and frame-level.
Deep learning-based channel prediction results have shown
promising performance compared to the AR-based channel
prediction and the latest obtained channel information.

Our future work includes improving the performance of
channel prediction by adding additional information to the
neural networks such as the information on the surrounding
environment, which may be sensed by on-vehicle sensors.
Performance evaluation of adaptive transmission or resource
allocation schemes will be studied accordingly.
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