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Abstract

Understanding a user’s semantic location is of critical importance
in numerous areas of mobile computing, such as mobile healthcare,
mobile advertising, and mobile personal assistance. Nevertheless,
inferring semantic location remains challenging and often relies
on translating raw geographical coordinates via third-party online
services. In this paper we introduce SELLMA, an approach for
semantic location inference that harnesses Wi-Fi SSID sensing
and on-device querying of a specially crafted LLM. We implement
SELLMA in Android and show that it can uncover a number of
environmental and geographical descriptors of a users location in
a privacy-preserving manner, without the need for GPS querying,
and without reliance on Web-based services.

CCS Concepts

•Human-centered computing→Ubiquitous andmobile com-

puting; • Computer systems organization → Embedded and
cyber-physical systems; •Computingmethodologies→Machine

learning.
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1 Introduction

Since the early days of mobile sensing semantic location has repre-
sented staple information enabling context-aware computing and
various applications thereof [3, 19]. For example, knowing that a
tourist is in a particular part of town, the smartphone could provide
notifications containing relevant sightseeing information, sensing

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
EdgeSys ’25, Rotterdam, Netherlands
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1559-4/25/03
https://doi.org/10.1145/3721888.3722091

PROMPT:
User is nearby a Wi-Fi SSID named “www.pattyfruts.cl”. Based on the SSID provide location
information and environmental context that the user might be in. Provide answers in sections and
give reasoning.

ANSWER:

1. LOCATION INFERENCE FROM WI-FI SSID
COUNTRY: Chile, Valparaiso
The Wi-Fi SSID "www.pattyfruts.cl" suggests a Chilean origin, as the country code ".cl" is
specific to Chile. The name "Pattyfruts" is also a Chilean brand, which further supports
the inference of the location being in Chile.
COORDINATES: (-32.9492448, -70.6656211)

2. TYPE OF ENVIRONMENT
TYPE OF ENVIRONMENT: Urban or commercial area
The location indicates that the user is in a residential area, but the presence of a fruit
juice bar suggests that the area is also commercial or tourist-oriented.

3. OTHER ENVIRONMENTAL FACTORS
LIKELY FOOT TRAFFIC: Moderate to high, depending on the time of day and day of the
week
NEARBY AMENITIES: Patty Frutas (a fruit juice bar) and possibly other nearby shops or
restaurants

4. LIKELY USER ACTIVITY
ACTIVITY: Relaxing or socializing - The presence of a fruit juice bar suggests a leisurely
or social activity, and the urban or commercial area type of environment indicates that the
user is likely in a public place. The user is likely relaxing or socializing, possibly enjoying
a drink or snack at the fruit juice bar.

GROUND TRUTH:
Location: Arica, Chile
Amenity: Café
Coordinates: (-18.4449501, -70.2953886) 

Figure 1: Example SELLMA output when queried with a sin-

gle sensed WiFi SSID “www.pattyfruits.cl”. The top text bub-

ble (purple) depicted the prompt, here shortened for brevity.

The bottom text bubble (yellow) shows the detailed SELLMA

answer generated on a mobile device. Finally, the ground

truth semantic information and actual geographic coordi-

nates obtained through Open Street Maps are listed.

that a user is in a library could be used to automatically switch the
phone to the silent mode, while recognising that a user has just
arrived to an amusement park could pop up ride reviews and advice
on how to best spend the day there.

Traditionally, uncovering semantic location has relied first on
obtaining a precise location, usually via a GNSS system, such as
GPS, and then querying online services that perform translation
from raw latitude and longitude information to contextual descrip-
tors (e.g. Google Maps Platform [16], Google Geolocation API [15]).
Such an approach, however, comes with serious drawbacks. GPS
location is often unavailable in indoor environments and, from the
energy consumption point of view, GPS querying can be prohibi-
tively expensive for certain edge devices. Furthermore, the ability of
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online services to perform accurate coordinate-to-semantics transla-
tion depends on the availability of (usually volunteered) descriptors
related to particular coordinates, while the online querying im-
plies that a user must trust that these services will not misuse the
transmitted location information.

In this paper we present SELLMA (example of which is shown in
Figure 1), a method for semantic location querying that does not re-
quire neither precise geographical coordinates sensing, nor remote
database querying. Moreover, SELLMA can provide the semantics
even for previously unseen locations. To accomplish this, our solu-
tion merges the reasoning capabilities and the world knowledge of
large language models (LLMs) and the semantics hidden in Wi-Fi
SSID descriptors. More specifically, SELLMA senses Wi-Fi SSIDs
from amobile’s surroundings and then uses these to populate a care-
fully crafted LLM prompt to uncover the location’s semantics, and
potentially other information, such as the country/city/region, a
user’s likely activity, as well as the absolute location coordinates. To
avoid potentially sensitive data transfer, SELLMA hosts a specially
pre-trained and optimised LLM directly on a mobile device. We
implement a fully-functional SELLMA app on Android and through
a series of experiments demonstrate its potential to uncover the
semantic location of a user.

The specific contributions of our work include:
• We, to the best of our knowledge, for the first time integrate
mobile sensing and LLM querying for the purpose of seman-
tic location sensing, so that the two are both fully confined
to an edge device;

• From publicly available sources we curate a comprehensive
dataset of Wi-Fi SSID names and the corresponding seman-
tic locations, and use this dataset in combination with a
larger “teacher” model to fine-tune a smaller “student” LLM
optimised for on-device mobile deployment;

• We implement a full-fledged Android application that en-
ables semantic location querying, evaluate the quality of its
outputs and assess the system-level overheads that sensing
and on-device LLM querying bring.

With SELLMA we demonstrate that fine-tuned LLMs can infer
semantic location and can indeed be optimised to perform such
inference directly on contemporary edge devices. With this we
open novel opportunities for semantic-aware services, while at the
same time ensuring that a user’s privacy is preserved.

2 Related Work

Semantic location represents valuable information for a range of
mobile applications. For instance, knowing the history of semantic
locations visited by a person and their contacts can help us predict
the next locations they will visit [17]. Semantic location can also
guide dynamic adaptation of a mobile device’s user interface by
automatically changing between alert modes, or controlling notifi-
cation delivery [12, 22]. Finally, it is invaluable for understanding
the behaviour of mobile users, such as their eating habits [2] or
drug abuse [7].

Existing approaches for semantic location acquisition, such as
Google Maps and Mapbox [18], provide an option for querying
cloud-based proprietary databases with a user’s coordinates to ob-
tain semantic location. Yet, sending raw coordinates to a third party

exposes the users to potential risks, including unauthorized track-
ing, data misuse, and personal information leakage. Moreover, GPS
remains one of the most power-hungry aspects of mobile sensing
and the one that may prohibit semantic location determination in
certain scenarios [10]. Consequently, there is demand for solutions
that are secure, energy-efficient and privacy-preserving [9].

Wi-Fi Service Set Identifiers (SSID), signal strength, and other
meta-data are easily obtainable through wireless sensing and a
number of studies explored semantic location inference from Wi-Fi
data [1, 5, 8]. Indoor localisation research leveraged Wi-Fi signals
[13, 29], Wi-Fi AP fingerprints [20] and temporal features in Wi-
Fi connectivity data to classify a person’s indoor location to a
semantically meaningful spatial extent [14]. For outdoor semantic
localisation, publicly available Wi-Fi datasets were explored to
extract the semantics of names and correlate them with known
business venues [23]. None of the above approaches, however, can
handle the inference over previously unseen locations.

Large language models’ (LLM) tremendous capabilities of gener-
ating content from the “world data” have been harnessed in ubiqui-
tous sensing. Xu et al. [24] introduced the term “Penetrative AI",
emphasising the ability of making LLMs comprehend the physical
world by interacting through the Internet of things (IoT) sensors
and actuators. The same authors built on top of this study and pro-
posed AutoLife [25], an automatic smartphone-based life journaling
system. By analyzing the smartphone’s sensor data, the app synthe-
sises comprehensive life journals based on the multimodal input to
the vision and language models. Similar to our approach, the app
senses Wi-Fi SSIDs and uses this information to infer something
about the environment. However, AutoLife relies on a cloud-based
LLM with no fine-tuning and additional online APIs, whereas we
employed fine-tuned on-device LLM entirely offline and with no
need to share the user’s data with other online services.

Recently, running LLMs on smartphones has been demonstrated
[26, 27], and has soon found its way in mobile sensing applications.
Thus, Zhang et al. [28] combine the on-device LLM with smart-
phone sensing for general context-aware and personalised services.
However, their approach requires an Android terminal emulator
inside a Linux environment app, which severely limits the solutions
usability outside the demonstrated prototype. In our work, we engi-
neer the LLM deployment and querying pipeline in a manner that
enables its seamless use within an arbitrary Android application.

3 SELLMA

We now present the design and implementation of SELLMA, a so-
lution for semantic location inference that combines Wi-Fi sensing
and on-device LLM inference. Our approach comprises two main
phases: (i) fine-tuning and optimising an LLM for semantic location
inference from Wi-Fi SSID inputs, and (ii) deploying this model on
a mobile device and integrating with Wi-Fi sensing to enable fully
offline experience.

3.1 Fine-tuning LLM for semantic location

To construct a mobile-ready LLM, we first employ a larger model to
create training dataset that connects Wi-Fi SSID information with
well-structured semantic location information, and then fine-tune
a smaller LLM using the above dataset.
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3.1.1 Dataset construction via teacher model. To build a dataset
for semantic location inference, we collect publicly available Wi-Fi
SSIDs and their corresponding geolocation metadata through open-
source APIs. Specifically, we use the Overpass API [21] to query
OpenStreetMap entries with the tag internet_access:ssid, i.e.
for locations whose both Wi-Fi SSID environment and geographic
information are known. Each JSON-formatted record, thus contains
Wi-Fi SSID name(s), the exact geographical coordinates (latitude
and longitude), and relevant OpenStreetMap tags, such as the type
of a venue/amenity.

In SELLMA, instead of using the input-output JSON entries,
we use these entries to query a larger teacher LLM to generate
structured explanations about each SSID and its environment. This
allows us to, in a way, distill knowledge of the larger LLM, which
is more expressive and could possibly infer the semantic location
from certain clues in Wi-Fi SSIDs in situations where the smaller
model would not. More specifically, we construct the prompt for
the large LLM as shown in Figure 2 below.
System: You are a location reasoning model. You help infer the
environment based on Wi-Fi SSIDs and geographical data.
User: User is nearby a Wi-Fi SSID named "[SSID]". [LATITUDE,
LONGITUDE] Using the Wi-Fi SSID and the geo-location
information provided, answer the following questions in a
structured format with reasoning for each answer:
Additional geolocation data: [GEOLOCATION DATA]

Figure 2: Prompt template for semantic location reasoning.

The placeholders [SSID], [LATITUDE, LONGITUDE], and
[GEOLOCATION DATA] from Figure 2 are dynamically populated
with context-specific information from the dataset. The teacher
model is then instructed to answer the following queries related to
semantic location:

S1. Location inference from Wi-Fi SSID: Based on the Wi-Fi
SSID "[SSID]", give the estimation of the location (country,
region, coordinates).

S2. Type of environment: Given the geographical location
data, what type of environment is the user in? Are there any
notable places nearby (e.g. landmarks, businesses etc.) based
on the provided geo-information?

S3. Other Environmental Factors: What other factors can
be inferred from the data (e.g., likely foot traffic, nearby
amenities, noise levels)?

S4. Likely User Activity: Based on the SSID and the surround-
ing location information, what activity might the user be
engaged in? (e.g., shopping, working, studying, relaxing,
traveling). How does the environment affect what the user
is likely doing at this moment?

These structured prompts encouraged the teacher model to provide
detailed reasoning, explaining how it used both the SSID and the
geo-information to arrive at each conclusion.
For the teacher model, we employ Meta-Llama-3.1-8B-Instruct [6],
an 8-billion-parameter instruction-tuned LLM. Using the above
procedure, we generate 3,000 unique samples spanning a wide
variety of Wi-Fi SSIDs and locations around the globe.

3.1.2 Mobile-ready LLM fine-tuning. Deploying an 8-billion-
parameter model on a contemporary smarphone is infeasible. There-
fore, fine-tune a compact “student” model for on-device use. We
choose Llama-3.2-3B-Instruct, a 3-billion-parameter, instruction-
tuned LLM that still retains much of the broader “world knowledge”
captured in the larger teacher model.
Tomake fine-tuning computationally feasible, we adopt a Low-Rank
Adaptation (LoRA) approach [11], which significantly reduces train-
ing overhead by adding lightweight adapter layers. We fine-tune
these adapters in the decoder layers with a LoRA rank (𝑟 ) of 32,
a scaling factor (𝛼𝑟 ) of 1, and a learning rate of 4 · 10−5. As the
training data we use 2687 entries from the dataset constructed in
Section 3.1.1. Upon the training completion, we merge the LoRA
adapters back into the base LLM weights to avoid any additional
overhead during inference. Even so, the resulting model weighs
approximately 13 GB, which prevents deployment on a smartphone.
Therefore, we apply dynamic quantisation to 8-bit integers, reduc-
ing the size to around 3.4 GB while preserving sufficient accuracy
for semantic location inference (as demonstrated in Section 4).

3.2 LLM on-device deployment and integration

with sensing

Following the offline fine-tuning phase, we implement the LLM
on mobile devices to enable real-time semantic location inference
without reliance on external services. This on-device process in-
cludes the deployment of the quantised LLM model, integration of
Wi-Fi sensing, and the development of a user interface (UI) that
facilitates inference.
The on-device inference process begins by scanning forWi-Fi SSIDs
using Android’s WifiManager, which retrieves nearby networks
without requiring an active Internet connection. In Android, SSID
scanning is treated as a sensitive action that may reveal a user’s
location, thus the ACCESS_FINE_LOCATION permissions must be
granted by the user. Once the SSIDs are obtained, this information
is inserted into a prompt template similar to that used by the teacher
model (i.e. Figure 2 followed by the queries S1-S4), yet omitting the
explicit geolocation data. This prompt is then tokenised and passed
to the LLM.
The LLM itself is the quantised version of the model described in
Section 3.1.2 exported into the ONNX Runtime [4] format, encom-
passing weights, tokeniser, and other inference artifacts. To opti-
mise computation during text generation, we harness the key-value
(KV) caching mechanism preserves previously computed states,
thereby reducing redundant calculations in the inference loop. Fi-
nally, the application presents the generated semantic insights to
the user through a chat-based interface (example in Figure 1), offer-
ing real-time location reasoning in a privacy-preserving manner
by keeping all data and inference locally on the device.

4 Experimental Evaluation

We now evaluate SELLMA’s ability to infer semantic location by
comparing the responses of our student LLM (3B parameters)
against ground truth derived from the teacher model (8B parame-
ters) on 313Wi-Fi SSID – semantic location instances that did not
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figure in the LLM fine-tuning set. Both normal and quantised ver-
sions of the student model are included in this evaluation, along
with baseline models.

4.1 Inference quality evaluation

We evaluate the models’ performance on location reasoning from
Wi-Fi SSIDs using the following main metrics: location accu-
racy, which includes both region accuracy (identifying the cor-
rect country, state, city, or county) and a 10 km radius match; co-
sine similarity, computed by comparing the text embeddings (from
all-MiniLM-L6-v2 embedder model) of student and teacher re-
sponses; and environment type label accuracy, indicating how well
the model’s labeled environments align with the teacher’s labels.
Since location labels (e.g., country or region) can vary in format
across different model responses, an external forward geocoding
API was used to normalize these labels in both the ground truth
and the predictions. For multi-label classification tasks such as type
of environment and likely user activity, we employ the F1 score and
Hamming loss with weighted averaging.
We compare the following small student models:

(1) Oracle model – A trained student model given the exact
geolocation data in the prompt (e.g., country or amenity
type). This model is, thus, expected to provide very accurate
information and answers that are as close to the original
teacher model outputs as possible.

(2) Non-quantised model – The primary trained student
model running at full precision, with no explicit geoloca-
tion data in the prompt. This simulates real-world scenarios
where only SSID information is available. However, this
model is still prohibitively complex to be ran on an average
commodity smartphone.

(3) Quantised model – The student model quantised to lower
precision. This model is readily deployable to resource-
constrained Android smartphones.

(4) Base model – The untrained version of the base student
LLM, providing a baseline with no task-specific adaptation.

(5) Probability baseline – A purely statistical model that sam-
ples locations and labels according to their observed fre-
quency in the training set.
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Figure 3: Location accuracies of the responses generated by

models compared against ground truth labels.

We first evaluate the ability of the models to infer geographical
location information from Wi-Fi SSID data. Figure 3 illustrates that

O NQ Q B

USA 16.2 21.3 33.4 54.8

Germany 8 19.7 10.8 7.1
Hungary 9.9 12.1 10.5 1.6
France 3.8 5.4 4.5 5.8
Italy 2.9 7.6 7 4.5
Finland 1.1 1.9 1.3 1.3
Spain 1.2 2.2 2.2 2.2
Others 56.9 29.8 30.3 22.7

Table 1: Distribution of the most frequent country predic-

tion ratios across different variants of the student model (O

- oracle version, NQ - non-quantised version, Q - quantised

version and B - base version).

the fine-tuned student model (non-quantised) achieves 36.5% accu-
racy in identifying the correct country which is significantly higher
than 6.1% accuracy achieved by a probabilistic model. In addition,
compared to the base model, we see that fine-tuning improves in-
ference by about 5% (from 31% to 36.5%). Quantisation has only
a slight negative impact on country-level predictions, implying
that much of the location reasoning knowledge is preserved. This
outcome is promising for real-world deployments, where memory
and computational constraints necessitate lighter-weight models.
All models fare much worse when finer granularity prediction is
requested (i.e. city, state, or 10km radius match). Surprisingly, this
is true for the Oracle model as well, although it remains the most
accurate of all the tested models. The probability baseline performs
poorly across the board, as simply sampling locations and labels
from the training distribution yields only about 6% accuracy for
country predictions, with performance on other location-related
metrics dropping below 0.1% (hence not reported).
We also investigate where the misclassifications are made. Table 1
shows the distribution of country-level predictions. We observe
that, compared to the oracle model, other LLM-based models tend
to have predictions that are both less diverse and skewed toward a
few countries. The base model, in particular, exhibits the highest
skew (towards “USA”), reflecting a reliance on broad knowledge
rather than task-specific cues.
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Environment classification

O NQ Q B PB

F1 score 79.4 81.2 79 36.4 55.8
Table 2: Environment and activity classification metrics

of different model variants (O - oracle version, NQ - non-

quantised version, Q - quantised version, B - base version, PB

- probability baseline).

We now focus on the semantics, and assess the models’ ability to in-
fer the environment type (e.g. restaurant, library, etc.), environment
factors (e.g. noisy, busy, etc.), as well as the likely user activity in
the environment. Figure 4 shows the cosine similarity between text
embeddings of the teacher LLM-provided ground truth description
and each of the models’ output, while Table 2 shows the F1 score
of the predicted environment type.
The oraclemodel, naturally, achieves highestmatchwith the teacher
model’s responses (cosine similarity in Figure 4), however, there is
a clear benefit in the student model fine-tuning, as the fine-tuned
model (non-quantised) performs significantly better than the base
model in each of the three – environment type, environmental
factors, and user activity – cases. The F1 score does not take the
answer wording in consideration, and here we see (Table 2) that
fine-tuning indeed works very well. Without fine-tuning the base
model (B) performs poorly, even worse that the probability baseline
(PB). The fine-tuned student LLM (NQ) performs as well as the
oracle solution (O). Quantisation, again, has very little effect on the
inference quality with the quantised LLM (Q) losing only 2.2 F1
points compared to the non-quantised version (NQ).

ANSWER:
1. LOCATION INFERENCE FROM WI-FI SSID

COUNTRY: Russia
REGION: Petrozavodsk (a city in the Republic of Karelia, Russia).
COORDINATES: (61.6251111, 34.4441111)

The SSID "508 Муезерский - Петрозаводск, автовокзал" suggests that the
user is in Petrozavodsk, a city in Russia. The presence of the word
"автовокзал" (avtovokzal, meaning "bus station") further confirms this
inference, as it is a common feature in Russian cities.
...

PROMPT:
User is nearby a Wi-Fi SSID named “508 Муезерский - Петрозаводск,
автовокзал”. Based on the SSID provide location information and environmental
context that the user might be in. Provide answers in sections and give reasoning.

GROUND TRUTH:
Russia, Republic of Karelia, Petrozavodsk

Figure 5: LLM response for SSID name input written in a non-

Latin alphabet and not containing English language words.

Finally, the results also demonstrate that LLMs exhibit capabilities
in inferring location context by leveraging multilingual knowledge
encoded during pretraining, which is depicted in an example shown
in Figure 5. This includes the ability to translate and interpret Wi-Fi
SSIDs in various languages, often connecting them to the correct
geographical locations. This highlights the portability and global

Prediction Reasoning Tokens/s Cache

S1 20 s 35 s 2.25 107 MB
S2 23 s 31 s 2.11 126 MB
S3 27 s 47 s 1.98 151 MB
S4 14 s 54 s 1.92 174 MB
Avg 21 s 42 s 2.01 139.5 MB

Table 3: Time taken for token generation in the observation

(initial prediction) and reasoning (explanation) for each of

the sections S, together with the tokens per second, and KV

cache usage during inference.

usability of SELLMA in diverse contexts worldwide with their wide
variety of pretrained knowledge.

4.2 System evaluation

To assess SELLMA’s usability on a real-world mobile device, we
measure the following performance metrics on a Google Pixel 6
device: the time to load the model into memory, the time spent
processing prompts before generation begins (prefill time), the
rate at which tokens are generated, and the total amount of RAM
required for model weights and runtime operations. The device
features 8 GB of RAM (6.7 GB usable) and the initial prompts ranged
from 360 to 430 tokens, influenced by the number and length of
scanned Wi-Fi SSIDs; with a maximum of 650 tokens generated per
prompt, total tokens occasionally approached 1,000.
Across a set of ten inference runs with the quantised (3B-parameter)
model, loading the model into memory took approximately 2.14 s
(±0.32 s), while prefill time averaged 25.87 s (±2.25 s). The model
generated tokens at a rate of about 2.01 tokens/s and required
around 2.3GB of memory. Results of detailed testing across four
representative tasks (S1–S4 from Section 3.1.1) listed in Table 3,
show that the system took 21 s on average to generate the initial
predictions, followed by 42 s for more detailed reasoning explana-
tions per section. This corresponds to roughly 2 tokens generated
per second, with approximately 140MB of key-value (KV) cache
used during inference. Predictions and reasoning times varied over
tasks, but overall, the results indicate that SELLMA can handle
moderately sized prompts and produce semantically rich answers
in under a minute for each section S.

5 Discussion

SELLMA demonstrates the feasibility of running contextual reason-
ing about the location entirely on-device, using a locally deployed
LLM. This approach offers several advantages, including (i) privacy
preservation, as all the computation occurs locally, removing the
need to transmit sensitive data to external servers, (ii) global ap-
plicability, as multilingual, context-rich knowledge embedded in
modern LLMs allows them to interpret Wi-Fi SSIDs across various
cultural and geographic contexts, supporting worldwide usability,
(iii) enhanced contextual awareness, as by inferring environmental
characteristics from SSIDs the model adds a novel layer of con-
textual intelligence to location-based services, potentially offering
more fine-grained insights than traditional methods, and (iv) tol-
erance to compression, as the minimal drop in accuracy observed
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between high- and low-precision models underscores how an over-
parameterized LLM can retain much of its learned knowledge even
after quantisation, minimising memory overhead without severely
compromising performance.
Nevertheless, we also identify avenues for further improvements.
Namely, we find that the model excels in settings with semantically
rich SSIDs, while it can struggle when Wi-Fi labels are sparse or
ambiguous, resulting in less precise location insights than those
offered by GPS-based methods. Furthermore, we find that a balance
needs to be found between assigning sufficient labels to the Wi-Fi
SSIDs via the teacher model and preserving model ability to provide
to-the-point answers – if the teacher output includes multiple rele-
vant keywords this might promote further generalisation within the
smaller model, reducing the precision of environment and activity
classification. Finally, for certain practical applications, response
generation needs to be accelerated. Part of the running time can be
attributed to the prefill phase. This overhead may be reduced by re-
structuring the prompt to separate static and dynamic content, thus
allowing the key-value (KV) cache for the static portion to be pre-
computed and reused. Although this approach demands some stor-
age for the precomputed cache, it remains practical given current
smartphones’ abundant storage capacity. Finally, future work could
also investigate Retrieval-Augmented Generation (RAG), which
integrates external knowledge about frequently encountered Wi-Fi
SSIDs to improve inference quality.

6 Conclusion

This paper introduces SELLMA, a method for location-based con-
textual awareness powered by Wi-Fi sensing and edge-based LLM
querying. To realise SELLMA, we curate a dataset of Wi-Fi SSIDs
and semantic location descriptors and use it, with the help of a
larger LLM, to fine-tune a smaller student LLM optimised for on-
device deployment. The resulting system can infer rich contextual
information solely from local Wi-Fi SSIDs, eliminating the need
for GPS coordinates. With SELLMA we demonstrate that privacy-
friendly, globally applicable semantic location sensing directly on
mobile devices is indeed feasible.
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