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Abstract
From not disturbing a focused programmer, to entertaining
a restless commuter waiting for a train, ubiquitous com-
puting devices could greatly enhance their interaction with
humans, should they only be aware of the user’s cognitive
load. However, current means of assessing cognitive load
are, with a few exceptions, based on intrusive methods re-
quiring physical contact of the measurement equipment and
the user. In this paper we propose Wi-Mind, a system for
remote cognitive load assessment through wireless sens-
ing. Wi-Mind is based on a software-defined radio-based
radar that measures sub-millimeter movements related to a
person’s breathing and heartbeats, which, in turn allow us
to infer the person’s cognitive load. We built and tested the
system with 23 volunteers engaged in different tasks. Initial
results show that while Wi-Mind manges to detect whether
one is engaged in a cognitively demanding task, the infer-
ence of the exact cognitive load level remains challenging.
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Introduction
As our reliance on ubiquitous computing devices grows,
so does the need for seamless interaction with these de-
vices. The postulates defined by Mark Weiser in 1991 call
for “calm” technology that blends in with the environment,
understands the user, and works towards fulfilling the user’s
needs [26]. Unfortunately, almost thirty years later we are
surrounded by devices that remain completely oblivious to
our needs, and that contradict Weiser’s vision by getting in
the way of our actual intents. Mobile communication de-
vices are a prime example of such a conflicting technology,
as an average smartphone user receives around 100 push
notifications per day, most of which are disruptive [17].

Figure 1: Wi-Mind scheme - idea
for wireless cognitive load
inference.

Understanding a human user encompasses multiple as-
pects of human consciousness, from sensing one’s emo-
tions, over inferring one’s goals, to perceiving one’s fa-
tigue. Recent research, however, has shown the link be-
tween a user’s interruptibility and her immersion in a task
at hand [18, 20], making the inference of mental effort a
promising potential enabler of improved human-computer
interaction. While to date research in understanding one’s
mental effort has been tested mostly on intrusive methods,
with notable exceptions of camera-based approaches [2,
16], here we explore the prospects of devising a wireless
non-intrusive vital sign radar monitor to infer a user’s cog-
nitive load. We design and implement a software-define
radio-based wireless system prototype and through real-
world experiments on a group of 23 volunteers evaluate its
ability to sense physiological signals and through machine
learning connect these to a user’s mental effort.

Background and Related Work
Inferring someones cognitive load is challenging and can
be done in multiple ways, e.g. by subjective self-evaluation
after completing some task or by observing the person’s

performance on the task. One example for such measure-
ment is NASA TLX (Task Load Index), where participants
report their load after completing a task [13]. However,
these highly subjective evaluations can be also correlated
with more objective physiological signals, which are results
of a human autonomic nervous system and cardiovascu-
lar system reaction. Some of these signals include heart
rate blood pressure [8], heart rate variability [21], respira-
tory changes [10], brain activity [11], galvanic skin response
(GSR) [7, 22], eye movement [11], pupil size, and facial ex-
pression [25]. These can be measured with special equip-
ment, e.g. nasal thermistor, chest respiration strap, ECG
(Electrocardiogram), sphygmomanometer (blood pressure
monitor), smart watch, electroencephalography (EEG), etc.
One thing in common for all these monitors is – they are
intrusive, i.e. they require a body contact.

Recent advancements in technology enabled non-intrusive
vital signs’ monitoring, such as camera-based approaches
to measuring heart rate variability [16] and detecting pulse
from head motions in a video [4]. In 2015, Adib et al. in-
troduced Vital-Radio [3], a wireless sensing technology
for monitoring breathing and heart rate without body con-
tact that exploits the fact that wireless signals are affected
by the motion in the environment. More specifically, chest
movements due to human inhaling/exhaling and skin vi-
brations due to heartbeats can be captured by observing
reflected radio waves’ phase variation. Similar wireless-
based vital signs monitoring systems include TensorBeat
[24], which employs channel state information (CSI) phase
difference data to estimate breathing rates for multiple
persons with commodity WiFi devices, an ultra-wideband
(UWB) radar by Huang et al.[14], and impulse-radio (IR)
UWB Doppler radar-based solutions [6, 15].



In terms of applications, Zhao et al. used a technology sim-
ilar to Vital-Radio, called EQ-Radio, for analysing radio fre-
quency (RF) reflections off a person’s body to recognize
the emotional state [28]. To infer cognitive load unobtru-
sively, Abdelrahman et al. use thermal imaging cameras
focused on a persons forehead and nose [2], while Mc-
Duff et al. use a five-band digital camera to detect cogni-
tive stress [16]. While promising, the need for frontal cam-
era placement might limit the applicability of the above ap-
proaches (e.g. for inferring a car driver’s engagement). Urh
and Pejovic use smartphone sensing to infer task engage-
ment, however, their work remains at a coarser granularity
as it, among other features, concentrates on location, time,
and calendar events [23].
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Figure 2: Wave phase shift of the
reflected signal through time -
persons inhales and exhales can
be seen clearly.

Wi-Mind System
In this paper we present Wi-Mind, a system for wireless
cognitive load inference. The system is based on the premise
that a person’s vital signs, such as respiratory rate and
heartbeat rate, correlate with that person’s cognitive load.
In Figure 1 we sketch the system that consists of a wire-
less module for collecting vital signs data and a machine
learning module for inferring one’s cognitive load based on
the collected data. A user is stationary (seated) in an office
setting and engaged in a mental task. One antenna of the
wireless module is placed on the right, the other on the left
side of the person (see Figure 1, top image), and are used
to unobtrusively obtain data corresponding to the person’s
vital signals. The data is further filtered and processed, and
forwarded to the machine learning module that then makes
the final inference about the person’s cognitive load.
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Figure 3: Frequency domain of the
signal from Figure 2. The highest
peak represent the highest
probability of breathing rate.

Wireless monitoring
The idea for unobtrusive vital signs data collecting was
taken from the already mentioned Vital-Radio system [3].
Recent advancements in CPU capabilities and signal pro-

cessing algorithms have led to software defined radio (SDR)
– a concept that enables highly customizable transmis-
sion/reception through a symbiosis of radio front-end hard-
ware and signal processing on a general purpose com-
puter. The core of Wi-Mind is an SDR implementation of the
Frequency Modulated Carrier Wave (FMCW) radar based
on a slightly modified gr-radar module [27] running on top
of the GNUradio SDR framework [1]. This radar allows us
to observe very fine movement of the user’s body (pre-
dominantly chest), which may correspond to breathing and
heartbeats. The hardware we use consists of an Ettus Re-
search USRP B210 radio front-end that has two directional
antennas – one for transmitting the signal to the object, the
other for receiving the signal reflected off the object.

A phase shift of the electromagnetic wave sent from one
antenna, reflected off the body, and captured at the other
antenna, corresponds to the distance the wave has trav-
eled. In Figure 2 we see larger phase shift variations that
correspond to a person’s inhale-exhale cycles, as well as
smaller variations on top of these, corresponding to heart-
beats. One way to obtain vital signs from the signal phase
shift is to calculate the Fast Fourier Transform (FFT) of
the signal and then single out the highest peak in the fre-
quency domain. The position of the peak corresponds to
the breathing rate – i.e. if the person’s respiratory rate is
20 breaths per minute, then the FFT will have the highest
peak at the value 20 (Figure 3). In order to cope with noise,
we filter the signal with a band-pass filter. We suppress any
peaks that are below 5 or above 100 breaths per minute
(the average breathing rate of an adult human is around 12
to 20 breaths per minute). Slightly more difficult is the ex-
traction of the heartbeat rate. Since heartbeats are seen
as the higher frequency vibrations on top of breathing, we
filter the signal with a bandpass filter from 60 to 150 beats
per minute (average heartbeat rate of adult human goes



from 60 to 100 beats per minute), and single out the highest
peak within that interval.

Cognitive load inference
The machine learning (ML) module processes the breathing
and heartbeat signals collected by the wireless module and
infers the person’s cognitive load. To train the ML model,
however, we need to acquire vital signals from a person
engaged in tasks of different complexity.

Figure 4: Acquired wireless signal
while relaxing (blue) and solving
some task (red). Unmarked (white)
area is presents a time frame when
user is clicking on “next slide”
button and is not used in feature
extraction.
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Figure 5: Filtered signal where
each red dot/peak represents one
breath. This data is later used to
compute the inter-breath interval
features.

Wi-Mind is geared towards sedentary mental task load in-
ference, thus, we collect the data in an office setting with an
application Haapalainen et al. constructed to elicit different
cognitive load burden [12]. The application runs on a PC
and presents the user with six task types:

• Finding hidden pattern (HP) – find a given pattern in
multiple images;

• Finding A’s (FA) – choose all words that have a letter
“A" in them;

• Gestalt completion (GC) – from a partial image find out
what would the whole picture represents and write down
the answer;

• Number comparison (NC) – in two parallel lists of num-
bers find those that are equal;

• Scattered X’s (SX) – in a set of images find letters “X"
and click on them;

• Pursuit test (PT) – connect values on the left side to
the corresponding values on the right side following en-
tangled lines connecting the two sides.

Each of these tasks is presented three times, with three dif-
ferent difficulty levels (e.g. task HP is performed at easy,
medium and hard level). While we certainly expect that this
objective label already correlates with a person’s cognitive

load, we also rely on the NASA-TLX questionnaire to infer
a person’s subjective feeling about the load. The question-
naire is presented to users after each of the tasks.

In total, there are 18 different tasks type/difficulty combina-
tions, and from each we obtain the following:

• task complexity (objective label);

• task load index (subjective score calculated from NASA-
TLX questionnaires);

• task completion time (calculated from the app logs);

• number of correct answers (calculated from the compar-
ison with correct answers).

As users are working on the above tasks, we also collect
the vital signs with the Wi-Mind wireless module (explained
above). Before and after each task (task is considered as
task of one difficulty and one task type) there is a short
break of 30 seconds, where a user is instructed to relax
(see Figure 4). Further, there is a short transition period
when a user advances from the break to the task. The
break and the transition ensure that physiological signs be-
tween adjacent tasks do not interfere. Inspired by [9], for
each completed task we extract the following features from
the wireless signals:

• Respiratory signs: average breathing rate, standard
deviation of inter-breath intervals (see Figure 5 for inter-
breath intervals), square root of the mean of the squares
of differences between adjacent inter-breath intervals,
interquartile rank of inter-breath intervals, average of
inter-breath intervals, coefficient of variation of inter-
breath intervals, ventilation I:E (inspiratory:expiratory)
ratio calculated from intervals between each inhala-
tion and exhalation, number of zero-crossings, stan-



dard deviation and mean value between time intervals
between them. The following features were experimen-
tal, i.e. they were not mentioned in the article [9], but
we still tried to find some connection between physio-
logical signs and cognitive load: total spectral powers
of the filtered signal in the following power bands: 6-
12 beats, 12-18 beats, 18-24 beats, 24-30 beats; area
around maximum value in frequency domain; mean
value, standard deviation, median value, interquartile
rank of raw/filtered signal;time
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Figure 6: Heartbeat interval
variability through time.

• Heartbeat signs: average heartbeat rate, average RR
interval (see Figure 6 for RR interval variability), stan-
dard deviation of RR intervals, square root of the mean
of the squares of differences between adjacent RR in-
tervals, percentages between adjacent RR intervals that
are greater than x ms (x = 20, 50, 70), interquartile rank
and coefficient of variation of RR intervals. The following
features were experimental: total spectral power of the
filtered signal in power bands up to 150 beats, up to 40
beats, 40-80 beats, 60-100 beats, 80-120 beats, 100-
150 beats; area around maximum value in frequency
domain; mean value, standard deviation, median value,
interquartile rank of the raw/filtered signal.

Actual
Predicted

0 1

Relaxed (0) 287 127
Busy (1) 113 265
Accuracy (%) 70
AUC 0.77

Table 1: Relaxation/business
detection confusion matrix.
Random forest algorithm was used
and tested with
leave-one-participant-out
validation.

Finally, a machine learning model is trained to predict one
of the target metrics (e.g. task engagement) from the above
features. In the next section we describe the preliminary
results of model training and testing.

Data Collection, Machine Learning
Model Construction and Evaluation
In a quiet air-conditioned room we recreated the setup from
Figure 1 and ran the cognitive tasks application on a PC,
while collecting wireless signals with Wi-Mind. With each
participant we collected their demographics, explained the

experimental protocol, and had them complete the tasks
uninterrupted. The average time for completing the experi-
ment was around 45 minutes. In total we had 23 volunteers,
aging from 20 to 38, 17 male and 6 female.

To construct the ML model we use Orange, a popular data
mining toolkit [5]. We extract the above respiratory and
heartbeat features from the wireless signals and feed them
to different classifiers (Random Forest (RF), Naive Bayes
(NB) and Support Vector Machines (SVM)). The classifica-
tion accuracies are evaluated through cross validation.

In the preliminary step we were curious to see whether the
acquired data can at least be used to discern between a
person being busy and resting. To evaluate such a basic
classifier, we divide the data into relaxing (30 second in-
tervals when a participant is instructed to relax) and busy
(while solving task) time frames (see Figure 4 to get the
idea for relax/busy intervals). To have equal properties and
not having biased data in sense of different time intervals,
we removed the intervals where users took less than 30
seconds to solve the task and included only the center 30
seconds when a user is solving a task. The ratio between
relax and busy instances is 414:378 (52.3% : 47.7%). The
confusion matrix results for classifying relaxed and busy
time frames with a random forest-based classifier with 100
trees are shown in Table 1. We see that the classification,
although far from perfect, to an extent manages to separate
“relaxed" from “busy" states.

Next, we try to predict the cognitive load increase/decrease.
If we look at the Figure 4 again, to mark the increase in the
cognitive load, we merged the relax and busy intervals and
constructed another set of features: the breathing rate dif-
ference and the heart rate variability difference between the
beginning and end of the merged interval. If the user goes
from the relaxed to busy state, the instance is labeled “in-



creasing”, otherwise the cognitive load is “decreasing”. In-
stances ratio “increasing” to “decreasing” is 368:413. From
the Table 2 we see that classification for the binary classifi-
cation problem work well, at least with some classifiers (RF
and NB). This is not surprising, as there are clearly differ-
ences in breathing rates when user is going to start solving
some task versus finishing it.

The final goal of Wi-Mind is to infer the level of the user’s
cognitive load. Here we assume that the complexity of the
task at hand is reflected in a user’s cognitive load. While
this is true, besides the task characteristics, a participant’s
characteristics and the interaction between the two, also
influence the expressed mental effort [19]. Thus, we do
not expect our models to perfectly explain task complexity
through wireless sensing.

RF SVM NB
Accuracy 83 54 77
(%)

Table 2: Classification accuracies
of “increase” or “decrease” of
cognitive load.
Leave-one-participant-out
validation is used.

Task Accuracy (%)
type RF SVM NB
HP 39 43 38
FA 33 33 31
GC 38 38 39
NC 33 29 32
SX 48 50 26
PT 47 57 35

Table 3: Classification accuracies
of task complexities by task type for
different classifiers tested with
leave-one-participant-out validation
for each task separated.

We focus on data collected while a person was actively
solving a task and try to learn the difficulty of the task. As
mentioned, we have three types of task difficulties: low,
medium and high and six types of tasks. Because we re-
moved segments shorter than 30 seconds, the ratio be-
tween low:medium:high is the following: 27%:36.5%:36.5%.
The results for the overall data classification, tested with
leave-one-task-out validation, with data from all tasks bun-
dled together, show no improvement over a baseline major-
ity vote classifier, which has 36% accuracy. However, once
we group data and build a separate classifier for each of the
task types, we observe that the inference’s accuracy varies
with the task type (see Table 3). The prediction is the best
for the PT (pursuit test) with the average accuracy of 57%
with SVM, 47% with RF and 35% with NB algorithm. The
second one is the SX (Scattered X’s) with the average ac-
curacy of 48% with RF, 50% with SVM, and 26% with NB
algorithm. However, the rest of the classifiers mostly fail to
outperform the baseline. In PT task, similar to GC, users

have to type on keyboard which generates some noise in
the wireless domain. The most likely reason for a slightly
higher accuracy of classification with this task are wire-
less signal amplitude changes caused by extensive hand
movement as the user is engaged in typing, and reflected in
some of the calculated features.

Conclusions
In this paper we presented Wi-Mind, a wireless cognitive
load inference system. We implemented Wi-Mind in SDR
and experimental evaluated the system. The results show
that Wi-Mind can, to some extent, identify whether a person
is engaged in a task or not and when a user is just starting
or finishing some cognitive load related task.

However, our analysis is still in early stages. Immediate
improvements could include testing Wi-Mind with a higher
number of volunteers or with users with different age/physical
fitness, in order to make our dataset bigger and more rep-
resentative, additionally filter the signal for irregular noise
(e.g. limb motion), and others. Furthermore, we plan to ex-
plore different methodological paths. First, the objective
task difficulty label almost certainly does not reflect the ac-
tual user engagement, nor perception – a well trained user
might find all of the given tasks easy. Thus, we also plan
to evaluate the ability to infer the subjective NASA-TLX in-
dex metric. Second, features we used are based on experi-
enced from intrusive means of measuring vital signs. Wire-
less signal phase data we collected might hide additional
features potentially related to cognitive engagement. Being
feature oblivious, a convolutional neural network might rep-
resent a promising approach. Finally, our models are built
on the combined data of all users. In future, we will examine
models built for groups of similar users.
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