
9December 2018 | Volume 22, Issue 4 GetMobile

[ARM'S LENGTH]
Ph

ot
o,

 is
to

ck
ph

ot
o.

co
m

Yet, a unique opportunity for optimization
lurks behind the mobile aspect of today’s
computing. With computation executed in
an array of environments, user expectations
with respect to result accuracy vary, as the
result is further manipulated, interpreted, and
acted upon in different contexts of use. For
instance, a user might tolerate a lower video
decoding quality when calling to say hi from a
backpacking holiday, while she would expect
a higher video quality when on a job interview
call from an office. Similarly, when searching
for nearby restaurant suggestions, rough
location determination and a slightly shuffled
ordering within the produced suggestion list
would probably go unnoticed, whereas the
same inaccuracies would not be tolerated
when searching for driving directions.

The result of a computation need not be
perfect, just good enough for things to work.

This opens up opportunities to save
resources, including CPU cycles and
memory accesses, thus, consequently
battery charge, by reducing the amount
of computation to the point where the
result accuracy is just above the minimum
necessary to satisfy a user’s requirements.
This way of reasoning about computation is
termed Approximate Computing (AC) and
Approximate Computing Techniques (ACTs),
which have already been demonstrated on
various levels of computer architecture, from
the hardware where incorrect adders have
been designed to sacrifice result correctness
for reduced energy consumption [1], to
compiler-level optimizations that omit
certain lines of code to speed up video
encoding [2]. Experiments have shown
significant resource savings, e.g., tripled
energy efficiency with neural network-based

approximations [3], or 2.5 times the speedup
when certain task patterns are substituted
with approximate code [4]. Ironically, to
date, approximate computing remains
mostly confined to desktop and data center
computing, missing the opportunity of
bringing the benefits to mobile computing.
It is exactly in this domain where, due to
context-dependent user requirements the
occasions for adaptable approximation are
abundant and where, due to the devices’
physical constraints, the applicability of
alternative solutions for increasing the
computational capacities, such as further
component packing, is the lowest.

Recently, the necessary conditions for the
emergence of a new paradigm – Approximate
Mobile Computing (AMC) – have been all
but fulfilled. First, hardware capabilities of
mobile devices have reached the level that
allows very complex on-device computation.
This is especially true in the area of artificial
intelligence, where neural processing units
(NPUs), such as Qualcomm Zeroth, allow
deep learning algorithms to be run locally on
the device. Second, the growing popularity
of mobile personal assistant applications,
e.g., Google Assistant, Siri, Cortana, and
Amazon Alexa, opens up opportunities
for inexact computation. These apps are
tightly integrated with the user, operate
in varying contexts, are used for queries
where no golden answer exists (e.g., for
content suggestions), and rely on inherently
probabilistic natural language processing
and computer vision algorithms. Finally, as
we turn to our mobile devices for a wider

Veljko Pejović Faculty of Computer and Information Science, University of Ljubljana, Slovenia

Editors: Romit Roy Choudhury and Haitham Hassanieh

TOWARDS
APPROXIMATE
MOBILE COMPUTING

hen Dennard scaling, a law describing the area-proportional
growth of integrated circuit power use, broke down some-

time in the last decade, we faced a situation where further
transistor minimization suddenly required additional energy

for operation and cooling. CPU manufacturers responded with multicore
processors, as an alternative means to increase the floating-point operations
per second (FLOPS) count. However, this too increases the energy
consumption and, in addition, requires a larger silicon area. The most
threatened by the stalled growth of per-Watt computing performance are
pervasive mobile computers, nowadays present in anything from wearables
to smartphones. Not only do these devices’ small form factor prevent
further component packing, but the need for mobility also precludes
bundling devices with large batteries.

GetMobile December 2018 | Volume 22, Issue 410

[ARM'S LENGTH]

range of tasks, over longer periods of time,
and in increasingly diverse situations, we
are in a position to better understand users’
expectations from mobile computation.

Making AMC a reality requires that we
first resolve key doubts about how to enable
approximation on mobile devices, how
to infer a user’s context-dependent result
accuracy expectations, and how to adjust the
approximation so that the expectations are
met in the most resource-efficient way. In the
rest of the article we analyze the state of the art
along these fronts and derive guidelines for
future efforts in each of the fields.

STARTING POINT – CONVENTIONAL
APPROXIMATE COMPUTING
A range of ACTs operating at all levels of the
computing stack have been developed in the
last ten years [5]. Hardware Layer Techniques
include, for instance, approximate circuits,
such as adders and multipliers that use low-
precision transistors for operations on the
least important bits, and thus reduce energy
requirements while sacrificing only a limited
amount of result accuracy [1]. A technique
presented in [6] is based on the observation

that changes in high-order bits of video data
tend to be easier to detect by the human eye
than changes in low-order bits of data. High-
order bits of pixel data are thus stored in
reliable memory segments, while low-order
bits go to less reliable memory (Figure 2).
The difference between the segments is in
the DRAM refresh rate – the higher the rate,
the more reliable the segment is, but more
energy is needed for the storage.

One of the earliest Software Layer
Techniques has been proposed by Rinard
[7]. Here, a program is written as a set of
tasks, whose execution can be discarded,
should this lead to the execution speedup
without a significant impact on the result
quality. Another technique, approximate
memoization [8], stores a limited number
of function execution results, so that for
subsequent function executions with similar
input parameters one of the precalculated
results is returned. The approximation can
also be moved further down the stack. Loop
perforation [2], a method developed at MIT
that skips some of the loop’s iteration in order
to reduce the amount of computation and
save resources, has been implemented at the
compiler level, enabling automatic application
of the technique on selected loops.

Can we implement approximate
computation on mobiles?
The applicability of the above techniques
to mobile devices must be examined
through the lens of mobile computing
constraints. Smartphones are highly
versatile and expected to run an array of
different applications in parallel. Many
(especially hardware-based) techniques
are often not flexible enough to support a
mix of concurrently executed applications.
A smartphone user might tolerate
imperfect rendering in a 3D game, but
data encryption protocols require perfectly
accurate computations. One solution is to
fit devices with both exact and approximate
versions of the same hardware. However,
this clashes with the portability-driven
need for maintaining a small form factor.
Another constraint comes from mobile
apps’ interactivity – an average session with
a smartphone lasts between 10 and 250
seconds, while an average user performs 10
to 200 such sessions in a day. This restricts
applicable ACTs to those that are quick to
set up and trigger.

Challenges: The main obstacles towards
exploring the benefits of approximation on
mobiles are the lack of ACT implementations
for mobile systems and the lack of support for
writing and building approximate programs
on mobile platforms. Regarding the former,
selected ACTs need to be implemented in
general frameworks for mobile application
development. This could include the
implementation of loop perforation at
the level of the LLVM compiler used for
compiling iOS applications, or supporting
GPU processing kernel substitution with
approximate implementations in NVIDIA
CodeWorks for Android. Regarding the
software writing support, ACTs often expect
a developer to explicitly define parts of the
program that may be executed approximately.
Frameworks, such as Green [9], allow a
developer to use C++ annotations to both
provide approximate versions of the code (e.g.,
alternative function implementations), as well
as to indicated approximable code blocks
(e.g., loops that need not be executed with a
full number of iterations). The annotations are
then used to instruct the compiler to generate
a suitable approximate version of the program.

Can we tell if a user is satisfied
with the result quality?
Opportunities for approximation arise only
when a user is satisfied with sub-accurate
computation results. For instance, a user
expects an activity tracking wristband to
accurately monitor vital signs and recognize
different movement patterns while exercising,
yet the battery charge can be saved during
non-exercise times, when the user merely
expects the wristband to recognize a step
so that the total count is taken.

Pervasive use of mobile computing allows
us to inspect how a user’s satisfaction with
the delivered computation result changes
with the context of use. Numerous aspects
of the situation and the environment can
impact a user’s perception of the result.
Thus, we consider “context” to be a complex
term, a view of which we obtain through
a mobile device’s built-in sensors. For
example, we can sense a user’s physical
activity via a phone’s accelerometer,
location via GPS, through a combination
of light and location sensors we can infer
whether a user is indoors or outdoors, and
so on. Coordinating frequent sampling
of a multitude of a device’s sensors, and

FIGURE 1. Approximate Mobile Computing
(AMC) departs from the rigidness of conven-
tional computing and increases resource
efficiency by enabling a controlled reduction in
result accuracy to the point defined by a user's
context-dependent inaccuracy tolerance.

11December 2018 | Volume 22, Issue 4 GetMobile

[ARM'S LENGTH]

FIGURE 2. Tiered reliability memory saves energy by storing low-order bits of pixel data into less
reliable lower refresh rate (TLOW) memory segments (adapted from [6]).

storing and transferring the data can be a
tedious task, with which dedicated sensing
frameworks, such as AWARE [10] can help.

In the second step, we need to monitor
the use of an AMC application, deliver
results of varying quality, and obtain
information about a user’s satisfaction with
the delivered result. Mobile experience
sampling method (mESM) allows us to
query the user about her recent experience
immediately after the app usage session
[11]. A well-designed study can minimize
the number of queries and ask the user
about the experiences in previously unseen
situations only. The exact flavor of the
questions asked depends on the application.
Voice/video communication applications
(e.g., Skype, Whatsapp), use simple Likert-
scale questions (e.g., number of stars
corresponding to the quality of the call) to
get a quick feedback on the service quality.

Finally, machine learning lets us establish
the link between the context, sensed at the
time of querying, and the mESM answers, in
order to model the change in result quality
expectations in different situations. Such a
model could, for example, learn that a user
is satisfied with the personal assistant’s voice
command comprehension, even if the speech
recognition was run on an approximate
neural network, as long as the app is used at
home in the evening (we hypothesize that
the lack of noise in the environment and a
limited, predictable set of queries a user might
issue in such a situation, e.g., “Set alarm for
8 a.m.,” could be a confounding factor for a
user’s satisfaction).

Challenges: Context sensing is one of
the most energy-expensive operations
on a mobile phone. To capture user’s
expectations in different situations,
sensing and mESM querying might have
to be performed each time the app is
used. Furthermore, numerous aspects of
the context can impact a user’s reaction,
thus, sensing needs to be comprehensive
and involve as many sensors as possible.
For instance, a video call decoding quality
requirements might depend on the level of
outdoor brightness, the mode of transport
that a user is on, but also on the relationship
with the other party, or even the nature of a
conversation. A potentially very large space
defined by relevant contextual variables
represents a major challenge, since frequent
modification of the result accuracy, followed
by querying, might irritate the user.
Techniques such as active learning, where a
user is queried about her experiences only if
the existing model is unsure about the user’s
reaction, or reinforcement learning that
controls both the accuracy adaptation and
querying so as to optimize a reward related
to a user’s satisfaction and resource use
represent interesting research avenues.

Can we dynamically adapt AMC
to maximize resource savings while
still satisfying a user's result quality
expectations?
As discussed above, approximation may
be tolerated only in certain situations.
Consequently, we need a means for dynamic
adaptation of the result precision. Such

adaptation “knobs” have already been
implemented with certain ACTs. Hoffmann
et al. “hijack” and expose a for-loop iteration
counter increments, so that a variable
number of loop iterations can be skipped
[13]. More effort is needed to expose similar
“knobs” for numerous other ACTs.

Once the knobs are exposed, we must
know how to set them to achieve the desired
result quality, as different amounts of ap-
proximation lead to different result accuracy
and resource savings. Misailovic et al. built
a Quality of Service (QoS) profiler that for a
given program, given test input, and a QoS
metric, calculates the loss of accuracy and
the overall speedup under different approxi-
mation levels (brought by loop perforation)
[2]. Combined with the model that describes
how a user’s expectations depend on the
context, the profiler output tells us how to
set the approximation knobs in order to
achieve the maximal savings and ensure that
the result is acceptable for the user.

Challenges: Despite prior accuracy
profiling, approximation adaptation needs
to be recalibrated according to the run-time
performance. Due to the discrepancies
between the test and the actual input data, or
due to a potential impact of the context on
the calculation, the calculated result quality
might not reach the previously estimated
levels. However, even assessing the result
quality is often expensive. In most situations,
we can evaluate the quality only if the result
of a perfectly accurate computation is
available, defying the purpose of approxi-
mation. Laurenzao et al show that in image
approximation it suffices to evaluate the
result quality on small representative
snippets of data [14], yet this might not
generalize to other domains. In addition,
the app needs to have the information about
the current context in order to adapt to it.
The key question of AMC – whether the
benefits enabled by approximate execution
surpass the cost of context sensing and the
adaptation – will be answered once the first
AMC prototypes are completed and tested.

THE ROAD AHEAD
The overarching goal of AMC is to enable
further proliferation of mobile computing
by drastically reducing the resource require-
ments of modern apps, while ensuring that
users’ needs are satisfied. Opportunities for

GetMobile December 2018 | Volume 22, Issue 412

[ARM'S LENGTH]

approximation appear in certain contexts,
as they are conditioned on a user’s context-
dependent perception of the result. In
Figure 3 we sketch three broader directions
that research should take in order to make
AMC the reality. Namely, 1) implementing
ACT support and understanding the ben-
efits of approximation in mobile devices 2)
building a framework for sensing the
context, querying the user’s expectations,
in order to model the relationship between
the context and users’ accuracy needs, and
3) devising a system for monitoring and
controlling the approximation.

In this article we raised certain
challenges pertaining to each of the steps.
However, they are by no means exhaustive,
nor detailed enough. For instance,
resource savings brought by a single app’s
modification are notoriously difficult to
evaluate on mobile devices, as the cost of
a component usage (e.g., a GPS chipset)
depends on its previous state, which may be
affected by other apps on the phone [15].

Yet the main challenge of AMC stems
from its highly interdisciplinary nature.
Efforts by computer architecture, compilers,
and programming languages experts are
needed to bring ACTs to mobiles; human-
computer interaction (HCI) and mobile
sensing experts can help with understanding
users’ result accuracy expectations; mobile
system and control theory experts should
contribute towards controlling dynamic
approximation adaptation. The topic of
approximate computing has already gained
a lot of traction within programming
languages, formal verification, and computer
architecture communities. This is witnessed
by a number of specialized workshops,
such as “Workshop On Approximate
Computing” with “High Performance and
Embedded Architecture and Compilation
Conference (HiPEAC)”, and “Workshop on
Approximate Computing Across the Stack”
with “Programming Language Design and
Implementation Conference (PLDI),” as
well as special journal issues on the topic,
such as a recent IEEE Micro Approximate
Computing issue. However, to date, mobile
computing, mobile sensing, and mobile
HCI communities left the topic virtually
untouched. With this article we hope to
start the conversation and mobilize a wider
research community towards making
approximate mobile computing a reality. n

Veljko Pejović is an assistant professor at
the Faculty of Computer and Information
Science, University of Ljubljana, Slovenia. He
completed his PhD in computer science at the
University of California, Santa Barbara, USA
and later worked as a research fellow at the
University of Birmingham, UK. He is interested
in mobile sensing, particularly for human
behavior inference, and wireless and resource-
efficient mobile computing. More details
about his research can be found at http://lrss.
fri.uni-lj.si/Veljko

Acknowledgements
This work was partly supported by the
Slovenian Research Agency (research core
funding No. P2-0098). The author would
like to thank Saša Misailović for insightful
discussions on the idea of approximate
mobile computing, and Haitham Hassanieh
and Romit Roy Choudhury for their valuable
comments that helped shape this article.

REFERENCES
[1] Zvi M. Kedem, Vincent J. Mooney, Kirthi Krishna

Muntimadugu, and Krishna V. Palem, “An approach
to energy-error tradeoffs in approximate ripple
carry adders,” in IEEE/ACM International
Symposium on Low-power Electronics and Design,
Fukuoka, Japan, 2011.

[2] Sasa Misailovic, Stelios Sidiroglou, Henry
Hoffmann, and Martin C. Rinard, “Quality of
Service Profiling,” in ACM/IEEE ICSE, Cape
Town, South Africa, 2010.

[3] Hadi Esmaeilzadeh, Adrian Sampson, Luis Ceze,
and Doug Burger, “Neural acceleration for general-
purpose approximate programs,” in IEEE/ACM
International Symposium on Microarchitecture
(MICRO), Vancouver, BC, Canada, 2012.

[4] Mehrzad Samadi, D. Anoushe Jamshidi,
Janghaeng Lee, and Scott Mahlke, “Paraprox:
Pattern-Based Approximation for Data Parallel
Applications,” in ACM ASPLOS, Salt Lake City,
UT, USA, 2014.

[5] Sparsh Mittal, “A survey of techniques for
approximate computing,” ACM Computing
Surveys (CSUR), vol. 48, no. 4, p. 61, 2016.

[6] Kyungsang Cho, Yongjun Lee, Young H. Oh, and
Gyoo-cheol Jae W. Lee Hwang, “eDRAM-based
tiered-reliability memory with applications to
low-power frame buffers,” in IEEE/ACM ISLPED,
La Jolla, CA, USA, 2014.

[7] Martin Rinard, “Probabilistic accuracy bounds
for fault-tolerant computations that discard tasks,”
in ACM/IEEE Conference on Supercomputing,
Tampa, FL, USA, 2006.

[8] Georgios Keramidas, Chrysa Kokkala, and
Iakovos Stamoulis, “Clumsy value cache:

An approximate memoization technique for
mobile GPU fragment shaders,” in Workshop on
Approximate Computing (WAPCO’15), Prague,
Czech Republic, 2015.

[9] Woongki Baek and Trishul M. Chilimbi,
“Green: A framework for supporting energy-
conscious programming using controlled
approximation,” ACM Sigplan Notices, vol. 45,
no. 6, pp. 198-209, 2010.

[10] Denzil Ferreira, Vassilis Kostakos, and Anind
K. Dey, “AWARE: mobile context instrumentation
framework,” Frontiers in ICT, vol. 2, 2015.

[11] Veljko Pejovic, Neal Lathia, Cecilia Mascolo,
and Mirco Musolesi, “Mobile-based experience
sampling for behaviour research,” in Emotions
and Personality in Personalized Services: Models,
Evaluation and Applications, M. Tkalčič et al.,
Eds. Heidelberg, Germany: Springer, 2016,
pp. 141-161.

[12] Ashish Kapoor and Eric Horvitz, “Experience
sampling for building predictive user models: a
comparative study,” in ACM CHI, Florence, Italy,
2008.

[13] Henry Hoffmann et al., “Dynamic knobs for
responsive power-aware computing,” in ACM
ASPLOS, Newport Beach, CA, USA, 2011.

[14] Michael A. Laurenzano et al., “Input
responsiveness: using canary inputs to
dynamically steer approximation,” in ACM PLDI,
Santa Barbara, CA, USA, 2016.

[15] Abhinav Pathak, Y. Charlie Hu, and Ming Zhang,
“Where is the energy spent inside my app?: Fine
grained energy accounting on smartphones with
Eprof,” in ACM EuroSys, Bern, Switzerland, 2012.

FIGURE 3. Key steps towards Approximate Mobile Computing.

