
Enabling Resource-Efficient Edge Intelligence with Compressive
Sensing-Based Deep Learning

Alina Machidon
alina.machidon@fri.uni-lj.si

University of Ljubljana
Ljubljana, Slovenia

Veljko Pejović
veljko.pejovic@fri.uni-lj.si
University of Ljubljana
Ljubljana, Slovenia

ABSTRACT
Billions of sensor-enabled computing devices open tremendous
opportunities for AI-powered context-aware services. Yet, democ-
ratizing AI so that heterogeneous devices can enjoy deep learning
(DL) revolution requires significant reduction in computing and
energy burden posed by DL models. Inspired by the concept of
compressive sensing (CS), and guided by the observation that re-
duced sampling rates often suffice for successful classification, we
devise an adaptive CS-DL pipeline. Our approach dynamically ad-
justs the sensing rate according to input properties and performs
classification through an input-flexible DL model, demonstrating
classification accuracy rates on par with uncompressed models
while using up to 46% less battery energy.

CCS CONCEPTS
•Human-centered computing→Ubiquitous andmobile com-
puting systems and tools; Ubiquitous computing; • Comput-
ing methodologies → Neural networks.

KEYWORDS
neural networks, compressive sensing, human activity recognition
ACM Reference Format:
Alina Machidon and Veljko Pejović. 2022. Enabling Resource-Efficient Edge
Intelligence with Compressive Sensing-Based Deep Learning. In 19th ACM
International Conference on Computing Frontiers (CF’22), May 17–19, 2022,
Torino, Italy. ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/
3528416.3530230

1 INTRODUCTION
Rapid advances in smartphone device manufacturing resulted in an
increase and diversification in the range and the level of complexity
of sensors that these devices are equipped with. This further lead
to an explosion of data collection. However, in mobile computing,
sensing may have very high energy costs and can quickly deplete
the mobile’s battery. Moreover, intensive and sometimes unneces-
sary sampling also burdens the computational, storage, and wireless
transmission capabilities of a device. Given that there is a need for
more judicious energy-efficient sampling strategies producing only

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CF’22, May 17–19, 2022, Torino, Italy
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9338-6/22/05. . . $15.00
https://doi.org/10.1145/3528416.3530230

the minimum amount of data necessary to complete a computing
task, a promising approach is to employ a smart, dynamic sensor
sampling strategy, that uses the minimum amount of samples to
obtain the desired quality of service.

Inspired by Compressive Sensing (CS), a concept that allows suc-
cessful reconstruction of sparse signals sampled at rates far below
those prescribed by the Nyquist theorem, in this paper we pro-
pose a novel rate-adaptive mobile sensing and signal classification
pipeline. The key novelties of our pipeline are: i) the integration
of the sampling layer with a deep learning (DL) network that en-
ables processing (e.g. signal class prediction) of samples taken at
different rates, and ii) context awareness that intelligently adapts
the sampling rate according to the nature of the signal at the input.

Our approach is based on the observation that the sampling rate
required to achieve high classification accuracy strongly correlates
with the input’s “difficulty”. By this term we refer to all possible
predictors of the degree to which the inherent characteristics of the
input represent a demanding classification problem for the neural
network. For example, in case of human activity recognition (HAR),
a domain we use as a working example in this paper, we analyze
a commonly used dataset [2] and conclude that certain human
activities may be sampled with an on-body sensor and accurately
classified when using only 20% of the sampling rate commonly
employed in smartphones, while other more complex activities
require a higher, more resource expensive, sampling rate. We then
uncover the relationship between the input data “difficulty” and
the inference confidence of the softmax layer of our integrated DL
network, and devise an algorithm for dynamic adaptation of the
sampling rate according to the input’s properties.

We implement and evaluate our solution on an edge computing
device and experimentally show the benefits of our context-aware
sampling rate adaptation. We assess the savings enabled by our
solution and show that up to 46% energy savings can be achieved,
without a degradation of inference accuracy.

To summarize, the contributions of our work include:

• We develop a rate-flexible mobile sensing and inference
pipeline merging compressive sensing and deep learning;

• We devise a sampling rate tuning algorithm that aims to
satisfy the given quality of service requirements with the
least amount of sampling (thus, energy);

• We evaluate our approach on a well-established human ac-
tivity recognition dataset and demonstrate that it achieves
the accuracy on par with the full-fledged uncompressed pro-
cessing pipeline using on average only 30% of the sensor
samples;

• We experimentally validate our solution on an edge comput-
ing platform with live acquisition of inertial data and show

https://doi.org/10.1145/3528416.3530230
https://doi.org/10.1145/3528416.3530230
https://doi.org/10.1145/3528416.3530230

CF’22, May 17–19, 2022, Torino, Italy Machidon and Pejović

it provides significant energy savings with no inference ac-
curacy loss.

The reduction in energy usage brought by our solution could be
integral for enabling continuous sensing to resource-frugal devices,
especially in areas where untethered operation is crucial, such as
with on-body monitoring in assisted living scenarios, or in wildlife
tracking. Furthermore, rather than merely switching the embedded
AI on or off, our solution enables dynamic balancing between the
achieved quality of service and resource usage of AI on ubiquitous
computing devices. Finally, being rather generic, our solution opens
space for further exploration of sampling-DL optimization space, for
instance through dynamic neural network weight quantization [11]
and pruning [12].

The code for our pipeline is publicly available at: https://gitlab.
fri.uni-lj.si/lrk/adaptive-cs-dl.

2 PRELIMINARIES
2.1 Joint Compressive Sensing & Deep

Learning for Edge Intelligence
Compressive Sensing (CS) [5, 7] revolutionized the signal acqui-
sition by proving that it is possible to successfully reconstruct a
signal acquired at sampling rates far lower that thought before.
The two conditions that need to be meet for accurately restoring
a compressed sensed signal are: signal sparsity – a property that
in a certain domain most of the signal’s information is concen-
trated along a few dimensions, and incoherence – a property of low
correlation between the sparsity domain and the sampling process.

CS states that a 𝐾-sparse signal vector 𝑥 ∈ R𝑁 (i.e. a signal with
only 𝐾 non-zero components), can be accurately recovered from
the undersampled measurements 𝑦 ∈ R𝑀 , taken with a known
measurement matrix 𝐴, that satisfies the restricted isometry princi-
ple (i.e. does not distort the measured signal, thus enabling accurate
reconstruction):

𝑦 = 𝐴𝑥

In general, the above equation is under-defined (𝑀 ≪ 𝑁), having
an infinite number of solutions for the original signal 𝑥 . CS seeks to
solve the above equation by finding the sparsest signal that produces
the measurement 𝑦, through a 𝑙0-norm minimization approach:

minimize ∥𝑥 ∥0
subject to 𝐴𝑥 = 𝑦

(1)

where ∥ · ∥0 is the 𝑙0-norm and denotes the number of non-zero
components in 𝑥 . Since Equation 1 leads to an intractable combi-
natorial search problem, the 𝑙1-norm is used instead, as a proxy
for the 𝑙0-norm, and the NP-hard problem becomes solvable, using
convex optimization or greedy algorithms.

More recently, neural networks’ ability to solve convex optimiza-
tion problems was also exploited in the context of CS. The main
idea behind using DL for CS is to train a deep neural network to
model the non-linear reconstruction process. Deep learning brought
tremendous improvements to CS and a variety of CS-DL implemen-
tations emerged, ranging from approaches based on unfolding the
CS iterative algorithms through the various layers of a neural net-
work [42], to solutions that learn, independently from traditional

CS algorithms, to reconstruct the original data, with [25] or with-
out [14] jointly learning the measurement matrix.

One of the most common recent uses of sampled (and then re-
constructed) signals is high-level inference, i.e. diagnosing diseases
from magnetic resonance images, inferring physical activity from
body-worn accelerometers, and others. Consequently, direct merg-
ing of CS concepts with DL-based classification appeared [22, 36].
These so-called “compressed learning” approaches, are based on
training a DL model to guide both the sampling and the classifi-
cation together, bypassing signal reconstruction1. By skipping the
expensive and often unnecessary phase, consistent computational
speedups can be achieved [26]. In addition, learning directly in
the compressed domain allows very high compression rates that
would otherwise be prohibitive for the reconstruction-based ap-
proaches [21]. In turn, these higher compression rates foster CS-DL
implementations on resource-constrained devices, where such in-
ference tasks were previously not supported.

2.2 Sparse Sensing and Classification
Mathematically, compressive sensing relies on signal sparsity, and
the number of measurements𝑀 that need to be taken to guarantee
accurate reconstruction depends on the sparsity level 𝐾 of the
signal (𝑀 ≈ 𝐾𝑙𝑜𝑔(𝑁 /𝐾)). In other words, the sparser the signal
(in a certain domain), the fewer measurements are required. In
practice however, assessing the sparsity level for a given signal
is a challenging task. Furthermore, the estimation of the sparsity
for time-varying signals is usually performed on the reconstructed
signal, which for reconstruction-free approaches such as the one
developed in this paper is missing. Intuitively however, the accuracy
of compressed learning will reflect the appropriateness of a certain
sparsely sampled input – signals with higher 𝐾 would require more
samples for correct classification.

The above observation is a cornerstone of our method. To esti-
mate the number of measurements that will be sufficient for clas-
sification at each time step we utilize a historical data test set and
compute the minimum required sampling rate to get a correct pre-
diction, further grouping the results by the classification label.

As an illustrative example we show how the minimum sampling
rate2 needed for correct classification of physical activity from on-
body accelerometer and gyroscope samples (dataset [2] described
in Section 3) processed thorough a CS-DL pipeline (detailed in the
following section) varies with the nature of the conducted activity.
The results in Figure 1 show that some activities can almost always
be successfully inferred even with a low minimum sampling rate:
e.g. lying, an activity for which 95% of the instances are correctly
classified with the lowest sampling rate (10%). At the same time
however, there are classes for which this assertion does not hold:
sitting requires the highest sampling rate (100%) for 10% of the
samples pertaining to this class, 20% of the samples require sampling
rate between 80% and 40%, while for 70% of the instances, the
lowest sampling rate (10%) is sufficient to get a correct classification.

1While these approaches often get presented within the CS community, we note that
without a full signal reconstruction it is difficult to claim that the resulting sampling
is indeed complying with the CS requirements. Therefore, in this paper we term our
approach as “CS-inspired”.
2Since we are using an existing dataset collected at a uniform sampling rate, what we
term an “N% sampling rate” is actually a subset containing N% of the original samples.

https://gitlab.fri.uni-lj.si/lrk/adaptive-cs-dl
https://gitlab.fri.uni-lj.si/lrk/adaptive-cs-dl

Enabling Resource-Efficient Edge Intelligence with Compressive Sensing-Based Deep Learning CF’22, May 17–19, 2022, Torino, Italy

Other activities such as walking are even more difficult to map to
a certain sampling rate (45% of the samples are distributed over a
large interval of sampling rates: 100% – 20%).

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

100% 90% 80% 70% 60% 50% 40% 30% 20% 10%

P
e

rc
e

n
t

o
f

sa
m

p
le

s

Minimum sampling rate for correct classification

Walking Upstairs Downstairs Sitting Standing Lying

Figure 1: The distribution of samples in each class and the
minimum sampling rate required for obtaining a correct
classification in the UCI HAR dataset.

Our analysis shows that there is a correlation between the input’s
activity class label and a sufficient sampling rate for some activities
though this correlation is stronger than for the others, for which
additional factors must be considered. Consequently, we design an
adaptation approach where the sampling rate selection is driven by
the individual difficulty of each input, on the grounds that within
the same class activity label, there are "difficult" inputs that require
a higher sampling rate but also "easier" inputs for which even a
lower sampling rate gives good results.

3 DYNAMIC COMPRESSIVE
SENSING-INSPIRED NEURAL NETWORK
ADAPTATION FRAMEWORK

In this section we develop an end-to-end CS-inspired DL inference
pipeline. As a running example, we again use human activity recog-
nition (HAR) from triaxial accelerometer and gyroscope data, of
the UCI HAR dataset [2]. We opted for a small and computationally
lightweight deep learning model that meets the limitations and
constraints of the devices usually used for HAR, such as smart-
phones, smartwatches, and fitness wristbands. While supporting
on-device physical inference, these devices are nevertheless highly
constrained on the available memory, computational power, and
battery energy. Thus, our goal is to have a network with a modest
number of parameters and operations, yet powerful enough to give
results comparable with those of other state-of-the-art methods.

Our proposed end-to-end deep learning solution for compressive
learning is illustrated in Figure 2. Note that our approach can be
seamlessly adapted to other types of network architectures as well.
For sensing we opt for a dense layer followed by several convolu-
tional layers responsible for the inference, i.e., activity recognition.
In this manner, the sensing and the inference stages can be opti-
mized simultaneously, but also detached and used separately, if
needed, for instance in scenarios where the sensing is done on-
device and the inference in the cloud.

The sensing layer is a key part of our solution and enables rate-
adaptive sampling and processing. Dense layers at the input have

Figure 2: Simplified illustration of the proposed network’s
architecture.

been shown to perform well in CS-DL implementations [20, 29], yet,
what is unique to our approach is that through our dense layer we
model a data-driven measurement matrix 𝐴 enabling “picking” of
individual entries from the input time signal 𝑥 . We mathematically
modeled the individual time steps measurements by using a diago-
nal measurement matrix (Figure 3). This measurement process can
further be implemented as a dense layer with a kernel constraint
enforcing the training of only those weights that correspond to the
diagonal values, while the rest are set to zero. In this manner, a
sampling matrix for time domain data is learned. Using this sam-
pling matrix, we can later design a sampling pattern that specifies
at the sensor-level which samples must be read and which can be
skipped, while maximizing the inference’s accuracy (more details
on this in Section 3.1).

Figure 3: Proposed sampling scheme. The measurement ma-
trix has non-zero values only on the main diagonal, while
the rest of its entries are zero. By masking different se-
quences from the measurement matrix, measurement vec-
tors of various sizes are obtained, representing signals ac-
quired at various sampling rates.

The classification network’s architecture is also inspired by a
classic CNN model (three convolutions with max pooling, followed
by a dense layer and a final softmax layer), that was successfully
validated on time series data [6]. We added batch normalization
to our architecture, since this operation is known to prevent the
internal covariate shift across one mini-batch training of time se-
ries [16]. At the same time, having only 1.5 million parameters the
proposed model is light, whereas MobileNet V1 [13], commonly
used in mobile and embedded applications, has 4.2 million parame-
ters.

CF’22, May 17–19, 2022, Torino, Italy Machidon and Pejović

We trained the network on the training subset of the publicly
available UCI HAR dataset [2], with the categorical crossentropy
loss, using the stochastic gradient descent (SGD) optimizer with a
learning rate of 0.001, and a momentum of 0.7.

3.1 Enabling Sampling Rate Adaptivity
Amajor downside of the DL-based approaches for CS [14, 25] is the
fact that once trained, a network is only valid for a single sampling
rate, whereas for the optimal performance the measurement rates
should vary with the changing context of use. As demonstrated in
Section 2.2 there might not always be a need to sample at the same
(maximal) rate – certain inputs might be “easier”, enabling accu-
rate classification even under lower sampling rates. Consequently,
adaptive sampling rate could require less computational and energy
resources for the same end result.

To achieve real-time adaptivity of the DL model, we need to train
a model that is able to classify series of data samples acquired at
different sampling rates. First, to simulate sparser temporal sam-
pling scenarios, we developed a weight pruning strategy focused
on pruning groups of consecutive weights from the sampling layer,
corresponding to all the sensors’ samples acquired at a certain
time step (representing the three-axis total acceleration, three-axis
body acceleration and three-axis angular velocity, thus nine values).
Instead of pruning certain percentages of the weights with the low-
est magnitude, we opted for pruning groups of nine consecutive
weights (corresponding to samples acquired by both the accelerom-
eter and the gyroscope at a certain time step), whose magnitudes
sum scores the lowest. The number of groups that will be pruned
corresponds to the sampling rate (i.e. more groups are pruned in
case of lower sampling rates). This strategy of skipping time steps,
however, leads to a faster degradation of the network’s accuracy.
Figure 4 illustrates the sensor sampling and group-based pruning
strategy.

Figure 4: Sampling the tri-axial accelerometer and gyro-
scope signals with a measurement matrix trained to pre-
serve sensor data pertaining to selected time steps only. Val-
ues at 𝑡0 are sampled, pre-processed, and forwarded for pro-
cessing in the DL pipeline, while values at 𝑡1 are skipped.

To prevent the degradation of the network’s performance with
weight pruning in the sampling layer we adopt a refined training
scheme. We split the initially trained network into two parts: the
sensing part and the inference part. The sensing sub-network on

which the previously describedweight pruning strategywas applied
is used to artificially generate outputs corresponding to 10 different
sampling rates scenarios, based on the training input samples from
the training set. The sampling rates range from 100% of the full
scale sampling (50Hz in our HAR example) to 10% of it. Irrespective
of the sampling rate, the output vectors are packed in the same
format (see Figure 3). Next, using the generated (sub-)samples we
further train the inference sub-network to classify inputs acquired
with this range of sampling rates. This network refinement process
enables real time runtime adaptivity of the neural network with a
more graceful degradation in accuracy and without the need for
re-training when switching the sampling rate at runtime.

3.2 Sampling Rate Adaptation Algorithm
With the mechanism for adjusting the sampling rate on-the-fly in
place, we now turn to the algorithm for selecting the most appro-
priate rate at any given moment. We start from the hypothesis that
guiding the sampling rate based on the level of difficulty of the input
uses higher sampling rates only when necessary, and consequently
reduces the overall computational costs without severely impacting
the inference accuracy.

Assessing an input’s difficulty for classification can be efficiently
proxied by interpreting the probability scores a classifier assigns to
each of the possible classes [4]. In a neural network, the reported
probabilities from the final softmax layer can be used to estimate
how confident the model was when making the prediction. A very
confident model would predict one class with probability 1 and all
the other classes with probability 0, while a model with very low
confidence provides equal probabilities for all classes. A common
way of capturing the uncertainty in the model’s prediction is to
evaluate the entropy of the classes’ probabilities [33]. The entropy
measures the uncertainty provided by the distribution of the classes
probabilities:

𝐻 = −
𝐿∑

𝑘=1
𝑃 (𝑦𝑘) · log(𝑃 (𝑦𝑘)) (2)

where 𝑦𝑘 is the 𝑘-th element in the set of class labels 𝐿, and 𝑃 (𝑦𝑘)
is the probability that 𝑦𝑘 is the correct label for that input.

Because the range of the entropy score depends on the number
of classes, we normalize the entropy to:

�̃� = −
𝐿∑

𝑘=1
𝑃 (𝑦𝑘) · log(𝑃 (𝑦𝑘))/log(𝐿) (3)

We empirically show that the entropy of the classes’ probabilities
remains inversely correlated with the accuracy of the model. Intu-
itively, low entropy values correspond to low uncertainty which
also implies that the classification is likely accurate and vice versa.
For our running example of HAR, we analyze the entropy of the
distribution of classes probabilities for classifications performed on
inputs representing different sampling rates. For each input sample
we compute the normalized entropy of the prediction achieved at
every sampling rate, for both correctly classified samples and incor-
rectly classified samples, and we illustrate the results in Figure 5.

The entropy values for the correct predictions (blue) are on
the average about 70% lower than the entropy values of incorrect

Enabling Resource-Efficient Edge Intelligence with Compressive Sensing-Based Deep Learning CF’22, May 17–19, 2022, Torino, Italy

-0,10

0,00

0,10

0,20

0,30

0,40

0,50

100% 90% 80% 70% 60% 50% 40% 30% 20% 10%

E
n

tr
o

p
y

Sampling rate

Correct predictions Incorrect predictions

Figure 5: Average entropy values for correct (blue line) and
incorrect (orange line) predictions at different sampling
rates (error bars represent two standard deviations).

predictions (orange), for samples taken with the same sampling rate
(sparsity). In addition, as the sampling rate decreases, increasing
the sparsity of the inputs, the entropy levels raise significantly for
both correct and incorrect predictions, indicating that in general
sparser samples are inherently more difficult to classify.

These results suggest that since there is clear gap between the
entropy values of the correct and incorrect predictions, entropy of-
fers a good indicator of the correctness of the prediction and as such
we can use it to guide the sampling rate selection. Nevertheless,
choosing the right threshold that separates correct and incorrect
predictions, based on the entropy value, is not a trivial task, since
the results discussed above represent average values. The actual
distribution of the entropy values shows more intertwined correct
and incorrect values, thus, examining softmax layer entropy for pre-
dicting whether a signal sampled at a certain rate will be classified
correctly is not straightforward.

Figure 6: SVM decision boundary (vertical continuous line)
and margins (vertical dotted lines) on predictions’ entropy
values.

To find an entropy-driven boundary that separates potentially
correct and potentially incorrect classification of a certain input
at a certain sampling rate we harness the Support Vector Machine
(SVM) classifier. SVM seeks to find the decision boundary that
maximizes the separation between two or more classes. For cases
like ours, where two classes seem impossible to separate using a
linear separator, SVM performs a projection of the data (in this
case, numeric values of the entropy of the predictions, with their
associated labels: correct or incorrect prediction) into a higher

dimensional space where the separation is feasible. In that higher
dimensional space, SVM learns the most suitable decision boundary.
As such, we use the decision boundary of the SVM (Figure 6) for
defining the threshold between the correct and incorrect entropy
values for a given sampling rate.

Next, we devise an algorithm that based on the current predicted
activity label and the entropy of the current prediction, sets the
sampling rate to be used for sampling and classifying the next input.
Choosing the next sampling rate based on the inference result for
the current sample is based on the fact that human activity inertial
data is not characterized by rapid variations [17] and there is usually
a high similarity degree between consecutive samples. Moreover,
previous work [19] showed a medium-strong level of correlation
between the prediction’s confidence value of each two consecutive
samples of the UCI HAR dataset.

At each inference point, the algorithm takes the entropy of the
current prediction and compares it to the pre-computed entropy
threshold for the current sampling rate. Based on this comparison,
the next sampling rate is chosen: an above-the-threshold result (in-
dicating a “difficult” prediction) will lead to a higher sampling rate,
while a below-the-threshold situation indicates an “easy” predic-
tion and enables selecting a lower sampling rate. For each activity
class, the algorithm can choose between two sampling rates, one
achieving highest possible accuracy and the other maximizing com-
pression with minimum accuracy loss.

The specific sampling rate options for each activity class were
established empirically based on the average accuracy values across
all sampling rates, for each activity class label. The analysis showed
that there is no clear monotonic degradation in inference accu-
racy as the compression increases. The sitting activity for example,
achieves the top accuracy when sampled at a 50% sampling rate
and laying at a 40% sampling rate. As such, the specific sampling
rates for each class label were chosen to maximize energy savings
while maintaining the maximum average accuracy achievable by
the network for that particular class label.

The algorithm allows threshold tuning, enabling accuracy vs.
energy savings trade-off according to the context of use. The goal of
the adaptation algorithm is to achieve the desired accuracy with the
minimum sampling (and consequently energy consumption). We
start from the trade-off point between the accuracy and the energy
consumption determined by the SVM boundary between entropy
values of correct and incorrect predictions. To enable different
trade-off points between accuracy and energy consumption, we
add or subtract from this point the SVM margin, thus obtaining
the SVM− MARGIN, and the SVM+MARGIN points (Figure 7). We
can also maximize/minimize either the savings or the accuracy of
the inference, by setting the threshold to the maximum/minimum
possible value for the entropy, obtaining the HIGH_COMPRESSION
point- for the entropy threshold of 1 and the HIGH_ACCURACY
point-for the entropy threshold set to 0 (Figure 7).

4 IMPLEMENTATION
We first validated our approach on the UCI HAR [2] dataset. The
UCI HAR dataset provides recordings of embedded tri-axial sen-
sors of accelerometer and gyroscope from a smartphone carried
by 30 volunteers while performing six different activities (walking,

CF’22, May 17–19, 2022, Torino, Italy Machidon and Pejović

walking upstairs, walking downstairs, sitting, standing and lying).
The activity recognition dataset was collected at a sampling rate
of 50Hz, and the collected samples were grouped in fixed-width
sliding windows of 2.56 seconds with a 50% overlap, thus each data
segment has 128 readings of 9 sensor values: the triaxial total accel-
eration from the accelerometer, the triaxial body acceleration, and
the triaxial angular velocity from the gyroscope. In our experiments,
we aim to evaluate how the algorithm scales with different sam-
pling rates, so we artificially created data samples corresponding
to different percentages of the original sampling rate: thus 100%,
90%, 80%, etc., up to a sampling rate of 10% of the original one. In
order to simulate a reduced sampling rate, we zero-filled a certain
number of groups of 9 consecutive values, corresponding to all the
sensor’s readings at a specific time step. For example, if the desired
sampling rate is 50% of the original one, half of the 128 groups of 9
sensors readings will be replaced by zeros. The selection of the time
steps to be skipped from sampling, is made according to the learned
measurement matrix elaborated in Section 3.1. In Section 5.1 we
show results on the UCI HAR dataset analysis.

Next, we assess the energy efficiency of our approach, so for
that purpose, we implement a fully-functioning version of our so-
lution on an embedded computing device to measure the energy
consumption for both the sampling process and the entire sam-
pling and inference pipeline. All the energy measurements were
performed on an UDOONeo Full [39] board. This is an IoT platform
with processing hardware similar to that found in modern low-end
smartphones and having embedded accelerometer and gyroscope
sensors, that can run both Android and Linux OS, thus allowing
us to easily prototype and test our model. The experiments were
performed on Ubuntu 18.04.6 LTS, the CS-DL pipeline was executed
using Python [40] version 3.5.9 and Tensorflow[1] 1.5.0, and the
sensor sampling was implemented using the Neo.GPIO library [10].
The power consumption was measured using a Monsoon power
monitor tool [15], a commonly used tool for power measurements
in mobile and embedded computing [35]. The results of these ex-
periments are presented in Section 5.2.

5 EXPERIMENTAL RESULTS
5.1 Accuracy Analysis
We start by evaluating the performance of the DL model across
the different sampling rates (static sampling scenario) and notice
its accuracy scores vary from 73% (using the lowest sampling rate,
10%) to 88% (for full sampling), with a general downward trend
for accuracy as the compression increases (moving towards lower
sampling rates) as shown in Figure 7.

We then compare the results of this static sampling scenario with
the proposed adaptive sensing framework discussed in Section 3.2
for different accuracy thresholds. We explored several different sce-
narios, based on the level of the target reliability, ranging from lower
reliability/lower sampling rate (HIGH_COMPRESSION scenario),
to higher reliability/higher sampling rate (HIGH_ACCURACY sce-
nario). In all of these scenarios, the sampling rate selection is driven
by the previous input’s activity class and its classification difficulty,
with a tolerance for the reliability/accuracy of the inference ranging
from high to low. The tolerance level is set through the entropy
threshold value as explained in Section 3.2.

HIGH_COMPRESSION

SVM+MARGIN

SVM

SVM-MARGIN HIGH_ACCURACY

72%

74%

76%

78%

80%

82%

84%

86%

88%

90%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

A
cc

u
ra

cy

Sampling rate

Static sampling rate scenario Dynamic sampling rate scenario

Figure 7: Average accuracy vs. average sampling rate in a
static scenario (blue line) and various adaptive scenarios (or-
ange line) on the UCI HAR dataset.

Figure 7 demonstrates that across the board our adaptive rate
approach leads to a higher accuracy than the static approach for
the same average sampling rate. For example, the high accuracy
scenario achieves an average accuracy of 88%, using on average a
sampling rate of only 50%, while in a static scenario, the average
accuracy would have been 85% at the same sampling rate. In other
words, our dynamic approach achieved the accuracy of the full-
scale sampling model, when using on average, a sampling rate of
only 50% of the original one. Moreover, the accuracy drops with
just 1%, if the sampling rate is 25% of the original one. This is due
to the fact that our algorithm chooses at each time step a more
appropriate sampling rate, which is not necessarily the highest
one. For instance, surprisingly, some activities are more accurately
classified at a lower compression rate.

5.2 Energy Savings Analysis
Intuitively, reducing the sampling rate directly translates into less
power being consumed by the sensors. Theoretically, if we move
from sampling at 50Hz to sampling at 20Hz, 60% of the energy used
on sampling could potentially be saved. Yet, various intricacies of
the actual hardware and the system call for a careful examination
of the actual savings enabled by reduced sampling rates. Previous
studies, such as [18], analyzed the impact of varying the sampling
rate of a wearable accelerometer on the battery consumption and
showed that reducing the sampling rate from 100 Hz down to 25
Hz, for example, would more than double the battery’s lifetime.
Furthermore, additional processing, transmission, storage savings
can be achieved. To see how these theoretical savings translate into
practice in our case, we created two test benchmarks for measuring
the energy consumption: the first for the energy consumed by the
sampling process only (reading the sensors’ values to create the
input vector for our inference pipeline) and the second one for
measuring the energy used for the entire CS-DL inference pipeline.
Both scenarios were deployed three times by capturing multiple
consecutive samples at the desired sampling rate and the averaged
results are reported.

For the first experiment, we measured the energy consumed
when sampling 128 consecutive readings of the UDOO board’s ac-
celerometer and gyroscope sensors at 50Hz, versus skipping the

Enabling Resource-Efficient Edge Intelligence with Compressive Sensing-Based Deep Learning CF’22, May 17–19, 2022, Torino, Italy

readings according to the mask given by the CS sampling layer
(our measurement matrix). A value is sampled if the corresponding
measurement matrix element is a non-null value and skipped oth-
erwise. The mask was varied for each compression level and the
measurements, illustrated by the orange bars in Figure 8, focus on
the energy used for sampling with different masks, i.e. rates. These
results include only the energy consumed by the “reading” script
(the idle power consumption of the system has been subtracted).

0 200 400 600 800 1000 1200 1400 1600 1800

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

Battery consumption (uAh)

S
a

m
p

li
n

g
 r

a
te

Avg. inference Avg. sampling

Figure 8: Average energy consumed for real-time sampling
(orange bars) and human activity inference (blue bars) from
a single 2.56s data instance on a UDOO board.

For the second experiment, we measured the energy consump-
tion of the complete CS-DL pipeline, which includes reading the
sensors’ values and processing them through the DL model. Again,
we measure the energy consumed when sampling 128 consecutive
readings of the UDOO board’s accelerometer and gyroscope sensors
at 50Hz, versus skipping the readings according to the mask given
by the CS sampling layer. These measurements, also illustrated in
Figure 8, reflect the relationship between a given sampling rate
and the energy consumed for reading, filtering, formatting and
processing the sampled data through the neural network. Unlike
the sampling part that scales linearly with the sampling rate, the
processing of the data takes almost the same amount of energy
irrespective of the sampling rate, because although we read less
data, we still have to up-sample it by substituting with zero the
missing values, so the number of operations performed for filtering,
formatting and processing remains the same.

The final step in our energy analysis is the assessment of the
energy savings enabled by our context adaptive algorithm. For this
purpose, we aim to evaluate the energy-accuracy trade-off between
running the adaptive algorithm with different threshold values and
running the static sampling scenario on the same test set used
for evaluating the classification accuracy. We measure the energy
consumption in each case and plot the result in Figure 9.

6 DISCUSSION
The experiments presented in Figure 8 show that on a resource-
constrained IoT platform the sampling process takes significantly
more energy than the inference part, being up to three times more
energy consuming. In addition, the energy usage scales linearly
with the sampling rate. For example shifting from a 50 Hz sampling

HIGH_COMPRESSION

SVM+MARGIN

SVM

SVM-MARGIN

HIGH_ACCURACY

72%

74%

76%

78%

80%

82%

84%

86%

88%

90%

90 110 130 150 170 190

A
cc

u
ra

cy

Energy consumption (mAh)

Static sampling rate Dynamic sampling rate

Figure 9: Energy-accuracy trade off in a static scenario (blue
line) and various adaptive scenario (orange line).

rate (100%) to a 30 Hz sampling rate (60%), saves 50% of the energy
used for sampling alone. This implies the foremost need for reducing
the sampling rate and using each available sample judiciously.

On the other hand, the energy used for inference does not show
a linear decrease, as one would expect given that both the input and
the weights of the dense layer have a higher sparsity at reduced
sampling rates. This is not to say that popular optimizations on
the DL-level, such as weight pruning, are irrelevant. Instead, to
truly benefit from processing sparser data, additional optimizations
of the deep-learning model are required before deploying it on a
device. While some steps have already been made in this direction
(such is the TensorFlow Lite XNNPACK inference engine [38] that
offers support for accelerating sparse inference for CNN models),
it is to be expected that future advances in libraries and compiler
architectures will make such optimizations inherently supported,
fostering the acceleration of sparse models.

The key benefit of our solution is adaptability. First, adapting
to the input difficulty, up to 43% of the necessary energy can be
saved with the same average accuracy compared to the 100% static
sampling scenario (Figure 9, HIGH_ACCURACY option). Second,
depending on the users’ needs, context of operation, or currently
available resources, our solution enables on-the-fly adaptation of
the sampling-processing pipeline (see orange trade-off line in Fig-
ure 9). For instance, if the goal is to maximize energy savings, the
adaptive algorithm can save up to 46% energy compared to the full
static sampling scenario, with a 6% drop in the average accuracy.

The energy savings enabled by our solution translate into an
extended battery lifetime. This aspect is critical for applications that
rely on continuous long-term sensing, and where the battery’s life-
time is a concern, such as healthcare on-body monitoring, wildlife
tracking, or infrastructure monitoring applications. Previously, the
approach for this kind of applications was a performance trade-off
between the prediction accuracy and the battery lifetime through
the sampling rate: either using a lower sampling rate, that gives
poor accuracy, but a longer monitoring period, or opting for a
higher sampling rate, with better accuracy, but a shorter monitor-
ing period. Our approach achieves the same quality of service with
much lower energy consumption and, thus, enables operation over
a longer period of time.

CF’22, May 17–19, 2022, Torino, Italy Machidon and Pejović

In this paper we present the first framework for CS-inspired DL
inference on edge devices. Being preliminary, our solution faces cer-
tain practical limitations. First, in our work the deep learning model
performs the same amount of operations irrespective of the number
of samples acquired. This restrains the energy savings enabled by
our solution mostly to the energy saved on sampling, while the
inference energy consumption remains more or less the same. By
optimizing the proposed model using the recently proposed DAP
layer [28] for example, the energy efficiency of our pipeline could
be further expanded. Second, at the moment our adaptation algo-
rithm decides between two possible choices of sampling rates per
inference class. A higher number of options could allow for a finer
energy-accuracy tuning, yet would require a more complex deci-
sion method. Finally, while not an immediate topic of our work, we
note that our solution opens space for further optimization of joint
sampling and learning process, which we have not explored in this
paper. Recent research advances that target network complexity
and redundancy, such as quantization [11], pruning [12], slimmable
neural networks [44], or early exiting [37], for example, can be
harnessed in parallel with sampling optimization. Furthermore, by
exploiting these techniques in a dynamic context, such as the one
in our approach, additional savings might be achieved with a mini-
mal impact on the performance of the application, by adapting the
computations to the variations in the input’s complexity [9, 23].

7 RELATEDWORK
During the past few years, a tremendous research effort focused
towards exploring DL-based implementations for CS [20, 30, 32, 43].
Several of these research works targeted CS-DL implementations
for identifying human activities using wearable sensors [24, 46]. A
common feature of these approaches is that they all assume a static
sampling rate scenario for a trained network. In other words, the
neural network model is trained for one single sampling rate, de-
fined before the training, and thus can only infer from data acquired
at the same sampling rate.

The first CS-DL solution allowing adaptive sampling rate was
proposed by Lohit et al. [27] and is based on a three-steps training
process: first, for the highest desired sampling rate, second, for the
lowest sampling rate (all other parameters frozen) and finally, for
an a additional sampling rate between the highest and the lowest
(with the rest of parameters frozen). In another work [41], more
closely related to our research, the authors also address the rate
adaptivity aspect in the CS-DL context. Their solution is to create
measurement vectors of various lengths, simulating samples ac-
quired at different measurement rates, and use them to re-train a
neural network with a fixed input layer size. Unlike [41], where the
measurement matrix is a binary sensing one, our approach is based
on a data-driven, learned diagonal matrix. In addition, the struc-
ture of the measurement vectors also differs: in [41] these vectors
are zero-padded at the end to compensate for the size mismatch
between their variable length and the fixed input size of the infer-
ence network, while in our case, the measurement vectors have
zero values in the locations corresponding to sampling pauses. The
main bottleneck of DL-based rate adaptive approaches is the lack of
available neural network architectures that could handle variable
dimensions of their inputs, without up-sampling or imputing the

data. A solution for this was recently proposed in [28], where a DL
model invariant to sampling rates changes was proposed.

Another key question of an adaptive sampling framework is
how to harness the context sensitivity for efficiently guiding the
adaptation mechanism. Most of HAR studies rely on estimating
the activity type [8], the signal type [31] or the user profile [45]
or on deriving some statistical features from the input data [34]
as triggers for adaptivity. When it comes to deep-learning based
implementation, the confidence of the network is often exploited
as a marker for the need to adjust the energy-accuracy trade off [3].
Nonetheless, deriving efficient methods for context sampling and
adaptation is still a challenge.

Our context-adaptive algorithm complements the above research
and is based on the entropy of the probability distributions of the
predictions for tuning the sampling rate to satisfy predefined (yet
possibly dynamic) accuracy requirements. Uniquely in this work,
we guide the adaptation based not only on the difficulty of the class
of activities or signal type that the sample belongs to, but also on
each individual sample’s difficulty. This allows a more fine-grain
tuning of the sampling rate sensitive to the hidden particularities of
each individual input. In addition, our method supports very flexible
levels of approximation, based on the desired reliability-accuracy
trade off of the inference, ranging from lower reliability/lower
sampling rate, to higher reliability/higher sampling rate.

8 CONCLUSION
In this paper we proposed a pipeline for dynamically adjusting the
sampling rate on the fly and performing classification on inputs
whose sizes that may vary, while preserving the inference accuracy
with the least amount of sampling. We implemented our CS-based
DL pipeline and evaluated its performance on the well-established
UCI human activities dataset. We find that changing the sampling
rate affects the accuracy inference differently depending on the
context (i.e. the physical activity), but also depending on each in-
dividual input’s difficulty, thus, we used the previously predicted
activity label and the confidence of that prediction to dynamically
adapt the sampling rate at each inference point.

The experiments validated our approach, and revealed that a
trade-off between the classification accuracy and energy consump-
tion can be struck with our adaptive sampling rate algorithm. In
comparison to the static sampling and inference approach, our
method used 43% less energy while achieving the same inference ac-
curacy. The practical energy savings enabled by our framework are
of paramount importance for edge computing applications which
rely on a very limited energy budget; by extending the battery
lifetime and maintaining the same level of inference accuracy, our
CS-DL framework contributes to advancing deep learning at the
edge.

ACKNOWLEDGMENTS
The research presented in this paper was funded by projects “Bring-
ing Resource Efficiency to Smartphones with Approximate Com-
puting" (N2-0136), “Context-Aware On-Device Approximate Com-
puting” (J2-3047), and by the Slovenian Research Agency research
core funding No. P2-0098 and P2-0426.

Enabling Resource-Efficient Edge Intelligence with Compressive Sensing-Based Deep Learning CF’22, May 17–19, 2022, Torino, Italy

REFERENCES
[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey

Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al.
2016. Tensorflow: A system for large-scale machine learning. In 12th {USENIX}
Symposium on Operating Systems Design and Implementation ({OSDI} 16). 265–
283.

[2] Davide Anguita, Alessandro Ghio, Luca Oneto, Xavier Parra, Jorge Luis Reyes-
Ortiz, et al. 2013. A public domain dataset for human activity recognition using
smartphones.. In Esann, Vol. 3. 3.

[3] Konstantin Berestizshevsky and Guy Even. 2019. Dynamically sacrificing accu-
racy for reduced computation: Cascaded inference based on softmax confidence.
In International Conference on Artificial Neural Networks. Springer, 306–320.

[4] Tolga Bolukbasi, JosephWang, Ofer Dekel, and Venkatesh Saligrama. 2017. Adap-
tive neural networks for efficient inference. In Int. Conf. on Machine Learning
(ICML). Sydney, Australia.

[5] Emmanuel J Candès, Justin Romberg, and Terence Tao. 2006. Robust uncer-
tainty principles: Exact signal reconstruction from highly incomplete frequency
information. IEEE Transactions on Information Theory 52, 2 (2006), 489–509.

[6] Zhicheng Cui, Wenlin Chen, and Yixin Chen. 2016. Multi-scale convolutional
neural networks for time series classification. arXiv preprint arXiv:1603.06995
(2016).

[7] David L Donoho. 2006. Compressed sensing. IEEE Transactions on Information
Theory 52, 4 (2006), 1289–1306.

[8] Ramin Fallahzadeh, Josue Pagan Ortiz, and Hassan Ghasemzadeh. 2017. Adaptive
compressed sensing at the fingertip of internet-of-things sensors: An ultra-low
power activity recognition. In Design, Automation & Test in Europe Conference &
Exhibition (DATE), 2017. IEEE, 996–1001.

[9] Xitong Gao, Yiren Zhao, Łukasz Dudziak, Robert Mullins, and Cheng-zhong
Xu. 2018. Dynamic channel pruning: Feature boosting and suppression. arXiv
preprint arXiv:1810.05331 (2018).

[10] Neo GPIO. 2016. A python library to control the Gpios, Accel, Gyro, Temp, Baro,
Magno sensors/pins easily. Retrieved February 9th 2022 from https://github.com/
smerkousdavid/Neo.GPIO/tree/master/neo

[11] Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and Pritish Narayanan.
2015. Deep learning with limited numerical precision. In International conference
on machine learning. PMLR, 1737–1746.

[12] Song Han, Jeff Pool, John Tran, and William J Dally. 2015. Learning both weights
and connections for efficient neural networks. arXiv preprint arXiv:1506.02626
(2015).

[13] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun
Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. 2017. Mobilenets:
Efficient convolutional neural networks for mobile vision applications. arXiv
preprint arXiv:1704.04861 (2017).

[14] Michael Iliadis, Leonidas Spinoulas, and Aggelos K Katsaggelos. 2018. Deep fully-
connected networks for video compressive sensing. Digital Signal Processing 72
(2018), 9–18.

[15] Monsoon Solutions Inc. 2015. Monsoon Solutions high voltage power monitor.
Retrieved February 3rd 2022 from http://msoon.github.io/powermonitor/HVPM.
html

[16] Sergey Ioffe and Christian Szegedy. 2015. Batch normalization: Accelerating deep
network training by reducing internal covariate shift. In International conference
on machine learning. PMLR, 448–456.

[17] Roua Jabla, Félix Buendía, Maha Khemaja, and Sami Faiz. 2019. Balancing Timing
and Accuracy Requirements in Human Activity Recognition Mobile Applications.
In Multidisciplinary Digital Publishing Institute Proceedings, Vol. 31. 15.

[18] Aftab Khan, Nils Hammerla, Sebastian Mellor, and Thomas Plötz. 2016. Optimis-
ing sampling rates for accelerometer-based human activity recognition. Pattern
Recognition Letters 73 (2016), 33–40.

[19] Timotej Knez, Octavian Machidon, and Veljko Pejović. 2021. Self-Adaptive
Approximate Mobile Deep Learning. Electronics 10, 23 (2021), 2958.

[20] Kuldeep Kulkarni, Suhas Lohit, Pavan Turaga, Ronan Kerviche, and Amit Ashok.
2016. Reconnet: Non-iterative reconstruction of images from compressively
sensed measurements. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition. 449–458.

[21] Kuldeep Kulkarni and Pavan Turaga. 2015. Reconstruction-free action inference
from compressive imagers. IEEE transactions on pattern analysis and machine
intelligence 38, 4 (2015), 772–784.

[22] Chiman Kwan, David Gribben, Akshay Rangamani, Trac Tran, Jack Zhang, and
Ralph Etienne-Cummings. 2020. Detection and confirmation of multiple human
targets using pixel-wise code aperture measurements. Journal of Imaging 6, 6
(2020), 40.

[23] Ji Lin, Yongming Rao, Jiwen Lu, and Jie Zhou. 2017. Runtime neural pruning.
Advances in neural information processing systems 30 (2017).

[24] Guocheng Liu, Rui Ma, and Qi Hao. 2018. A Reinforcement Learning Based
Design of Compressive Sensing Systems for Human Activity Recognition. In
2018 IEEE SENSORS. IEEE, 1–4.

[25] Suhas Lohit, Kuldeep Kulkarni, Ronan Kerviche, Pavan Turaga, and Amit Ashok.
2018. Convolutional neural networks for noniterative reconstruction of compres-
sively sensed images. IEEE Transactions on Computational Imaging 4, 3 (2018),
326–340.

[26] Suhas Lohit, Kuldeep Kulkarni, Pavan Turaga, Jian Wang, and Aswin C Sankara-
narayanan. 2015. Reconstruction-free inference on compressive measurements.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
Workshops. 16–24.

[27] Suhas Lohit, Rajhans Singh, Kuldeep Kulkarni, and Pavan Turaga. 2018. Rate-
adaptive neural networks for spatial multiplexers. arXiv preprint arXiv:1809.02850
(2018).

[28] Mohammad Malekzadeh, Richard Clegg, Andrea Cavallaro, and Hamed Haddadi.
2021. DANA: Dimension-Adaptive Neural Architecture for Multivariate Sensor
Data. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous
Technologies 5, 3 (2021), 1–27.

[29] Ali Mousavi and Richard G Baraniuk. 2017. Learning to invert: Signal recovery via
deep convolutional networks. In 2017 IEEE international conference on acoustics,
speech and signal processing (ICASSP). IEEE, 2272–2276.

[30] Ali Mousavi, Ankit B Patel, and Richard G Baraniuk. 2015. A deep learning
approach to structured signal recovery. 2015 53rd Annual Allerton Conference on
Communication, Control, and Computing (Allerton) (2015), 1336–1343.

[31] Josue Pagan, Ramin Fallahzadeh, Mahdi Pedram, Jose L Risco-Martin, Jose M
Moya, Jose L Ayala, and Hassan Ghasemzadeh. 2018. Toward ultra-low-power
remote health monitoring: An optimal and adaptive compressed sensing frame-
work for activity recognition. IEEE Transactions on Mobile Computing 18, 3 (2018),
658–673.

[32] Hamid Palangi, Rabab Ward, and Li Deng. 2016. Distributed compressive sensing:
A deep learning approach. IEEE Transactions on Signal Processing 64, 17 (2016),
4504–4518.

[33] Laurence AF Park and Simeon Simoff. 2015. Using entropy as a measure of
acceptance for multi-label classification. In International symposium on intelligent
data analysis. Springer, 217–228.

[34] Nafiul Rashid, Berken Utku Demirel, and Mohammad Abdullah Al Faruque.
2021. AHAR: Adaptive CNN for Energy-efficient Human Activity Recognition in
Low-power Edge Devices. arXiv preprint arXiv:2102.01875 (2021).

[35] Andreas Schuler and Gabriele Anderst-Kotsis. Houston, TX, USA, 12–14 Novem-
ber 2019. Examining the energy impact of sorting algorithms on Android: an
empirical study. In Proceedings of the 16th EAI Int. Conf. on Mobile and Ubiquitous
Systems: Computing, Networking and Services (MobiQuitous ’19). ACM, 404–413.

[36] Vanika Singhal, Angshul Majumdar, and Rabab K Ward. 2017. Semi-supervised
deep blind compressed sensing for analysis and reconstruction of biomedical
signals from compressive measurements. IEEE Access 6 (2017), 545–553.

[37] Surat Teerapittayanon, Bradley McDanel, and Hsiang-Tsung Kung. 2016.
Branchynet: Fast inference via early exiting from deep neural networks. In 2016
23rd International Conference on Pattern Recognition (ICPR). IEEE, 2464–2469.

[38] Tensorflow. 2021. Pruning for on-device inference with XNNPACK. Retrieved
January 24, 2022 from https://www.tensorflow.org/model_optimization/guide/
pruning/pruning_for_on_device_inference

[39] UDOO. 2021. UDOO Single Board Computer. Retrieved February 3rd 2022 from
https://www.udoo.org/udoo-neo/

[40] Guido Van Rossum and Fred L. Drake. 2009. Python 3 Reference Manual. CreateS-
pace, Scotts Valley, CA.

[41] Yibo Xu,Weidi Liu, and Kevin F Kelly. 2020. Compressed Domain Image Classifica-
tion Using a Dynamic-Rate Neural Network. IEEE Access 8 (2020), 217711–217722.

[42] Y. Yang, J. Sun, H. Li, and Z. Xu. 2020. ADMM-CSNet: A Deep Learning Approach
for Image Compressive Sensing. IEEE Transactions on Pattern Analysis and
Machine Intelligence 42, 3 (2020), 521–538.

[43] Hantao Yao, Feng Dai, Shiliang Zhang, Yongdong Zhang, Qi Tian, and Chang-
sheng Xu. 2019. DR2-net: Deep residual reconstruction network for image
compressive sensing. Neurocomputing 359 (2019), 483–493.

[44] Jiahui Yu, Linjie Yang, Ning Xu, Jianchao Yang, and Thomas Huang. 2018.
Slimmable neural networks. arXiv preprint arXiv:1812.08928 (2018).

[45] Ozgur Yurur, Miguel Labrador, and Wilfrido Moreno. 2013. Adaptive and energy
efficient context representation framework in mobile sensing. IEEE Transactions
on Mobile Computing 13, 8 (2013), 1681–1693.

[46] Abrar Zahin, Le Thanh Tan, and Rose Qingyang Hu. 2019. Sensor-based human
activity recognition for smart healthcare: A semi-supervised machine learning. In
International conference on artificial intelligence for communications and networks.
Springer, 450–472.

https://github.com/smerkousdavid/Neo.GPIO/tree/master/neo
https://github.com/smerkousdavid/Neo.GPIO/tree/master/neo
http://msoon.github.io/powermonitor/HVPM.html
http://msoon.github.io/powermonitor/HVPM.html
https://www.tensorflow.org/model_optimization/guide/pruning/pruning_for_on_device_inference
https://www.tensorflow.org/model_optimization/guide/pruning/pruning_for_on_device_inference
https://www.udoo.org/udoo-neo/

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Joint Compressive Sensing & Deep Learning for Edge Intelligence
	2.2 Sparse Sensing and Classification

	3 Dynamic Compressive Sensing-Inspired Neural Network adaptation framework
	3.1 Enabling Sampling Rate Adaptivity
	3.2 Sampling Rate Adaptation Algorithm

	4 Implementation
	5 Experimental Results
	5.1 Accuracy Analysis
	5.2 Energy Savings Analysis

	6 Discussion
	7 Related work
	8 Conclusion
	Acknowledgments
	References

