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Abstract White spaces promise to revolutionize the way wireless connectivity is
delivered over wide areas. However, large-scale white space networks face the prob-
lem of allocating channels to multiple contending users in the wide white space
band. To tackle the issue, we first examine wireless propagation in a long-distance
outdoor white space testbed and find that a complex combination of free-space loss
and antenna effects impacts transmission in white spaces. Thus, a need arises for a
strategy that goes beyond simple channel utilization balancing, and uses frequency
probing to profile channels according to their propagation properties. We devise
VillageLink, a Gibbs sampling-based method that optimizes channel allocation in a
distributed manner with a minimum number of channel switching events. Through
extensive simulations we demonstrate that VillageLink results in a significant capac-
ity improvement over alternative solutions.
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9.1 Introduction

Internet connectivity is available to merely 39% of the world’s population [7]. Lack
of internet access is primarily restricted to developing regions, however,many remote
communities in the developed world are currently disconnected as well [22]. The
main cause of limited Internet penetration stems from the fact that more than three
billion people live in rural areas. These areas are hard to connect via copper cables,
fiber optic or cell phone base stations due to high deployment cost and low population
density which renders these techniques economically infeasible. Rural areas are also
hard to reach via cheap license-free solutions such as WiFi, as these technologies,
operating in 2.4 or 5GHz bands, have a very limited connectivity range.

In the 50–800MHz band, a large block of frequencies has recently been freed due
to the analog to digital TV transition. This spectrum, called white spaces, promises
to deliver an affordable means of providing wide area coverage. It is extremely
attractive for rural areas as the propagation range is an order of magnitude higher
than in the bands used by competing technologies. However, the complexity of sig-
nal propagation over the wide white space band, and the economic necessity of a
resource-efficient, unlicensed, distributed solution for rural areas renders wide area
white space networks uniquely challenging to realize.

In a white space network a number of frequency selective effects will be present
due to the topology, vegetation and antenna design. Because of the highly complex
nature of electromagnetic propagation and the difficulty in accurately modeling fad-
ing, the analytical solution that provides a clear picture of frequency quality in white
spaces is not practical. Frequency profile, however, is extremely important as it can
be used as a basis for channel assignment in a white space network. However, even
when frequency propagation information is available, channel allocation in a white
space network is very hard. In a network where the span of available channels is not
large, such as in WiFi networks, channel allocation can be cast to a graph coloring
problem. In white spaces, the wide range of available channels leads to drastic dif-
ferences in propagation among channels. These differences stem from the variation
of free space propagation over frequencies, but also from antenna properties, as in
practice antennas do not perform uniformly over a very wide span of white space
frequencies. Finally, frequency assignment in such a wide band network has to sat-
isfy conflicting goals: maximize useful transmission by allocating frequencies with
superior propagation properties and minimize interference by allocating frequencies
that propagate over a shorter radius.

In this chapter we successfully address the above challenges by designing a light-
weight frequency profiling methodology to evaluate channel quality and a novel
channel allocation method that assigns operating frequencies to base stations with
the goal of minimizing the impact of interference over the useful signal levels in
a network. We compile these contributions into a practical channel profiling and
allocation scheme for wide area white space networks called VillageLink. We test
VillageLink’s frequency probing mechanism on a long-distance software-defined
radio white space link we deployed and confirm that antenna effects and the envi-
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ronment are a significant reason for high propagation diversity among white space
channels. Through simulations we evaluate VillageLink’s channel allocation. We
show that our frequency-aware channel allocation leads to up to twice as much
network capacity than an alternative heuristic based on interference avoidance,
and that with its high performance, efficient resource usage and distributed nature,
VillageLink represents a practical solution for wide area white space coverage in
rural areas.

9.2 Wide-Area White Space Networks

White spaces represent a historic opportunity to revolutionize wide area wireless
networking. White spaces not only deliver much greater communication range than
Gigahertz frequencies, they also support non-line of sight communication, includ-
ing transmission through vegetation and small obstacles, which makes them highly
suitable for various terrain configurations. However, white space networks have to
deal with unique peculiarities of transmission over a wide band of relatively low fre-
quencies, and should enable license-free unplanned deployments in rural developing
regions.

9.2.1 TV Spectrum Availability

White spaces spectrum can also be used by primary users, typically television and
wireless microphones. In order to understand the amount of available white space
spectrum, we conducted a number of spectrum scans in rural and urban regions in
South Africa, Zambia and the USA.

South Africa has five TV channels utilizing VHF andUHFTV bands; all channels
are available in urban centres and a portion of these channels available in rural
areas. Zambia only has two national TV programs with very limited coverage. The
USA, in contrast, has anywhere between 10 and 25 terrestrial TV channels available
depending on location. We carried out spectrum scans in rural and urban areas in
the USA and Southern Africa using an Ettus USRP2,1 8dBi log-period antenna, and
a laptop. More details on the measurement setup can be found in [12]. Figure9.1
shows the spectrum scan of the lower portion of the UHF band used for television
broadcasting. Urban areas of the USA have very limited white space available. Rural
areas of the USA are comparable to urban areas of South Africa. Rural areas of
Zambia and South Africa have an abundance of white space and are thus very well
suited for rural connectivity solutions.

1 www.ettus.com.
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Fig. 9.1 Analysis of available spectrum in the lower UHF band for urban and rural areas in South
Africa, Zambia and the USA

9.2.2 Wide Band Frequency Selectivity

Oneof the unique challenges of establishingwireless communication in theTVbands
is the large amount of frequency selectivity due to variation in gain and free space
loss across the operating band. This frequency selectivity complicates the choice of
the optimal communication channel.

The large variation in free-space loss across the band also known as “dynamic
range”. Dynamic range is calculated as follows:

DdB = 20 log (fU/fL) (9.1)

where fL and fU are the lowest and the highest frequency in the band, respectively.
In Table9.1 we summarize the dynamic range of a number of traditional wireless
systems. Free-space loss in a traditional wireless network, such as WiFi or GSM,
is relatively uniform over the range of frequencies these networks operate on. The
reason for low dynamic range in these networks lies in the fact that they either operate
over a relatively narrow band of frequencies, such as 50MHz for GSM and 80MHz
for 2.4GHz WiFi, or they operate on high central frequencies where the difference
between the lowest and the highest frequency diminishes, as is the case with 5GHz
WiFi. White spaces, however, operate on a wide band of low frequencies, and the
difference in propagation between white space frequencies can be large. Creating an
antenna which has a flat frequency response across the entire white space band is,
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Table 9.1 Dynamic range and fractional bandwidth of different wireless systems
Technology fL (MHz) fU (MHz) D (dB) FB (%)

802.11 (2.4GHz) 2,412 2,484 0.26 2.9

802.11 (5GHz) 5,170 5,700 0.85 9.8

GSM900 935 960 0.23 2.6

White spaces 43.25 797.25 25.31 179

Fig. 9.2 White space 3km experimental link in sub-urban area of Pretoria, South Africa between
CSIR offices and a staff house

however, challenging. Note that the same issue does not arise in GSM (as well as 3G
and 4G/LTE) networks, that can also operate on a wide range of frequencies (e.g.
GSM850, GSM900, GSM1800). Unlike with white spaces, in these networks once
the band selection is done, the operation is restricted to a single relatively narrow
range of channels.

Besides the wide dynamic range, white space links experience uneven fading due
to antenna patterns. The fractional bandwidth (FB) for a frequency band, calculated
as a ratio of operating bandwidth and the central frequency, determines how wide-
band an antenna should be in order to have the same gain over all frequencies with
the band. From Table9.1 we see that white spaces require significantly wider band
antennas than GSM and WiFi. Such antennas are hard, if not impossible, to design.
Consequently, white space links are highly prone to the effects of imperfect antennas.

To confirm this statement, we deployed a 3km outdoor non-line-of-sight white
space link in a sub-urban area in South Africa shown in Fig. 9.2. The terrain consists
of undulating hills and dense foliage. Each of the link nodes consists of a USRP22

software defined radio and a dual core 2.4GHz Pentium PC running GNUradio
software. Each radio is equipped with a 8dBi UHF yagi antenna. One node acts as

2 http://gnuradio.org/.
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Fig. 9.3 Analysis of received signal strength over the UHF band using 8 dBi yagi antennas at
transmitter and receiver. The plots demonstrate that received signal strength is far more dependent
on the antenna gain pattern than on attenuation due to free-space loss. This is confirmed by antenna
frequency profiles of a number of TV antenna models in Fig. 9.4

a transmitter and sends probes spaced 1MHz apart over the white space spectrum.
The transmitter radio signal is passed through a 1W power amplifier. Another node,
the receiver, scans the spectrum in 1MHz steps both with the transmitter turned off
(baseline scan) and with the transmitter sending probes (signal scan).

Figure9.3 shows the received signal strength across the UHF TV band in South
Africa. Three TV stations were detected and probes did not occur at these frequen-
cies. We note that the received signal strength does not fall of monotonically with
increasing frequency, which would be the case if only free-space loss determined
the propagation loss. Instead, due to the antenna characteristics the propagation loss
is non-uniform across the UHF band. In order to study the antenna characteristics,
we use the WIPL-D antenna modelling package and create a model of the deployed
antenna. The results are shown in Fig. 9.4. While an antenna with no surrounding
structures has a more predictable gain patterns, when surrounding structures and
antenna imperfections, such as bent elements, are introduced, the antenna gain pat-
tern has far less predictability similar to what was seen in our received signal strength
measurements. Predicting the type of TV antenna being used or the structures sur-
rounding the antenna is not possible, which necessitates frequency probing in white
spaces.

In addition to antenna effects, a part of frequency selectivity may stem from
the environment and terrain effects. Shadowing, i.e. slow fading due to physical
obstacles on the signal path would still be detected and accounted for with frequency
probing to detect average channel gain described in Sect. 9.4. Unlike shadowing,
detecting the level ofmultipath, which leads to rapid variation of propagationwithin a
channel, requires amore sophisticated channel sounding process but can use the same
frequency probes used to detect average channel gain. However, channel allocation
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Fig. 9.4 Antenna gain for yagi antenna used in white space link in the outdoor testbed. The plot
shows the following scenarios: (a) Antenna with no nearby structures, (b) Antenna mounted on the
side of a wall, (c) Antenna mounted on a flat roof, (d) Antenna mounted on a pitch roof, and (e)
Antenna with imperfections due to bent elements.

only requires knowledge of the average channel gain of the channel, and in Sect. 9.3
we devise a lightweight channel probing mechanism.

9.2.3 Channel Assignment in White Space Networks

The problem of channel assignment in wireless networks is often expressed with
graph coloring, where each color represents a different channel. For a link, one
of the available central frequencies is assigned so that a goal, such as maximum
throughput, is achieved. In the channel allocation literature on traditional wireless
networks all colors are considered equal in terms of their propagation properties [20].
In white spaces, due to the wide dynamic range and antenna effects, the transmission
range varies significantly among frequencies in the band (see Table9.1 and Fig. 9.3).
Therefore, selection of the operating frequency can impact the existence of a link
itself. This further complicates the problem of graph colouring, as now not all colours
are equal. Figure9.5 show one such example where a tradeoff between establishing
links and avoiding interference is hard to achieve. In a white space network the color
affects the graph structure, thus the existing approaches to frequency assignment are
not directly applicable.

9.2.4 Network Architecture

The network scenario that describes the setting in which VillageLink will operate
is given in Fig. 9.6. In this paper, we consider wide-area white space networks that
consist of individual base stations (BSs), each with a set of associated customer-
premises equipment (CPE) clients. We term one such BS with its CPEs a cell. A BS
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Fig. 9.5 A simple example of the challenges of frequency assignment in white spaces. We want to
establish connections from base station (BS1) to client premises equipment (CPE1), BS2 to CPE2,
and BS3 to CPE3. Two channels represented by different hatching patterns are given. In a all links
operate on the one of the channels, however there is interference between BS1 and BS2, which may
affect clients in the interference area; in addition, due to the channels poor propagation properties
BS3 signal is not reaching CPE3. In b the interference is resolved by switching the frequency for
BS2. In c a link betweenCPE3 and BS3 is establishment through assignment of a different frequency
to BS3. However, this frequency propagates further, introducing interference atCPE2 served by BS2

Fig. 9.6 Layout of a targeted white space network showing interference scenarios between televi-
sion and white spaces, and between white space networks in different domains. White space base
stations within the same domain send base station to base station probes (BBPs) to calculate the
channel conditions among themselves

and all the CPEs within a cell operate on the same channel3; thus, when considering

3 We envision OFDMA channel sharing among the CPEs of a BS. Such an approach is mandated
by IEEE 802.16 and IEEE 802.22 standards. We leave the details of subcarrier allocation as the
future work, and in this paper concentrate solely on channel allocation at the BS level.
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channel allocationwe use “BS” and “cell” interchangeably. All cells that are operated
within the same administration are called a WRAN domain. The existence of TV
transmission and otherwhite space networks not in our service set reduces the number
of channels available to the BSswithin our domain. The aim of our work is to develop
a channel allocation algorithm, as well as supporting structures such as a MAC layer
and a frequency probing mechanism, so that the overall network performance within
our white space WRAN domain is maximized.

We assume that base stations are connected with a back channel. This can be
another white space radio tuned to a common channel that does not interfere with the
set of channels available for base station to client connectivity. Moreover, because
the amount of control data sent over the back channel is low, a VHF/UHF packet
radio, or any other low bandwidth communication technology can be used.

9.3 Medium Access Control Modifications to Support
Channel Probing

Channel probing is a necessary tool for propagation evaluation over a wide white
space frequency range. Unfortunately, the existing MAC protocols proposed for
wide area networks [2, 18, 19] do not explicitly support frequency profiling. The
MAC protocol that most closely resembles our proposed system is IEEE 802.22. The
protocol has built-in protection for primary users and mechanisms to move to new
channels but has no built-in mechanism to choose from a set of available channels.
It specifies that the channel may be chosen from the available list by an operator or
by a “local routine”. Thus, instead of rebuilding an entire MAC layer we propose to
extend the 802.22 protocol to include a feature that performs frequency profiling on
all available channels. The details of the technique to calculate the channel conditions
using a probe are provided in Sect. 9.4. In this section we outline how we extend the
802.22 MAC protocol to support probing.

The MAC is organised into 160ms superframes which consist of sixteen 10ms
frames.Each frame is divided into a downstreamsubframeand anupstreamsubframe;
the size of these subframes depends on the amount of downstream and upstream data
that needs to be sent between the base station and the clients. All base stations are
equipped with a GPS and are able to synchronize their clocks to within 2ns, which
is sufficiently accurate, given the timing requirements of IEEE 802.22. Base stations
start their first superframe at the start of a GPS minute cycle; this greatly simplifies
inter-base station communication and scheduling. Final synchronization is carried
out using the superframe preamble.

The current 802.22 MAC specification already has sophisticated mechanisms to
detect other 802.22 WRAN domains using co-existence beacons, move into a time
division multiplex mode in cases where base stations are forced to share the same
channel, allow clients to scan for and associate with base stations, and carry out
ranging between clients and base stations to account for propagation delays. However
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Fig. 9.7 General superframe structure of 802.22 showing additional probe sequence required for
frequency profiling. The 1,024 bit probe sequence, in the worst case, increases overhead by 0.44%;
this includes the 10µs Frequency Switch Time (FST)

noneof thesemechanisms allowabase station todiscover channel conditions between
WRAN cells at all available channels.

Figure9.7 shows the superframe structure of 802.22 with our modification, an
additional probe sequence after the superframe preamble to allow for frequency
profiling at different wireless frequencies. The probe sequence uses a 1,024 bit
PN sequence modulated using DBPSK with four samples per symbol. The probe
sequence incurs low overhead, using an additional 0.44% of the channel in the worst
case. We place the probe sequence after the superframe preamble to ensure we do
not break any timing synchronization. Clients make use of the superframe preamble
to synchronize any clock offsets. The probe will be transmitted on a probe chan-
nel, pi, where p = (p1, p2, . . . , pN ), a set of N probe channels. The probe channel
set is a subset of the complete set of available TV channels, v = (v1, v2, . . . , vM)

with N < M after eliminating non-vacant channels. Each base station in the WRAN
domain would first have consulted its spectrum database and scanned all the channels
for primary users and other white space domains to ensure availability.

In order to perform frequencyprofiling betweenbase stations on all available chan-
nels, a mechanism is required to coordinate probing timing, channel probe senders
and listeners. When a base station is in a probing state, it sends a probe at the begin-
ning of each superframe. It sequentially steps through the full white spaceTVchannel
set and only sends a probe if the channel is contained in the probe channel set for that
base station. The entire scan takes 160 ∗ Mms, where M is the total number of TV
channels. If the probe channel is not contained in the probe set, the base station does
not send any transmission in the probe sequence slot. Base stations maintain their
own probe sets as they may each generate interference to primary users on different
sets of frequencies. We chose a mechanism where we step through the entire set
of white space channels with interspersed quiet periods on non-vacant channels to
avoid needing to maintain full consistency of all probe channels amongst all base
stations and associated clients.
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Fig. 9.8 Timing diagram showing the base station probes (BBPs) sent by the base station and
received by other base stations and clients. a BS1 has token with no associated clients. b BS1 has
no token and no associated clients. c BS2 has token with associated clients. d BS2 has no token and
associated clients. e CPE associated with BS2 with or without token

In order to coordinate probe transmission and reception, we propose a token
approach in which a base station only transmits probes when it has a probe token and
listens for probes when it does not have a token. A breath-first traversal of a spanning
tree of the graph is used to ensure that a token traverses the graph of base stations
when the back channel forms the edges. Once the base station has finished probing
across the TV channel set, it sends the token to the next base station using a traversal
algorithm; the probing process is completed when all base stations have used the
token. Probes can take place when base stations are in the initialization phase and
have not chosen an operating channel, or when they are in an operating phase and are
communicating with associated clients and a new base station is added, for example.
A request to probe is broadcast by the base station wishing to initiate probing in the
domain.

The 802.22 specification makes use of clients to sense for primary users and
extend the sensing coverage area. We propose to use a similar notion when listening
for probes. Clients of one base station experience interference from all other base
stations. To account for this interference clients can be instructed to listen for probes
from base stations with whom they are not associated. Frequency profiling results
for clients are sent back to the associated base station on the final upstream frame
once the client has listened on the full set of white space channels. The maximum
SNR value of a received probe heard at a base station and its associated clients is
used to incorporate the worst case effect on the system. These SNR values from each
of the cells that received the probes are unicast on the back channel to the sending
base station. Results received at sending base stations are distributed to neighbouring
base stations, where two base stations are defined as neighbouring if a probe can be
exchanged between them on at least one frequency.
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Figure9.8 shows a number of timing diagrams for different base station and client
states. Figure9.8a shows a base station in the initialization phase in which it has a
token. In this case only probes are sent by the base station. Figure9.8c also shows
a base station with a probe token but in this case the probes are interspersed within
standard 802.22 frames as the base station is actively communicating with clients.
Quiet periods, where no probe is sent, are different in Figs. 9.8a and c as they effect
primary users on different channels. Figures9.8b and d show a base station receiving
probes and measuring the channel condition between the sending base station and
itself. Figure9.8e shows a client receiving probes from a base station with or without
a token. In the case of a client hearing a probe from a base station it is not associated
with, the frequency profile matrix is sent back to its associated base station and then
forwarded on the back channel to the sending base station with the token.

Once the probing process is completed each BS i has information on signal propa-
gation at different frequencies: (1) within its own cell, obtained through aggregation
of probing results from the cell’s CPEs, (2) between i and each of the BSs j that
heard probes from i, and (3) within cells that are served by each of the neighbouring
BSs j. We note that power failures are expected in rural areas [21], and should they
be experienced, the base station can power up to its previous known state stored in
non-volatile memory as the frequency profile matrix, which contains the frequency
profile between all base stations at all available channels.

9.4 Channel Profiling

In this section we provide details of the probe that is sent at the beginning of each
superframe.This probe allowsus to determine the channel gain at eachof the available
white space channels between base stations and clients. The probe also allows us
to determine interference levels between multiple base stations. For determining
the optimal channel to use at a base station, we only require a calculation of the
overall channel gain at each available frequency. However, once an optimal channel
is chosen, the same probe can be used to calculate the detailed channel impulse
response for the chosen channel—a process called channel sounding. The channel
impulse response can be used for optimal allocation of OFDM sub-carriers to each
client connecting to the base station.

9.4.1 Channel Gain Calculation

Each master probe is simply a pseudo-noise (PN) sequence modulated with DBPSK.
The client calculates the average powermeasured,Pavg, over the probe listenwindow.

Pavg(dB) = 10 log
(
1
N

∑
s(n)2

)
+ CF (9.2)
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where s(n) is the signal received, n is the sample number, N is the total number
of samples and CF is the correction factor, which is calculated by calibrating the
receiver. Average power is a low complexity (O(N)) calculation and the cognitive
radio can carry this out in real time using a cumulative average.

The SNR of the probe can then be calculated by using a previously known noise
level Navg from an initial scan when no probes are present.

SNR(dB) = Pavg(dB) − Navg(dB) (9.3)

Figure9.3 shows the result of this channel gain calculation across the entire UHF
TV band. The average noise shown in the Figure is measured when no probes are
sent and the average power is measured in 1MHz steps when probes are sent from
the base station.

From the measured SNR we can extract the channel gain:

H = SNR · N0 ·W
P

(9.4)

where N0,W and P denote the noise constant, channel width and the transmission
power, respectively.

The set of channel gains at each probe frequency are used for the channel allocation
algorithm described in Sect. 9.5.

9.4.2 Channel Sounding

Once a channel is selected using the channel allocation algorithm, the system can
carry out more detailed analysis of the channel. This is done by analyzing the channel
impulse response at a specific frequency using the stored received probe sequence
to calculate the channel gain at each available white space frequency.

The discrete channel impulse response is calculated using a correlation-based
channel sounder. The received signal, r[n], is given by the convolution of the channel,
h[n], and the transmitted signal, s[n], where n is the sample number:

r[n] = s[n] ∗ h[n] (9.5)

In our case, we need to estimate h[n] from the received signal r[n] and a known
signal s[n] using deconvolution:

h[n] ≈ 1
Ps

r[n] ∗ s[−n]. (9.6)

where Ps is the power spectral density of the input signal s[n]. As we are using
digital signals, it is reasonable to assume that the input signal is approximately flat or
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Ps = |S(n))|2 is a known constant. Once h(n) is known we can calculate the Fourier
transform of h(n) to find the frequency domain response, H(n).

In order to achieve maximum discrimination in the correlator, a DBPSK mod-
ulated PN sequence is chosen such that the Index of Discrimination (ID) is high.
ID is defined as the ratio of the first autocorrelation peak to the nearest neighboring
autocorrelation peak. The receiver has prior knowledge of the PN sequence that was
sent by the transmitter and can carry out the deconvolution with the received signal
in order to calculate the channel impulse response. The frequency response of the
channel is determined by Fourier transforming the channel impulse response.

The minimum multipath delay resolution that is possible is given by δτ = 2
α ,

where α is rate of the PN sequence also known as the chipping rate. The minimum
path difference, Dpd , that can be resolved between multipath components is given
by Dpd = cα. It is important to determine the level of multipath in a channel as
increased levels of multipath cause less coherence in the frequency response of the
channel. Although channel equalization can be achieved by adjusting the magnitude
of the OFDM sub-carriers at the transmitter, selecting sub-carriers for each client is
a complex problem due to different channel conditions between a base station and
each of it’s associated clients.

We store ten PN sequence lengths worth of received data in memory and carry
out the deconvolution over this data set. This allows us to store ten different channel
impulse responses for each repeated PN sequence and carry out transient analysis or
averaging.

9.4.2.1 Practical Considerations

We use a chipping rate of 1 and 2MHz for our experiments. We found that higher
chipping rates do not performwell on the USRP radios. This translates to a minimum
multipath delay resolution of 2 and 1µs or a minimum path difference of 600 and
300m respectively. From previous studies [4] rural open areas typically have delay
spread of up to 1.3µs or up to 11.6µs if there are deep canyons or mountains.
Suburban areas usually do not have delay spread over 2.4µs and urban areas have
delay spread up to 4.6µs with many reflections. From this study our chipping rate
should be sufficient to discriminate multipath in most environments.

To further improve the signal to noise ratio of our channel sounder, we sample
at 4MHz at the receiver. This receiver rate, between 2 and 4 times the PN sequence
chip rate, creates an oversampled signal that improves the SNR. We also improve
the SNR by using a long PN sequence (1,024 bits) taking multiple snapshots of the
received PN sequence and calculating the average.

9.4.2.2 Results

Figure9.9 shows the results for channel sounding at 530MHz and a lower chip rate
of 1MHz. This is shown for a single deconvolution snapshot over one PN sequence.
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Fig. 9.9 Channel sounding at 530MHz using 1MHZ chipping rate and oversampling rate of 4. a
Is the channel impulse response of the channel and b is the frequency response of the channel. This
plot shows the result for deconvolution of a single received PN sequence to determine the channel
impulse response
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Fig. 9.10 Channel sounding at 530MHz using 2MHz chipping rate and oversampling rate of 2. a
Is the channel impulse response of the channel and b is the frequency response of the channel. This
plot shows the result for averaging the deconvolution of 10 received PN sequences to determine the
channel impulse response

There is a very clear strong echo at 15µs; there is also an echo at approximately 2µs
but it is hard to distinguish from the main direct path as the chipping rate is too low.
Ideally you want the chipping rate resolution to be at least half that of the time to
echo. The frequency response shown in Fig. 9.9b shows some deep fades due to the
large echo present in the channel.

In Fig. 9.10, the chipping rate is increased to 2MHz and we generate an average
of 10 channel impulse responses. The first echo at 2µs is now very visible, however
the 15µs echo is no longer visible. It is possible that this echo was temporary due to
a change in the environment, such as a moving truck. Fewer deep fades are visible
in the frequency response.
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Fig. 9.11 Channel sounding at 834MHz using 2MHZ chipping rate and oversampling rate of 2. a
Is the channel impulse response of the channel and b is the frequency response of the channel. This
plot shows the result for averaging the deconvolution of 10 received PN sequences to determine the
channel impulse response

Figure9.11 shows the channel impulse response for 834MHz at the 2MHz chip-
ping rate. There are fewer echoes than in the lower UHF frequency plots, and as
a result this frequency response is the most coherent. Environmental terrain has
different absorption levels at different frequencies and this specific sub-urban envi-
ronment had higher absorption levels for multipath signals at higher frequencies.

In the rest of the chapter, we only make use of the channel gain calculations for
optimal channel selection and we leave optimal allocation of sub-carriers using the
channel impulse response for future work.

9.5 Channel Allocation

In this section we devise a distributed channel allocation algorithm that uses infor-
mation obtained through frequency profiling (Sect. 9.3) and does not incur channel
switching overhead typical for other allocation schemes. Our approach is based on
the annealed Gibbs sampler, a technique that can help us minimize a target function
in a distributed way. In the next subsection we present the basics of Gibbs sampling.
An interested reader can find more details about Gibbs sampling in [1]. We then cast
our problem to the Gibbsian framework and sketch the channel allocation algorithm.

9.5.1 Gibbs Sampling

The Gibbs sampler is a Markov chainMonte Carlo (MCMC) technique for obtaining
random samples from a multivariate probability distribution. The sampler is useful
in situations where the joint distribution is unknown or difficult to sample, but the
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conditional distributions of variables are known and easy to sample. The Gibbs
sampler draws samples from a multivariate probability distribution p(x1, . . . , xN ) as
follows:

• Initialize all variables x1, . . . , xN to (random) starting values x01, . . . , x
0
N .

• In every iteration j = 1, . . . , k, sample each variable xi from the conditional
distribution p(xi|xj1 . . . , x

j
i−1, x

j−1
i+1, . . . , x

j−1
N ) to obtain xji .

After the aboveprocess is finished,weare leftwith xj1, . . . , x
j
N ; j ∈ [1, . . . , k] samples

from the joint distribution p.
We can solve the channel allocation problem throughGibbs sampling, if we obtain

the samples from a multivariate probability distribution that:

1. Is related to overall network performance.
2. Depends on the selected operating channel of each of the base stations.
3. Isolates the impact of each of the base stations on the total optimization function.
4. Can be calculated in a distributed way and sampled independently at each of the

base stations.
5. Favors states that lead to maximum network performance.

In the following section we develop a network performance metric that can be
used as a basis for a probability distribution that satisfies the above demands.

9.5.2 Network Performance Metric

Traditionally, the goal of a channel allocation protocol is to assign available channels
toBSs so that the total network capacity ismaximized. The capacityCi(cp) of a single
cell operating on the channel ci is:

Ci(ci) =
∑

k∈Ki

Wk log (1+ SINRik(ci))

where Ki is the set of CPEs within the cell, Wk is the width of a part of the channel
ci used by CPE k, and SINRik(ci) is the signal to interference plus noise ratio at the
CPE k. We approximate the presence of all clients within the cell with a single virtual
CPE with an SINR value SINRi(ci) =

∑
k SINRik(ci)/|K|. The cell capacity is now:

Ci(ci) = W log (1+ SINRi(ci))

whereW is the full channel width, essentially a sum of allWk as a cell operates in an
OFDMA mode. This approximation hides channel distribution within the cell and
helps us concentrate on inter-cell interaction.

If we consider a network with N cells, with a given channel assignment c =
(c1, c2, . . . , cN ), ci ∈ C, where C is the set of available channels, the total network
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throughput is a sum of all individual capacities at their respective allocated channels:

C(c) =
∑

i

Ci(ci) =
∑

i

W log (1+ SINRi(ci)) (9.7)

A single BS’s decision on the operating channel changes the interference level at
all its neighboring BSs. In the above equation the interference is accounted for in
the SINR, which is embedded within the logarithmic function. Thus, the impact of
a single BS on the total sum is hard to isolate, and the total capacity is not a suitable
metric for distributed computation using Gibbs sampling. Centralized optimization
using known polynomial complexity techniques, such as linear programming, is not
directly applicable either, since the target sum involves non-linear factors and discrete
variables.

One of the ways to circumvent this is to revert to a tighter problem formulation
that prevents interfering base stations from concurrent transmission [11]. While this
can be enforced in a network that employs carrier sensing and collision avoidance,
in our setting long distances between base stations render such coordination ineffi-
cient [18]. In addition, allowing some interference often yields more capacity than
restricting concurrent transmissions [15]. Another approach is to modify the opti-
mization function and instead of maximizing capacity concentrate on minimizing
total network interference [9, 17]. This approach is attractive for networks, such as
WiFi, where these two goals are essentially interchangeable. In a white space setting,
where available channels can differ drastically in terms of their propagation prop-
erties, a channel allocation that leads to minimal interference may not necessarily
lead to maximum capacity.

We propose a novel network performance metric—Cumulative interference plus
noise to signal ratio (CINSR)—a sum of inverse of SINR experienced at each of
the cells. CINSR can be seen as the overall ratio of the impact of harmful factors,
noise and interference, to the beneficial one, received signal strength. Thus, our
goal is to minimize it. Compared to metrics such as the total capacity or the overall
level of interference, CINSR takes into account the frequency diversity that exists in
white space networks, and allows distributed performance optimization with Gibbs
sampling:

CINSR(c) =
N∑

i=1

1
SINRi(ci)

(9.8)

=
N∑

i=1

N0W +
j ̸=i∑

j=1..N
ch(i, j)PHji(ci)

PHi(ci)
(9.9)

The first term in the numerator within the above sum is the thermal noise (a product
of the channel width W and the noise constant N0), whereas the second term is the
sum of interference experienced at cell i, and originating from all other base stations
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that transmit at the same channel. Interference from a single source is a product of
P—the transmission power and Hji(ci)—the propagation gain from base station j to
cell i on channel ci. The function ch(i, j) is equal to 1 if i and j operate on the same
channel and, otherwise it is equal to 0. The denominator in the above equation is the
average signal strength received by the clients of the BS i that transmits with power
P. The average channel gain towards the clients is denoted by Hi(ci).

We now isolate the impact of a single BS i on CINSR(c) and term it local CINSR:

CINSRi(c) =
N0W

PHi(ci)
(9.10)

+
∑

j ̸=i

ch(i, j)
(
PHij(ci)
PHi(ci)

+ PHji(ci)
PHj(ci)

)
(9.11)

Information needed for CINSRi(c) calculation, namely PHi(ci), PHji(ci),
PHij(ci) and PHj(ci), is available locally at BSi, through channel probing described
in Sect. 9.3.

9.5.3 The Gibbs Distribution

TheGibbs distribution associatedwith the functionCINSR and a positive temperature
parameter T is the probability distribution on cN (the combined channel state space
of all BSs) defined as:

π(c) = e−CINSR(c)/T
∑

c′∈cN
e−CINSR(c′)/T

(9.12)

The above distribution is of special interest as it favors states in which CINSR is low.
In addition, the channel selected by BS i is independent of all non-neighboring BSs
and the distribution fulfils all the conditions listed Sect. 9.5.1.

The Gibbs sampler draws a sequence of samples from the above distribution by
having each of the BSs i independently sample its local Gibbs distribution πi(c):

πi(c) =
e−CINSRi(ci,(cj)j ̸=i)/T

∑

c′∈cN
e−CINSRi(c′

i,(cj)j ̸=i)/T
(9.13)

and transitions to the sampled local state, converging to the stationary distribution
π(c) (see Sect. 9.5.5).

Distribution π(c) highly favors low CINSR states when the temperature T is low.
While our goal is tominimizeCINSR, by keeping the temperature lowwe risk getting
stuck in a localminimumearly in the process.TheannealedGibbs sampler introduces
a slow decrease of temperature T to zero according to a cooling schedule. Therefore,
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in the beginning the probability of exploring a wide range of states is high, and as
the time goes to infinity, the procedure converges to the minimum CINSR state.

9.5.4 Channel Allocation Algorithm

Algorithm 1 VillageLink channel allocation – distributed
1: {Executed at the base station i}
2: while t < tend do
3: T = f (T0, t) {f - schedule, T0 - starting temperature}
4: for all channel c′

i ∈ C do
5: c′ = (c1, c2, . . . , c′

i, . . . , cN )
6: Calculate CINSRi(c′)
7: end for
8: for all channel c′

i ∈ C do
9: c′ = (c1, c2, . . . , c′

i, . . . , cN )
10: Calculate πi(c′)
11: end for
12: Sample a random variable according to the law πi and choose the next channel of the BS i

accordingly.
13: Send information about the newly selected channel to i’s neighbors.
14: end while
15: Switch the network interface to the last selected channel.

Algorithm 1 is executed at each of the BSs. The temperature falls off with time,
ensuring that the Gibbs sampler converges towards the global minimum of CINSR.
The starting time for all the BSs has to be loosely aligned, and can be achieved with
a standard synchronization scheme such as NTP.

Compared to some other distributed channel allocation schemes [9, 14],
Algorithm 1 has an attractive property that no channel switching is needed until
the convergence. To see why note that the calculation of the local CINSR is done
after the probing process, and during the algorithm run the only variable parameter
is ch(i, j). At BS i this parameter can be updated irrespective of the actual operating
channel of BS j. In every step a BS decides on its current channel and sends the deci-
sion to its neighbors, who then update their ch(i, j) tables. Once the cooling schedule
is completed base stations switch to their channel of choice (line 15 in Algorithm
1). This greatly speeds up the convergence, as the channel allocation process is not
limited by the channel switching time.
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9.5.5 Algorithm Convergence

Convergence of a Gibbs sampler, and its annealed version, is a well researched topic
[1]. Here we prove the convergence of our method, indicating that it is a natural
heuristic for solving the channel allocation problem.

Proposition 1 The Gibbs distribution π (Eq.9.12) represents a Markov random
field.

Proof A Gibbs potential V associates a real number V%(s) with each subset % of a
set S. The potential is determined by the state s of the nodes in % and is defined as
zero if % is not a clique. An energy function E(s) maps each of the graph states to a
real number. We say that the energy function derives from the potential V if:

E(s) =
∑

%

V%(s) (9.14)

where the summation goes over all subsets of the set S. The Gibbs distribution where
the energy derives from a Gibbs potential is a Markov random field (p. 260 in [1]),
and we proceed with showing that the function that we use to construct the Gibbs
distribution in Eq.9.12—CINSR(c) derives from the Gibbs potential.

We can represent CINSR as a sum of local impact of cliques of the graph of BSs
A. CINSR then takes the form described by Eq.9.14 and CINSR can be used as the
energy function for Gibbs sampling:

CINSR(c) =
∑

i∈A

N0W
PHi(ci)

+

+
∑

{i,j}∈A
ch(i, j)

(
PHij(ci)
PHi(ci)

+ PHji(ci)
PHj(ci)

)

=
∑

B⊂A
VB(c)

Here V denotes the Gibbs potential. The potential is defined for all subsets B of
the set of BSs A as:

VB(c) =

⎧
⎪⎪⎨

⎪⎪⎩

N0W/PHi(cp) if B = {i}
ch(i, j)

(
PHij(ci)
PHi(ci)

+ PHji(ci)
PHj(ci)

)
if B = {i, j}

0 if |B| ≥ 3

Note that the potential is non zero only for cliques of size one and two. Thus, energy
CINSR(c) derives from the Gibbs potential and, consequently π is a Markov random
field.
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For a network ofN BSs, each running a Gibbs sampler over its local Gibbs distrib-
ution πi(c), channel allocation converges in variation4 towards the Gibbs distribution
π , since the process can be described as a Gibbs sampler on a finite state homoge-
neous Markov chain represented by the selected channel allocation, for which the
Gibbs distribution (Eq.9.12) is the invariant probability measure (Example 6.5, p.
288 in [1]). Note that direct sampling of the capacity (Eq.9.7) does not provide any
guarantees on the performance as the capacity equation cannot be transformed to
an energy function that derives from the Gibbs potential. Thus, we develop CINSR.
Finally, for a fixed network of N BSs implementing Algorithm 1, channel allocation
converges in variation towards a limit distribution that only puts positive probability
mass on the states of minimum global energy, as we rely on the annealed Gibbs
sampler (example 8.8, p. 311 in [1]). Conditions that the cooling schedule has to
satisfy in order for convergence to happen can be found in [5].

9.6 Evaluation

The VillageLink system consists of our frequency profiling method built on top of
the 802.22 MAC protocol, and the channel allocation algorithm based on Gibbs
sampling. Experimental evaluation of such a system is challenging due to the need
for a wide area outdoor deployment. In addition, off-the-shelf 802.22 equipment is
not yet commercially available, and software defined radio platforms cannot support
the synchronization that the MAC protocol requires [16]. Therefore, we evaluate our
protocol in a simulated setting. However, the initial experimental investigation of
channel probing and frequency selectivity in white spaces, presented in Sect. 9.2.2,
was performed on a 3km outdoor link.

9.6.1 Simulation Setup

For a comprehensive evaluation of the channel allocation algorithm, we rely on a
Matlab-based custom simulator. The simulator allows us to scale our experiments
over a number of cells, and tomodel different network layouts.We explicitly take into
account high variability of signal propagation in the white space band by modeling
propagation with the Friis transmission equation:

Pr = Pt + Gt + Gr + 20 log
(

λ

4πR

)

where λ,R,Pr,Pt,Gt and Gr are the wavelength, distance between antennas,
received power, transmitted power, transmitter antenna gain, and receiver antenna

4 Convergence in variation describes convergence of an array of samples to a probability distribution
and is defined in [1], p. 128.
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Fig. 9.12 Wineguard PR9032 UHF Yagi/corner reflector antenna used as a base station antenna in
our evaluation. Showing a the antenna design and b its radiation pattern seen from the top of the
antenna

Fig. 9.13 AntennasDirect DB-2 2-Bay UHF antenna; one of the client antennas used for the
evaluation. Showing the antenna in (a) and its radiation pattern seen from the top of the antenna
in (b)

gain, respectively. Antenna gains depend on specific devices used and their orien-
tations. Earlier, in our outdoor testbed, we confirmed that frequency dependence of
antenna gain is themost dominant factor that leads to the frequency diversity in white
spaces (Fig. 9.3, Sect. 9.2), thus we model antenna effects in detail.
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Fig. 9.14 Antenna profiles of four of the antennas used in our evaluation. One of the profiles,
Wineguard PR-9032, corresponds to the BS antenna and, the other three, to client antennas

We use publicly available antenna models5 and the Numerical Electromagnet-
ics Code (NEC)6 antenna modeling software to examine propagation over different
frequencies with different antennas. Figures9.12b and 9.13b show the radiation pat-
terns seen from the the center frequency (598MHz) of the white space band for two
different antennas. In Fig. 9.14 we plot frequency dependence of antenna gain. We
found that the shape of the antenna pattern does not change significantly for different
frequencies. The gain, on the other hand, changes significantly and unpredictably,
as seen in Fig. 9.14. Thus, in the simulations we use the antenna pattern shape of the
center frequency to account for antenna orientation, and we use the full gain over
frequency diversity.

All base stations in our simulations use the Yagi antenna from Fig. 9.12, as this
antenna exhibits the best performance of all the antennas that were modeled. In our
simulation we assume clients make use of existing TV antennas used to receive ter-
restrial TV broadcast signals. Operators have no control over the variety of antennas
used by clients and we randomly select antennas from a set of 17 possible client TV
antennas ranging from outdoor Yagi antennas with a gain of 15dBi to simple indoor
loop antennas with a gain of 3dBi.

We run our experiments over a white space band from 443 to 875MHz as the
antenna models we use perform reasonably well within this range. The band is
divided into 36 TV channels, each 6MHz wide, with a 6MHz guard band between
adjacent channels. In all the experiments we simulate a 100km×100km field with
random BS placement and random antenna orientation. Each of the BSs has a single
associated virtual client at a distance uniformly picked from 0.2 to 20km and with its
antenna pointed directly towards the BS. We also simulate a TV station that covers
a part of the field with its signal and occupies two adjacent channels.

5 http://www.hdtvprimer.com/ANTENNAS/comparing.html.
6 www.nec2.org.
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Fig. 9.15 Algorithm convergence with the (a) exponential, and (b) logarithmic cooling schedule.
Different lines correspond to different starting temperatures

9.6.2 Channel Allocation Convergence

We simulate Algorithm 1 behavior in a network of ten base stations and five white
space channels that are available for communication. We are interested in the algo-
rithm convergence under different Gibbs sampling parameters. We experiment with
two common cooling schedules:

• Logarithmic: T = T0/ log(t + 2), proposed in [3].
• Exponential: T = T0αt , proposed in [10].

where T denotes the temperature at time t, T0 is the starting temperature, and α is a
real number between zero and one; we empirically find value 0.995 to work well in
our experiments.

The selection of the starting temperature is important for proper annealing. In
Fig. 9.15 we plot total network capacity achieved with the two schedules and four
different starting temperatures for each. Each point in the graphs is an average over
100 runs. The impact of the starting temperature is clearly visible: the higher T0
is, the more time it takes for the algorithm to converge. At the same time, higher
temperatures ensure exploration of a large part of the solution space, and generally
lead to a better solution. We can also see that T0 = 10−6 does not result in any
variation of capacity as the algorithm progresses—the sampler is “frozen” and BSs
will stick to the initial channel allocation without exploring the full solution space.
There is a trade-off, dictated by the starting temperature, between the convergence
time and the assurance that the optimal valuewill be found. In the rest of the evaluation
section we fix the starting temperature to 1, a value that allows full exploration of
the solution space and converges in a reasonable amount of time.

We observe much faster convergence with the exponential schedule, that con-
verged in all but one case (T0 = 10−6). The logarithmic schedule did not converge
in 5,000 iterations for T0 = 100 and T0 = 1. In the rest of this section we rely
exclusively on the exponential schedule.
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Fig. 9.16 Comparison of the total network capacity achievedwith CINSR and Interferencemetrics.
We simulate under-provisioned and over-provisioned number of channelswith respect to the number
of base stations in the network. a Channel under-povisioning. b Channel over-povisioning

9.6.3 CINSR as a Performance Metric

To confirm that CINSR is a good choice for the network performance metric, we
compare it with an alternative—overall interference and noise in the network—which
is often used as a metric in channel allocation algorithms [9, 17].

The total network interference and noise is defined as:

I(c) =
N∑

i=1

⎛

⎝N0W +
j ̸=i∑

j=1..N

ch(i, j)PHij(ci)

⎞

⎠ (9.15)

The impact of a single BS on the sum is defined as the local interference:

Ii(c) = N0W +
j ̸=i∑

j=1..N

ch(i, j)
(
PHij(ci)+ PHji(ci)

)
(9.16)

We modify the Gibbs distribution (Eq. 9.12) to include I(c) instead of CINSR(c),
and the local Gibbs distribution (Eq. 9.13) to include Ii(c) instead of CINSRi(c). The
necessary conditions for the Gibbs sampler convergence still hold, and we apply an
algorithm analogous to Algorithm 1.

Note that, defined this way, the interference function still uses the results of chan-
nel probing, yet it does not account for the balance between well propagating chan-
nels that are preferred by the CPEs and inferior channels that minimize inter-cell
interference.
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9.6.3.1 Channel Under-Provisioning

In the first scenario we simulate a network with a number of contending BSs higher
than the number of available channels. This can be the case in the urban developed
world, for example. We put 50 cells in the same 100km × 100km region. We exper-
iment with a varying number of available channels. The total network capacity is
plotted in Fig. 9.16a. Each point represents an average value of 20 runs of the algo-
rithm with a different metric, Gibbs CINSR or Gibbs Interference, over the same
topology.

When multiple cells operate on the same frequency the network is in a low SINR
mode, and capacity can be increased by interference minimization. From Fig. 9.16a
we see that the two versions of the Gibbs sampler perform equally well with a small
number of available channels. As we increase the amount of available spectrum, BSs
havemore freedom to operate at different channels withminimal interference. There-
fore, frequency-dependent performance of CPEs associated with the BSs becomes
an important factor that impacts total capacity. Since this factor is not accounted
for in Eq.9.15, this version of the Gibbs sampler results in a channel allocation that
delivers less capacity than the version that uses CINSR.

9.6.3.2 Channel Over-Provisioning

We now fix the number of available channels to 36 and compare the performance
of the two versions of the algorithm with the number of BSs varying from 5 to 35.
The total network capacity is plotted in Fig. 9.16b. Each point represents an average
value of 20 runs of the algorithm (Gibbs CINSR orGibbs Interference) over the same
topology.

When the number of channels is greater than the number of BSs there is more than
one allocation that leads to minimal interference. However, not all of the allocations
are favored by theCPEs. Through the factorHi(ci)CINSR accounts for the frequency
dependent intra-cell preferences, and assigns channels that maximize capacity within
each of the cells. The results presented here point out that channel allocation in
white spaces remains important even in rural areas where the channel availability
is high [6].

9.6.4 Comparison to Alternative Channel Allocation Methods

Channel allocation is a difficult problem to solve in a distributed setting. Heuristics
are often used instead of a rigorous solution and we compare our approach with:

• Least congested channel search (LCCS)—a heuristic where each of the BSs indi-
vidually scans for a channel with the least number of other BSs assigned to it [14].
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Fig. 9.17 Total network capacity with varying number of channels and base stations. a 10 available
channels. b 15 available channels. c 20 available channels. d 25 available channels

• Preferred intra-cell channel allocation (PICA)—in this greedy method each of the
BSs selects the channel for which it observes the highest channel gain towards its
own CPEs (argmaxci Hi(ci)).

These heuristics optimize a non-submodular capacity function in a greedymanner,
thereforemay settle for a solution that is arbitrarily far from theoptimal.VillageLink’s
convergence to the states ofminimumCINSR is proven in Sect. 9.5.5.We compare the
experimental behavior of different solutions in a number of scenarios encompassing
various numbers of BSs and available white space channels. We run each of the
algorithms 100 times in each of the scenarios.

9.6.4.1 Total Network Capacity

In Fig. 9.17 we plot the total network capacity as we increase the number of cells
in the system from 5 to 50. To ensure consistency among points in the graph, we
do not generate a new topology every time we increase the number of cells, but add
randomly placed cells to the existing topology. Each of the topology sequences are
evaluated in environments with 10, 15, 20 and 25 available channels.We plot average
values and two standard deviations (represented by error bars) for each data point.
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Fig. 9.18 Fairness with varying number of channels and base stations (the closer the fairness index
value is to one—the better). a 10 available channels.b 15 available channels. c 20 available channels.
d 25 available channels

VillageLink performs better or equal to the alternatives in all scenarios. The bene-
fits of frequency-probing based channel allocation grow with the number of cells. In
some scenarios, such as 50BSs—10 channels and 50BSs—15 channels, VillageLink
delivers twice as much capacity as the next best alternative, LCCS. A comprehensive
comparison of LCCS and PICA could unravel the importance of two conflicting goals
in channel allocation: minimizing interference and maximizing intra-cell capacity in
isolation, and is left for future work.

9.6.4.2 Fairness

In Fig. 9.18 we plot the Jain fairness index [8] for cell capacity with channel allo-
cations determined by VillageLink, LCCS and PICA. We plot average values and
two standard deviations (represented by error bars) for each data point. Although we
designed VillageLink as a method to optimize total network capacity, it also ensures
a remarkably fair allocation of resources. As the number of cells grows, the fairness
of VillageLink is more pronounced as it stays close to 1 while the fairness indices of
PICA and LCCS drop.
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9.7 Related Work

Efforts to provide broadband connectivity to remote rural regions with low-cost
unlicensed options, such asmodifiedWiFi, have been proposed in the last decade [18,
19]. While numerous rural WiFi deployments provide useful general guidelines for
wide-area coverage, the propagation characteristics in white spaces are drastically
different than in the WiFi bands, and networking protocols have to be reconsidered
for the new spectrum. IEEE 802.22 [2] is a standardized protocol for wide area white
space coverage. In VillageLink we embrace the 802.22 frame structure, and augment
it with novel channel probing and operating frequency selection mechanisms.

Previous work related to channel assignment in wireless networks usually casts
the problem of channel assignment as an NP-hard graph coloring problem [14].
Numerous heuristics have been proposed to provide an approximate solution ([20]
and references therein). Ma and Tsang [11] recognize the channel heterogeneity in
the case of wide bands and propose an integer linear programming solution for the
frequency allocation problem. However, they restrict frequency reuse to well defined
interference domains, thus no two BSs are allowed to transmit at the same time if
they interfere. Motivated by [15], we rely on a more sophisticated representation of
interference—we directly measure its impact through probing and account for any
interference during the allocation process.

TheGibbs sampling, under this name,was first proposed in 1984 for imagemanip-
ulation [3]. Its applicability to distributed channel allocation, client association and
power control in wireless networks has been realized over the last twenty years [9,
13]. VillageLink differs from these by two important properties. First, we propose a
novel network performance metric called CINSR, that takes into account frequency
dependence of both useful signal transmissions and interference. Second, our algo-
rithm does not require subsequent channel switching and environment sensing after
each local decision is made. Rather, only control information has to be exchanged
among neighboring nodes, and once the algorithm terminates only a single channel
switch is made per node.

9.8 Conclusion

The heterogeneity of white space frequencies imposes unique challenges when it
comes to channel allocation in a wireless network. Rather than simply minimizing
interference, a channel allocation policy has to account for transmission quality over
different channels as well. In this work we develop VillageLink, a channel allocation
protocol that relies on the knowledge of signal propagation in the whole white space
band before it performs distributed channel assignment that converges towards a
network-wide optimum.

White space networks are largely unexplored, and their straightforward implemen-
tation might prove difficult due to unique characteristic they exhibit. For example,
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experiments we performed onVillageLink demonstrate the necessity of careful chan-
nel allocation in white spaces even when the number of devices operating in the same
interference domain is low, which is a stark contrast to WiFi networks. Our work
examines only one aspect of network adaptation. The complex nature of signal prop-
agation over a wide frequency band opens up new possibilities for protocol design
and further refinement of channel access in white spaces.
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