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ABSTRACT
Mobile computing evolution is critically threatened by the limita-
tions of the battery technology, which does not keep pace with the
increase in energy requirements of mobile applications. A novel
approach for reducing the energy appetite of mobile apps comes
from the approximate Computing field, which proposes techniques
that in a controlled manner sacrifice computation accuracy for
higher energy savings. Building on this philosophy we propose a
context-aware mobile video quality adaptation that reduces the en-
ergy needed for video playback, while ensuring that a user’s quality
expectations with respect to the mobile video are met. We confirm
that the decoding resolution can play a significant role in reducing
the overall power consumption of a mobile device and conduct a
user study with 22 participants to investigate how the context in
which a video is played modulates a user’s quality expectations.
We discover that a user’s physical activity and the spatial/temporal
properties of the video interact and jointly influence the minimal ac-
ceptable playback resolution, paving the way for context-adaptable
approximate mobile computing.

CCS CONCEPTS
• Human-centered computing → Mobile computing; Empir-
ical studies in ubiquitous and mobile computing.
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1 INTRODUCTION
Mobile computing field underwent an exponential growth in the
last few decades – invented only slightly more than a decade ago,
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the smartphone is already owned by more than three billion people
in the world and the variety of mobile applications have fully trans-
formed the way we communicate, do business, navigate in space,
or find social contacts.

The change in the way we consume information via mobile
devices is particular staggering, moving from traditional voice and
text media to video. The amount of content seen through mobile
video is more than doubling every two years [10]. Surveys show
that already 90% of the owners watch videos on their mobile devices
and that more than 70% of all YouTube content is consumed via
mobile devices [15]. In 2019, mobile video traffic accounted for half
of the total mobile data traffic, and the forecast indicates that almost
80% of the worldwide mobile data traffic will be video traffic by
2022 [10]. The recent COVID-19 pandemic further exacerbated the
growth, with the fields as diverse as the education, remotework, and
healthcare, rapidly jumping on the mobile video bandwagon [7].

However, the proliferation of mobile video, and, indeed, mobile
computing in general, is hindered by the physical constraints and
limitations of the underlying hardware. One key issue in this regard
is related to one of the most critical resources of a mobile devices –
its battery. The battery technology is experiencing a disproportion-
ally slower growth – practically a stagnation — compared to the
other mobile resources including the CPU speed and computing
power, storage space, and wireless transmission speed [25]. The
lack of a revolutionary solution for modest battery capacity calls
for further efforts towards the efficient use of limited resources
available on mobile devices.

Building upon the philosophy of Approximate Mobile Comput-
ing (detailed in Section 2), in this work we investigate the opportu-
nity for improving the energy efficiency of mobile video playback
by adjusting the playback resolution according to the actual context-
depended needs of a mobile user. Two key premises guide our work:
1) the energy requirements of video playback vary with the selected
resolution and 2) users requirements vary with the context in which
the playback is seen. Through fine-grain measurements we confirm
the former, and we conduct a 22-user study, described in Section 4,
to examine the latter hypothesis. We discover that contextual situ-
ations, such as whether a user is still, running, walking, or riding
in a car, significantly impact the minimum playback resolution the
user is satisfied with. Findings, further examined in Section 5, also
uncover other aspects that can play a role in the user’s tolerance
with lower video quality, such as the video’s spatial and temporal
complexity. Based on the collected dataset, we observe the opportu-
nity to extending the battery life by 23.2% in our particular use-case,
should the context-dependent resolution requirements be perfectly
matched by the playback app. Noting that the information on a
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user’s activity practically comes “for free” in modern mobile oper-
ating systems, we believe that context-dependent video decoding
quality adaptation represents a viable alternative to the existing
work (summarized in Section 6) for preserving the battery charge
and enabling further proliferation of mobile computing. In Section 7
we draw final conclusions and highlight future research directions
in approximate mobile video playback.

The work presented in this paper was performed with repro-
ductibility in mind. Thus, in accordance to the best practices [27],
the collected experimental data is publicly available to the re-
search community at https://gitlab.fri.uni-lj.si/lrk/approximate_
video_study/.

2 TOWARDS APPROXIMATE MOBILE
COMPUTING

Approximate computing (AC) is a resource-efficient computing
paradigm grounded in the observation that the result of a compu-
tation often need not be perfectly accurate in order to satisfy the
end-user’s needs [22]. Opportunities for AC frequently arise in situ-
ations where the computation inputs are noisy (e.g. sensor data), or
when the output is further manipulated and interpreted by the user
(e.g. 3D graphics rendering). In such situation, approximate compu-
tation can deliver a perfectly satisfactory result while reducing the
energy use. AC techniques have already proven their efficiency in
various desktop scenarios, with approaches ranging from speeding
up code execution through compiler-level optimizations that omit
certain lines of code [21] to performing neural-network based ap-
proximations instead of complex function calculations [14], demon-
strating significant energy savings while maintaining acceptable
result accuracy.

Building upon the idea of AC, approximate mobile computing
(AMC) introduces approximation on mobile devices [26]. The core
difference from the conventional AC being the context of use, which
in mobile computing tends to vary over time. A user’s physical ac-
tivity, her location and collocation with other users, the outside
brightness, and numerous other factors may vary throughout the
day and impact the user’s requirements with respect to mobile com-
putation. Significant challenges lay ahead before the full potential
of AMC can be exploited: 1) practical means of enabling approxima-
tion in mobile applications need to be provided; 2) the benefits of
approximate execution need to be quantified; 3) opportunities for
approximation need to be identified and profiled, and 4) lightweight
context recognition relevant for the AMC application needs to be
implemented.

In this paper we present our initial efforts towards enabling
AMC. We focus on mobile video as one of the most prominent and
most energy hungry aspects of mobile computing. We hypothesize
that the context in which a mobile video is played may impact a
user’s perception of the content. The context can be represented by
a potentially unlimited number of dimensions, thus, backed by the
prior work [29, 31, 33] here we focus on the two most relevant and
intuitive dimensions – a user’s physical activity and the characteris-
tics of the mobile video. Consequently, we formulate the following
research questions (RQ) that our study aims to answer:

• RQ1: Is the physical activity the user is engaged in when watch-
ing a video on a mobile device influencing the user’s quality
expectations/requirements?

• RQ2: Does the video content (its spatial and temporal charac-
teristics) impact the user’s satisfaction with the lower video
quality and how this relates to the physical mobility state of
the user?

In addition, should we prove that a link between the context and
the quality expectations exist, we are interested in the potential of
enabling energy savings by adjusting video playback according to
the current context. Thus, we also aim to answer:

• RQ3: How much energy can be saved, if the video playback
quality is adjusted to the minimal level that still satisfies the
user’s context-dependent quality expectations?

First, however, for AMC to be practical we require a straightfor-
ward means of adjusting approximation. Moreover, the reduction
in computation should lead to a gradual decrease in the end-result
accuracy, without the loss of correctness (i.e. the result is usable
at all times, and the approximation “knob” always gives a correct
result). Furthermore, the reduction in computation should result in
reduced resource usage. In our work we settle on video decoding res-
olution adjustment. Virtually all video distribution frameworks (e.g.
Youtube, Vimeo), as well as mobile video players, support playback
resolution adaptation. Furthermore, setting video resolution always
leads to correct execution and the loss of quality is gradual as we
dial down the resolution. In the following section we also confirm
that the loss of quality corresponds to lower resource usage making
video decoding resolution a suitable technique for approximate
computing adaptation.

3 PRELIMINARY: ENERGY VS. QUALITY
TRADE-OFF IN MOBILE VIDEO DECODING

A monotonically increasing relationship between the computation
accuracy and the resource consumption is at a core of approximate
computing. In this section we chart the relationship between the
video decoding quality and the mobile consumption. When per-
forming the energymeasurements, we use a popular video decoding
software VLC Player [4] running on a Samsung Galaxy S3 (I9300)
Android smartphone. Despite being released eight years ago, the
phone supports both hardware and software video decoding and,
importantly, has a detachable battery that allows us to connect the
phone to a high-frequency power meter. The VLC Player was cho-
sen for the energy measurements due to its flexibility in allowing
rapid enabling/disabling of hardware accelerated decoding.

We used Monsoon [2], a high sampling frequency platform com-
monly used for power measurements in mobile computing [28].
The experimental setup for measuring energy consumption relies
on measurements from the Monsoon High Voltage Power Monitor
(HVPM), which generates energy readings at a sampling frequency
of 5𝑘𝐻𝑧. Each sample contains a timestamp in𝑚𝑠 , voltage in𝑚𝑉

and electrical current in𝑚𝐴. The HVPM is directly attached to the
battery interface of the mobile device, which is powered solely by
the power supplied through the HVPM.

During the energy measurements, the HPVM output voltage was
set to 4.2𝑉 , which corresponds to an almost full battery voltage.
The same 1-minute video was downloaded from YouTube on the
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Figure 1: Smartphone average current consumption during
video playback at different resolutions together with the
standard deviation of the measurements. A monotonically
increasing relationship between the video decoding resolu-
tion and the current consumption is evident for both soft-
ware (WebM) as well as hardware (MPEG 4) decoding.

device in the following resolutions: 144p, 240p, 360p, 480p, 720p
and 1080p, in both WebM and MPEG-4 formats. The baseline for
comparison was a reference energy measurement performed with
just the phone screen turned on, without other apps/services run-
ning. For each resolution, the video was played 10 times using VLC
Player, and the energy readings were averaged over the 10 runs.
During the measurements, the screen brightness was set to the
minimum, all non-essential services running on the smartphone
that could interfere with the energy measurements were shut down,
and the smartphone’s Airplane mode was turned on, in order to
minimize the effect of on-device communication modules (e.g. GSM,
Wi-Fi, Bluetooth, etc.).

3.1 Energy measurement results
The results of the energy measurements for video playback on the
mobile device at different resolutions are shown in Figure 1. We
observe a significant difference in power consumption for playing
videos using MPEG-4 vs. WebM decoding. This is expected since
MPEG-4 decoding is hardware-accelerated in modern smartphones,
while WebM decoding is performed in software. With both formats
we see a generally increasing trend – the higher the decoding quality
(resolution), the higher the consumption is. Interestingly, in the
WebM case the lower resolutions (144p, 240p and 360p) have similar
average current consumption, while the consumption increases
considerably as we move to higher resolutions (480p, 720p and
finally 1080p). Since there are no significant differences between
the lower three resolutions, from the energy efficiency point of view
lowering the resolution under 360p would have no positive impact
on energy savings, moreover it would only potentially decrease a
user’s satisfaction.

In Figure 1 we also show the reference measurement performed
with just the screen turned on indicating that a large part of the
energy consumption belongs to the screen itself, apart from the
energy required by the actual video decoding. This also confirmed
by other studies on smartphone energy consumption [9].

4 USER STUDY: CONTEXT-DEPENDENT
ACCURACY REQUIREMENTS

In Section 3 we confirmed that video decoding resolution repre-
sents a suitable knob for approximate mobile computing. In this
section we investigate the opportunities for lowering the decoding
resolution, thus reducing the energy usage, while still satisfying
the users’ needs.

Perception of video playback is shaped by limited capabilities of
human attention and sensory systems [8]. These are in turn affected
by numerous factors [29]. For instance, the movement of a device on
which a video is watched impacts the ability to focus and interpret
the picture; outside brightness impacts the contrast of the OLED
display preventing a user from discerning details in the picture;
and the properties of the video, such as the dynamics at which the
content changes, require more or less attentional resources from
the viewer [23, 34].

The influencing factors collectively form the context which, we
hypothesize, impacts users’ requirements with respect to the video
playback resolution. In this work we focus on a user’s physical
activity as the most prominent dimension of the outside context
and the one that can be acquired with the minimal use of the mo-
bile’s energy. In Android OS coarse-grained physical activity (e.g.
“running”, “walking”, “in vehicle”, “still”, etc.) can be acquired using
Google Play Services’ internal classifier that is jointly maintained
for all apps on the device. Having in mind that activity detection is
used across a range of apps, from navigation, over exercise tracking,
to health and wellbeing apps, and that an average user has more
than thirty apps installed on her phone [1], there is a high prob-
ability that activity recognition pipeline would anyway be active
and routinely queried by other apps. Consequently, querying this
classifier for our purpose would likely incur negligible additional
energy cost, which makes the physical activity context perfectly
suited for our goal of reducing the energy use. Besides the physical
activity, we also hypothesize that the content of the video impacts a
user’s decision to require a higher or a lower resolution decoding.
This information, too, can be acquired with very little cost as no
additional device components need to be powered on. Therefore,
we further calculate a video’s spatial and temporal information and
inspect their role on a user’s desired video playback resolution.

For video rendering during the user experiments we use New-
Pipe – an open source YouTube-streaming frontend for Android
[3] – which allows both online and offline video playing. For the
experiments in this study, the videos were preloaded in order to
avoid any networking effects that might impact the user percep-
tion when watching the videos. We add logging functionalities to
the app, thus in each experiment we record the initial resolution,
physical activity state1, the video played, and each event of a user

1In this paper we describe controlled experiments, where the users were instructed to
perform a certain activity at a certain time, thus, we do not use on-device classifier
for recognising activities, but log them manually. Nevertheless, we have implemented
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changing the resolution. For resolution change events we record
the new resolution and the timestamp marking the moment the
change took place.

The volunteers in our studywere 22 students from our institution
with both technical and non-technical backgrounds. The group
consisted of 13 male and 9 female participants. We select 12 one-
minute-long YouTube videos to be watched by the users. The video
content The content varied among the videos from music, sports,
outdoor/indoor activities, and others, resulting in various spatial
and temporal characteristics of the videos.

Each of the participants in the study group watched all 12 videos
in different activity states (three videos per state): still, walking, run-
ning, and traveling as a passenger in a vehicle. All the experiments
were performed on the university campus: in the same laboratory
room when still, on the same hallway when walking and running,
and on the same route on the campus when traveling as a passenger
in a vehicle (the same driver and vehicle for all tests/subjects). The
following smartphones were used during this study for watching
videos by the participants: Samsung Galaxy S3, Samsung Galaxy
S4 and Nexus 6.

To ensure the obtained results were comparable and relevant,
all participants were instructed to follow the same protocol during
the experiments. Hence, the following instructions were given to
the participants:

• The users were instructed about the resolutions available
and the process of changing the resolution when watching
a video clip. They were asked to switch the resolution to a
higher one only when dissatisfied with the quality;

• They were asked to keep the device horizontal at all times
in order to ensure the video is played in full-screen;

• The brightness was pre-set to 80% and the participants were
asked not to change it;

• Before each experiment the users were informed about what
video and in what starting resolution they should watch; the
starting resolutions presented a pseudorandom distribution.
We choose this approach to avoid the situation where always
starting from a low resolution might artificially reduce the
user expectations due to indolence in changing to a higher
resolution.

5 RESULTS AND DISCUSSION
We examine how the user’s satisfaction and quality expectations are
impacted by the physical activity by analyzing the resolutions that
were found acceptable when watching videos in each of the four
mobility states. Furthermore, we perform a statistical investigation
to determine other factors impacting the user’s tolerance to lower
video quality. Such investigation reveals that the video content,
i.e. its spatial and temporal characteristics, also play an important
role. In addition to these two elements (activity context and video
content) we discuss the impact the AMC approach has on the energy
savings.

automatic activity recognition and plan to run an in-the-wild study as a part of our
future work.

Figure 2: Boxplot depiction of the distribution of resolutions
in which users completed watching videos in each activity
state. Central line in each box: median; edges of the boxes:
25th and 75th percentiles of the distributions; Whiskers:
most extreme data points not considered outliers.

5.1 Activity impact on user satisfaction
The distribution of the final resolutions in which users completed
watching videos while in each of the activity states is depicted in
Figure 2.

The results are in favor of the RQ1 hypothesis that the activity
context of the user impacts her perception of the video quality, and
ultimately her satisfaction with the viewing experience. Thus, the
data shows users are satisfied with higher resolutions when they
watch the video while still. This is expected, since in such situations
a user can fully concentrate on the video. The next highest aver-
age resolution is found in case the users are walking. In this state
the distribution tails are more prominent, and while the median
of distribution remains as high as it was with users being still (i.e.
720p), the 25𝑡ℎ-percentile of distribution is at 360p (c.f. 480p for
still users). Riding as a passenger in a vehicle induces further toler-
ance towards lower resolutions, with the median of the acceptable
resolution dropping to 480p, yet the distribution becomes more
“compact" than it is the case with the distribution observed when
the users are in the walking state. We suspect that the effect stems
from varying abilities of our users to simultaneously walk and pay
attention to the video. For some such multitasking may be a routine
endeavor, thus, they require a higher resolution, whereas others
might find it difficult to pay attention to the videos and regard the
resolution unimportant. Finally, the running state leads to a further
drop of resolution distribution, with the the 25𝑡ℎ-percentile at 360p
and the median at 480p. This is not surprising since when engaged
in a intense physical activity the user is less likely to be focused
on the screen for anything but brief periods of time. By having to
divide the attention between the video and the surroundings, the
users find lower resolutions acceptable since they do not have the
time to notice imperfectly rendered details.
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Figure 3: Time elapsed before users switching to a higher res-
olution for different activity states. A colored circle marks
the moment in time the user increased resolution while
watching the video. The red dot is the average represented
with relation to two standard deviations (the red segment’s
extremities). In the legend, the values indicate the number
of changes performed by the users in each of the resolutions.

To help understand user behavior in each activity state, Figure 3
shows all the changes in resolution performed by the users in the
four activity states and the time elapsed before each change was
made. In the legend the number of changes in each resolution for
each mobility state can be observed. These results confirm that
users had the lowest quality expectations (or highest tolerance to
lower quality) while running, since in this state they made the
lowest number of switches to higher resolution (the green circles
on the chart). Also, the figure shows that the highest resolutions
are encountered in the still state, which is also the state where
the users were more likely to change the resolution for a higher
one, confirming that when in this activity state, users have the
highest quality expectations. Finally, irrespective of the physical
activity, we observe a slight increase in the time to switch to a
higher resolution, as opposed to a lower one. Since we note only
the last resolution a user settles on, this confirms that the users
complied with the protocol, i.e. switched the resolution only when
not satisfied with the current one.

In addition to the above, we performed the statistical analysis of
the results. A Kruskal-Wallis test shows that there is a significant
difference in the acceptable resolution depending on the activity
state: 𝐻 (3) = 14.139, 𝑝 < 0.003. This confirms the hypothesis that
the activity state influences the user’s video quality requirements.
In order to assess the strength of the relationship between the
investigated variables (context and resolution) we computed the
effect size estimate for the Kruskal-Wallis result. Estimates of effect
size allow the assessment of the strength of the relationship between
the investigated variables, fostering an evaluation of the magnitude
and importance of the result obtained [32]. In our case, we computed
the eta-squared measure (𝜂2) using the following formula [11]:

𝜂2𝐻 =
𝐻 − 𝑘 + 1
𝑛 − 𝑘

(1)

where𝐻 is the value obtained in the Kruskal-Wallis test (the Kruskal-
Wallis H-test statistic), 𝑘 is the number of groups and 𝑛 the total
number of observations.

Eta-squared estimate assumes values from 0 to 1 and multiplied
by 100 indicates the percentage of variance in the dependent vari-
able explained by the independent variable [32]. For our experiment
the computed eta-squared was 0.04; in the related scientific liter-
ature [11] eta-squared values less than 0.06 account for a small
(weak) effect. Thus, while there is a statistically significant relation-
ship between the activity state and the resolution, this relationship
is shown to be weak.

5.2 Video content impact on user satisfaction
In light of the above statistical results, which indicate that other
factors might influence a user’s satisfaction with lower resolutions
in different mobility states, we analyzed the impact of the video
content on a user’s receptivity to different video resolutions. The
Kruskal-Wallis test shows that there is a statistically significant
relationship between the actual video content being played and
user’s quality expectations (resolution found acceptable): 𝐻 (11) =
65.328, 𝑝 < 0.001. For evaluating the strength of this relationship
we computed the same eta-squared effect size measure using Equa-
tion 1, with the result being 0.20. Based on the related literature
[11], values higher than 0.14 indicate a large effect. This confirms
RQ2, i.e. that there is a strong relationship between the video con-
tent and the user’s quality expectations when watching the video
in specific mobility states.

To further assess the influence of video content on user satis-
faction in different mobility states, for each video we computed
two metrics: the average Spatial Information (SI) and the average
Temporal Information (TI) indexes [18]. SI represents the spatial
detail in a video frame (complexity) while TI relates to the amount
of temporal changes in a video scene (motion), and the two metrics
can be used for objective video quality prediction [13].

SI is based on the Sobel filter. Each video frame (luminance plane)
at time 𝑛 (𝐹𝑛) is first filtered with the Sobel filter [𝑆𝑜𝑏𝑒𝑙 (𝐹𝑛)]. The
standard deviation over the pixels (𝑠𝑡𝑑𝑠𝑝𝑎𝑐𝑒 ) in each Sobel-filtered
frame is calculated. This step is repeated for each frame in the video
sequence and results in a time series of spatial information of the
scene. The maximum value in the time series (𝑚𝑎𝑥𝑡𝑖𝑚𝑒 ) is chosen
to represent the spatial information content of the scene [18]. This
process is described by the following equation:

𝑆𝐼 =𝑚𝑎𝑥
𝑡𝑖𝑚𝑒

{
𝑠𝑡𝑑𝑠𝑝𝑎𝑐𝑒 [𝑆𝑜𝑏𝑒𝑙 (𝐹𝑛)]

}
(2)

TI measures temporal changes (motion) in a sequence of video
frames [18]. TI is based on motion differences between the pix-
els in the luminance plane of two consecutive frames 𝐹𝑛 (𝑖, 𝑗) and
𝐹𝑛−1 (𝑖, 𝑗), i.e., discrete time 𝑛 and 𝑛 − 1, at pixel position (𝑖, 𝑗):

𝑀𝑛 (𝑖, 𝑗) = 𝐹𝑛 (𝑖, 𝑗) − 𝐹𝑛−1 (𝑖, 𝑗) (3)
TI is defined as the maximum value of the standard deviations

obtained for the sequence of motion differences in the spatial do-
main [18]:
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Table 1: Spatial information (SI) and Temporal information
(TI) indices for the videos used in our study.

Video ID Average SI Average TI

1 55.51 19.45
2 117.26 26.58
3 52.59 7.77
4 61.69 15.39
5 59.32 29.42
6 29.05 11.52
7 56.65 9.72
8 46.14 8.81
9 39.77 11.41
10 80.04 19.03
11 126.88 13.85
12 36.38 8.60

Table 2: Pearson correlation coefficient between the final se-
lected resolution and the average video SI/TI when a user is
in a particular mobility state.

Resolution vs. SI Resolution vs. TI

Still -0.05 0.21
Walking 0.31 0.54
Running 0.86 0.23
In vehicle -0.28 -0.17

𝑇 𝐼 =𝑚𝑎𝑥
𝑡𝑖𝑚𝑒

{
𝑠𝑡𝑑𝑠𝑝𝑎𝑐𝑒 [𝑀𝑛 (𝑖, 𝑗)]

}
(4)

We computed the average SI and TI for all 12 videos, and the
results are shown in Table 1. These numbers illustrate the het-
erogeneity in the video content with regard to their spatial and
temporal features. To evaluate how this relates to the user quality
perception of the videos in each mobility state we analyzed the link
between the average resolution of the videos viewed in each state
versus their SI and TI scores. We computed the Pearson correlation
coefficient between the resolution and average SI and TI values for
each mobility states, and the results are shown in Table 2.

The strongest link between the selected playback resolution and
the SI is observed when a user is running (a Pearson correlation of
0.86). Running activity is of a particular interest to this study since it
is the mobility state where one would expect the user’s satisfaction
requirements to drop the most. This strong link shows that when
a user is engaged in an active physical activity (e.g. running), the
required video quality and the spatial complexity of the video being
played exhibit a strong positive linear correlation (i.e. the higher the
spatial complexity of the video, the higher the required resolution).
Out of the videos watched by the users while running, for videos
10 and 11, which have the highest SI scores, the users required the
highest resolutions.

With regard to the link between average resolution and TI index
in each mobility state, the Pearson correlation analysis indicates
that a moderate positive linear correlation is present when the user
is in mobility states requiring moderate physical movement, such

as walking, where the coefficient is 0.54. While walking the users
requested the highest average resolution for video number 5, which
has the highest TI index among the videos watched while walking.

To better illustrate how the spatial and temporal characteristics
of a video influence the user’s quality perception in different activity
states, Figure 4 shows how a selection of videos are perceived by
the users when standing still vs. running (a subset of videos which
users watched in both activity states: videos 6, 8, 9 and 11). The
plot displays the average resolution for each video in each of the
two activity states, and it is noticeable that videos 6, 8 and 9 show
a similar behavior, i.e. they score similar average resolutions when
still (between 650 and 550𝑝) and their average resolutions drop
considerably during running (between 350 and 500𝑝). Video 11
however has a different behavior: while it also has an average
resolution of about 650𝑝 while standing still, it does not decrease
while running, on the contrary it slightly increases. The reason
behind this phenomenon is that video 11 has the highest spatial
information index among all 12 videos, and thus users perceptually
require higher resolutions when running and viewing this video,
compared to the other videos with lower spatial complexity.
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Figure 4: Average resolution in still vs. running for selected
videos (and their corresponding SI values). While the gen-
eral trend is that a running user is satisfied with a lower res-
olution than a walking user, a high SI video (Video 11) leads
to higher resolution requirements when a user is running.

To statistically examine the interplay between the physical ac-
tivity and the video content and its role on a user’s expectations we
created a linear regression model where the dependent variable is
the resolution and the explanatory variables are the activity states,
the spatial and temporal scores, and the cross-products represent-
ing the interaction effects between the activity states and the SI/TI
scores. The results of this linear regression are presented in Table 3.

The regression shows the impact of a particular activity and the
specific spatial and temporal complexity of a video on the required
resolution.When users are walking or running, they require a lower
resolution as indicated by the strong negative coefficients and low
p-values; the effect is less pronounced when in-vehicle. The effects
of the spatial and temporal complexity of a video on the required
resolutions are not relevant by themselves (non-significant values
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Table 3: Linear regression results for the resolution as the
dependent variable.

Variable Coefficient p-value

Intercept 647.37 <2e-16***

walking -247.89 0.02**

running -394.62 <0.01***
in_vehicle -65.83 0.48
spatial 0.31 0.73
temporal -3.72 0.41
walking:spatial 0.25 0.87
running:spatial 2.93 0.05*
in_vehicle:spatial -1.16 0.37
walking:temporal 13.15 0.05*
running:temporal 5.53 0.45
in_vehicle:temporal 6.03 0.30

Multiple R-squared: 0.1094
Adjusted R-squared: 0.0705
***𝑝 < 0.01, **𝑝 < 0.05, *𝑝 < 0.1

for "temporal" and "spatial"), only in interaction with certain ac-
tivities. As such, high temporal information videos require higher
resolution when a user is walking (as indicated by the low p-value
of 0.05 and thus confirming the correlation illustrated in Table 2).
In addition, higher spatial information videos require higher reso-
lutions when a user is running (the low p-value of 0.05 confirms
the correlation also illustrated in Table 2).

In addition to the above, however, the linear regression R-squared
value is low, indicating that the model does not fully explain the
data. This may stem from the limited data collected in our user
study. More specifically, not all videos where watched in all activity
states and not all videos were watched by all users. Furthermore,
low R-squared value is likely an indicator that other contextual
variables not considered in our study (e.g. outside noise, a user’s
interest in the video content, etc.) may impact quality expectations.

5.3 Discussion and potential energy savings
Our study reveals that the mobile user’s quality expectations when
watching videos on a mobile devices are influenced by both her
mobility state and the video content (the spatial and temporal com-
plexity of the video). Corroborated with the significant differences
in energy consumption for different video playback resolutions, this
confirms the feasibility of context- and content-driven approximate
mobile computing for mobile multimedia apps and its potential to
yield significant energy savings.

For an illustration of the potential energy savings we consider
a hypothetical case of continuous video playback on a 3000mAh
battery smartphone. In this scenario, watching videos in 720p vs.
1080p using hardware-enabled decoding (MPEG-4) would enable
increasing battery life by 27% and for 360p vs. 1080p the increase is
even higher, up to 37%, according to our measurements presented
in Section 3. Even more significant savings can be achieved when
using software-based decoding (WebM) – up to 47% longer battery
life when watching a video in 360p vs. 1080p. The results answer

our RQ3 showing that significant energy savings can be achieved
by lowering video resolution. While these numbers represent the
upper bound of potential energy savings, certain devices, such as
smart glasses, are often used in dynamic settings where a person is
on a move and are likely to significantly benefit from context-aware
video adaptation. However, for realistic energy savings we have to
match our approach to a real use case.

We now provide a realistic energy savings computation for a
particular use case – i.e. the scenario examined in our study. We
first compute the total amount of energy required, if all users in
this study watch all the videos at the highest possible resolution
(1080p) with hardware decoding. The total adds up to 21629.2 J.
Examining at the the collected dataset from this study we apply
a model that accurately approximates (downgrades) the viewing
resolution to the level found satisfying by the users. The total
energy consumption now drops to 16608 J for all users to watch all
the videos. This translates to 23.2% potential energy savings when
applying the context-aware resolution adaptation model. Note that
the savings achieved in another scenario would requires us to have
the information of the users’ activity and the accuracy expectations
in that scenario.

6 RELATEDWORK
Our research brings the concept of approximate computing (AC) to a
particular application of mobile computing – mobile video playback.
While relatively novel, the concept of AC has been examined on
different levels of both software and hardware. The breadth of the
proposed AC techniques prevents us from providing a detailed
taxonomy in this article, thus we invite an interested reader to [22]
where such a taxonomy is presented. Instead, in this section we
focus on the role of video playback in the energy consumption of a
mobile device, techniques for making video playback more efficient,
as well as on the factors affecting the perception of mobile video.

6.1 Energy efficient mobile multimedia
The limited battery charge became the key pressing issue prevent-
ing further growth of mobile computing [25] and exacerbating the
need for utilizing the available resources as efficiently as possible.
Pang et al. conducted a survey of mobile app developers and users,
and confirmed that energy-inefficient programming leads to nega-
tive app-store reviews and poor user satisfaction [24]. Among the
services consuming the largest amount of energy in a mobile device,
multimedia apps [12, 30] stand out, together with network traffic
[35] and machine learning [20]. Yet, the high popularity of mo-
bile multimedia makes addressing the energy consumption of such
apps a pressing issues. A recent Atos study [6] reveals that mobile
multimedia apps are the second most intensively used applications
(based on average time spent by the user) and consequently also
rank second in impact on the average daily energy consumption of
a mobile device.

Solutions for reducing the energy consumption of mobile video
apps include the work by Shin et al. [30], where the authors present
an approach for reducing the energy consumption of RNC (random
network coding) based media streaming applications on smart-
phones by manipulating the frequency controllers in the smart-
phone’s operating system. Another solution proposed by Hu and
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Cao [17] introduces an energy-aware CPU frequency scaling algo-
rithm for mobile video streaming, which selects the CPU frequency
that can achieve a balance between saving the data transmission
energy and CPU energy. Ahmad et al. [5] developed a battery-aware
rate adaptation for extending video streaming playback time which
adapts to the appropriate bit rate to prolong the battery lifetime.
An energy efficient video decoding for the Android operating sys-
tem is proposed by Liang et al. [19], based on dynamic voltage
and frequency scaling (DVFS). Hamzaoui et al. in their work [16]
propose a measurement-based methodology for modeling the en-
ergy consumption of mobile devices and use video decoding tasks
(both on-device and remote streaming) for the experimental power
measurements.

Most of the above-mentioned energy-saving solutions focus
on optimizations at the hardware and network layer for video
streaming; by comparison, our approach is hardware-agnostic and
adapts the video resolution according to the user’s context, which
influences his quality requirements. In addition, this context- and
content-aware adaptation strategy has the advantage of being ap-
plicable for both network video streaming and on-device playback.

6.2 Mobile video quality perception
Dynamic viewing environment makes mobile video strikingly dif-
ferent from the conventional TV or Desktop PC viewing experience.
Contextual factors, such as whether a viewer is indoor or outdoor,
walking, running or riding a bus, and others, may change even dur-
ing a single viewing session [34]. Research in this field identified
several factors that influence mobile video quality perception, such
as the display size, viewing distance from the display, environmen-
tal luminance, and physical activity of the user and showed that
environment-aware video rate adaptation can enhancemobile video
experience while reducing the bitrate requirement by an average
of 30% [34]. Another study shows that in the mobile environment,
sensory experience is a significant factor for enjoyment and engage-
ment with the video as outside interruptions decrease the user’s
video quality experience on a mobile device [29]. This might be
the reason for heavy tailed distributions of selected resolutions
when users are walking or running, observed in our dataset. It is
possible that, while generally too distracted to pay attention to fine
video details, at certain occasions, users select a higher resolution
to counter the effect of environmental disruptions.

The correlation between video content and user perceptual sat-
isfaction is underlined by the existing research focused on this
phenomena. Trestian et al. demonstrate a low spatial information
video watched in low quality is likely to be found more accept-
able/satisfying by the user than watching a high spatial and tempo-
ral complexity video the same quality [33]. The research findings
also support the theory that one can expect significant differences
in the user satisfaction at the same quality level depending on the
particularities of the video. More specifically, the authors observed
20% average user satisfaction level difference between two videos
watched in the lowest quality setting. We can see this in our study
as well: from a subset of videos watched by users in “still” and “run-
ning” states, the video with a very high spatial complexity stands
out as requiring a substantially higher resolution from the users
when running, compared to the other videos in the subset which

had lower SI scores (Figure 4). This indicates that the the video’s spa-
tial information feature influences the user’s quality expectations
in physically active states, such as running.

Song et al. identify a stronger relationship between acceptability
and content type at a relatively low bitrate range of 200 - 400kbps [31].
The paper also concludes that the acceptability rate is influenced
by the video content type: at higher resolutions, such as 480x320
pixels and 640x480 pixels, acceptability higher than 60% can be
achieved, if the bitrate is greater than 300 Kbps for news, 400 Kbps
for animation, movie, and music, and 800 Kbps for sports videos.
The video content directly impacts the video’s spatial and temporal
information scores, e.g. animations usually have lower SI/TI, while
sport videos have much higher scores. Our study confirms this: the
videos with the highest SI and TI are either sport videos (basketball
match – video 2, car dashboard camera recording – video 11 or
body camera recording of mountain bike trail – video 5).

7 CONCLUSIONS, LIMITATIONS, AND
FUTUREWORK

In this paper, inspired by the concept of approximatemobile comput-
ing, we investigated the foundations for dynamic energy-efficient
context-aware video playback adaptation. Our measurements show
that, as we have initially hypothesised, higher quality videos re-
quire more energy for decoding on mobile devices. To assess where
exactly the opportunities for energy savings lie, we conducted a
user experience study with 22 people, which involved watching
videos during different physical activity states and monitoring the
resolution users found satisfying in each case. This study revealed
that the minimum video quality found acceptable by users is dif-
ferent for each physical activity; however, aside for the mobility
state the user is engaged in when watching the video, the content,
in particular its spatial and temporal complexity, also impacts the
user quality requirements.

Diving in details, we calculated the Temporal and Spatial In-
formation indexes of each video and studied how these factors
correlate with the average resolution required for each video in
each mobility state. This analysis revealed that videos exhibiting a
high temporal complexity (high TI score) require higher resolution
when the user is standing still or walking, while videos with high
spatial complexity (high SI score) require higher resolution when
the users is engaged in more intense physical activities, such as
running.

While we confirm our findings through statistical tests, other
factors that were not examined in the study may impact a user’s
perception of a mobile video playback. For instance, the outside
brightness, screen quality, user fatigue and interests, and other
factors could all steer a user towards desiring a higher or a lower
playback resolution. In this study we control for most of these
factors by strictly defining the indoor locations of the experiments,
using the same devices throughout the study, and keeping the
length of the videos to the minimum. Increasing the dimensionality
of the considered context calls for more measurements, which in
turns requires either more time from a single user or more users
to be recruited. In future we plan to harness automatic context
sensing integrated with our custom mobile video playback app in
order to collect ecologically valid data over a large number of users.
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Moreover, in our future research we plan on examining the other
factors that could influence user quality expectations, such as the
user’s personality traits and internal motivation.

Our future research will also focus on implementing real-time
AMC adaptation by integrating both context- and content-based
approximations in a mobile multimedia application. The availability
of the necessary contextual data, such as a user’s physical activ-
ity, through common mobile programming APIs will allow us to
proactively adapt video viewing resolution and quantify energy
savings in real-world environments. Should these prove promising,
we plan to explore other avenues for approximate mobile comput-
ing adaptation, such as 3D rendering, and augmented and virtual
reality.
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