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Abstract—Self-powered wireless mesh networks have gained
popularity as a cheap alternative for providing Internet access in
many rural areas of the developed and, especially, the developing
world. The quality of service that these networks deliver is often
bounded by such rudimentary issues as the unavailability of electri-
cal energy. Dependence on renewable energy sources and variable
power consumption make it difficult to predict the available energy
and provide guarantees on the communication performance. We
develop an energy flow model that accounts for communication
and energy harvesting equipment hardware specifications; high
resolution, time varying weather information; and the complex
interaction among them. To show the model’s practical benefits we
introduce an energy-aware routing protocol, the Lifetime Pattern
based Routing (LPR), specifically tailored for self-powered wireless
networks. LPR’s routing decisions are based on the energy level
estimations provided by our energy flow model. The initial results
are promising, and show our protocol outperform the existing work
in rural-area wireless network routing.

I. INTRODUCTION
Erratic and sporadic power supply is the most commonly re-

ported problem observed in rural area networks [4]. One way of
coping with the problem of unreliable renewable energy influx is
to provide a greater safety margin by installing additional energy
harvesting hardware. Unfortunately, this leads to unnecessary
network over-engineering which, having in mind that the power
supply related equipment already costs one order of magnitude
more than the communication equipment relying on it [1], defies
the purpose of using self-powered wireless routers - low cost.
The other solution is to use the given energy budget more
wisely. However, renewable energy sources and communica-
tion patterns express unstable behavior, making it difficult to
estimate the amount of available energy. We develop a model
that captures the impact of varying weather conditions on
power generation. At the same time it takes into consideration
the interaction between the system components, and accounts
for possible losses and changing energy consumption. We use
the model’s ability to estimate energy availability to design a
novel routing protocol that utilizes the estimations of future
energy budget to select paths that offer a better user experience
compared to the protocols that ignore such information.
In a typical rural area network such as AirJadi [4] in India or

Tegola [1] in Scotland, a self-powered wireless network node
consists of communication equipment (a routing board, wireless
NICs, antennas) and energy harvesting equipment (solar panel
and/or wind turbine, rechargeable battery, charging regulator).
The former is the energy consumer while the latter is the only
source of energy. Given that rural area networks are often
subject to intermittent connectivity, they can be classified as
delay tolerant networks (DTNs).
Although weather measurements and short term predictions

can be derived from the data gathered at a local weather station,

microclimate factors such as terrain ruggedness, equipment
orientation and surrounding vegetation affect wind speed and
solar irradiation sufficiently to render the information unusable.
We propose the use of cheap on-site anemometer and solar
sensors to gather data and use the history of readings for future
wind speed and solar irradiation level prediction. The means of
achieving accurate weather condition prediction is beyond the
scope of this work.

II. ENERGY MODEL

Climate conditions are most often variable and unpredictable,
such that any model that relies on annual (or any other long
term average) values is inherently inaccurate. For example,
the wind energy harvested is proportional to a cube of the
wind speed. Therefore two sites that have the same average
wind speed may have one order of magnitude different energy
capacity - more variable wind speeds provide more power.
Therefore, we aim to model the system’s behavior on a time
scale as small as is realistic. The main restriction is the
granularity of the weather sensor data. Our approach closely
follows the physical properties of the system - battery type,
solar panel and wind turbine specification and available power
consumption levels. We have identified the following as a
good approximation of a lead-acid battery energy to voltage
relationship:

(1) VB,i = VB,80 + VB,0−VB,80
log(EB,0−EB,80+1) ∗ log(EB,i − EB,80 + 1)

where VB,i is the current battery voltage, VB,0 is the
battery voltage when full, VB,80 is the battery voltage when
at 80% DoD (depth of discharge); while EB,i is the current
battery energy, EB,0 is the battery energy when full and EB,80

is the battery energy when at 80% DoD. The charging/drainage
process is determined with the equation:

(2) EB,i+1 = EB,i + k ∗ REGi ∗ (EWG,i + EPV,i) − EC,i

where EWG,i, EPV,i and EC,i are the energy generated
by the wind turbine, generated by the solar panel and
consumed by the communication equipment in the iteration
time period, respectively. Regulation parameter REG i dictates
the amount of energy that is transferred to the battery. Its value
depends on the current battery voltage level, while k represents
the charging efficiency. In the above equations, i marks the
iteration number. The logical step is to assume that all the
variables keep their values between the two measurements,
until the next iteration of the algorithm starts. The battery
voltage/charge cannot change significantly in a small time
period thus the assumption is reasonable. Given the current
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Fig. 1: Battery voltage under changing weather conditions.

solar sensor and anemometer readings and power consumption,
the model calculates the battery voltage/charge in the next
timestep; if the input is the expected sensor readings and power
consumption, the model predicts the future energy supplies.
We evaluated the accuracy of the model by comparing the

estimated battery voltage with the values recorded on-site at
the Tegola network. Figure 1 depicts the model performance
in a two week period. The spikes in the measured voltage
occur when the battery is being connected to an active wind
turbine/solar panel. We decided not to model them as they do
not correspond the actual change in the battery charge.

III. ENERGY-AWARE PATH SELECTION
Wireless routers and NICs, unless engaged in active trans-

missions, can employ a plethora of power saving techniques. In
the ideal case these are low-power, sleep states resulting in an
order of magnitude lower power consumption; even a simple
switching of a wireless NIC mode from send to idle lowers
the total energy consumption enough to result in considerable
battery savings. In our solution, through routing decisions, we
implicitly control energy consumption levels and improve the
distribution of energy reserves amongst network nodes. The
goal is to prolong or, if possible, avoid network partitioning
and node battery death to lower packet delivery delay. LPR is
constructed as a link-state routing protocol. There are multiple
reasons why this type of a protocol is the most suitable for the
target environment; a thorough discussion can be found in [2].

A. Link Cost Metric
Nodes use the energy model to estimate the remaining battery

uptime. Each of the nodes propagates the information about
the expected future up and down times to its neighboring
nodes. At the end of the process every node has information
on the expected failure patterns of its links (determined by the
corresponding endpoints’ up and down times). Link weights are
assigned so that links expected to be down sooner have lower
value. Additionally, if links are down, those that have sooner
predicted uptime have larger weight. On each node there is
enough information to run Dijkstra’s algorithm and select a
route for each destination that has the highest minimum link
weight from the set of possible routes.

IV. EVALUATION
We implement LPR in DTNSim2 - Java based simulator

extended with an energy module we have developed. All nodes
have identical hardware properties and infinite storage buffers.
The node up and down time is dictated by the weather traces
provided by actual sensor readings from the Tegola network [1].
LPR is compared to MEED [3], a metric used in DTLSR[2] and
readily available in DTNSim2. We compare the protocols on a 5
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Fig. 2: Delay comparison of LPR and MEED: grid topologies.

by 5 node grid topology, through twenty different runs lasting
four simulation days each; the nodes are randomly assigned
different initial battery voltages in each run. To exclude the
influence of network congestion, all the links have infinite
bandwidth and zero propagation delay. We use the same traffic
patterns as in [2]: every hour each of the nodes sends a single
64kB message to all other nodes in the grid.
In a DTN setting, end-to-end packet delay can be improved

if the routing protocol correctly evaluates the links and sends
packets over the paths that consist of the links that will be
available the soonest. Hints from the energy flow model help
LPR to accomplish that goal. Figure 2 shows the average packet
delivery delay for MEED and LPR in 20 four day simulations.

V. RELATED WORK

To the best of our knowledge, energy flow modeling for
self-powered wireless networks has not been considered before.
Intermittent connectivity has been observed in many real life
situations and delay tolerant routing protocols have emerged
in various flavors. Work that is most similar to ours is [2].
The authors specifically target rural-area networks, propose and
justify a link-state protocol and select MEED as the most
appropriate metric. Although targeting the deployments where
the most probable cause of link-node failure is the lack of
energy, the authors do not consider energy availability behavior.

VI. DISCUSSION AND FUTURE WORK

In this paper we develop an energy flow model for self-
powered wireless network routers. The model serves as a
basis for an energy-aware routing protocol targeting rural area
wireless networks. Our routing protocol (LPR) strives to extend
service and prevent node failure by avoiding the use of nodes
that are likely to be left depleted if they serve as a communi-
cation bridge. We are currently investigating a variation of the
protocol that minimizes the amount of traffic affected by failures
as well as the impact of the failure on the traffic. The above goal
is achieved if the nodes that are about to generate substantial
traffic and are energy-critical are excluded from routing. In
addition to the above, a precise energy flow model is applicable
to a number of research challenges such as network planning
and online energy consumption management to name a few.
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