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Mobile Notifications

 Increasingly interactive lives
— 100 notifications/day per user

« For recipients, a means of
Information awareness
— Anxious without notifications

* For senders, a way to initiate
remote communication
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Poor Notification Timing

« Reduced work efficiency
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Poor Notification Timing

« Reduced work efficiency

* Missed marketing
opportunities
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Poor Notification Timing

« Reduced work efficiency

* Missed marketing
opportunities

 Critical safety consequences
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“There is more information available at our
fingertips during a walk in the woods than
iIn any computer system, yet people find a
walk among trees relaxing and computers
frustrating. Machines that fit the human
environment instead of forcing humans to
enter theirs will make using a computer as
refreshing as taking a walk in the woods.”
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Building a system for intelligent notification
scheduling

V. Pejovic and M. Musolesi
InterruptMe: Designing Intelligent Prompting Mechanisms for Pervasive Applications
University of Liubljana UbiComp'14, Seattle, WA, USA
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Towards Timely
Interaction

« Premise: notification timing
IS the key!

« Path: identify opportune
moments to deliver
iInformation

« Hypothesis: sensed context
reveals interruptibility
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Problem solved?
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€ ) Your Plans

Real'WOrld T”al Who do you want to spend more time with?
What will you do? When will it happen?

... no significant effects of ’lan 1
notification scheduling onthe  who  Family
lusage Of.a behaVIOural Change (e.g..partner, friends, colleagues, family, general
Intervention app RHBIIE)

nat
L Morrison et al., Go for a walk

The effect of timing and frequency of push .g. call round, meet in town, tea break at work)
notifications on usage of a smartphone-based stress
management intervention: an exploratory trial, re Park

PL0S ONE, Vol 12, (2017).

1. Saturday lunchtime, Sunday morning,
1day at 11am)
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Understanding factors affecting notification
acceptance

A. Mehrotra, M. Musolesi, R. Hendley and V. Pejovic
] Designing Content-driven Intelligent Notification Mechanisms for Mobile Applications
. University of Ljubljana UbiComp'15, Osaka, Japan, September 2015.
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Towards Timely
Interaction

 Premise: location, movement,
and time sensing Is not
enough

« Path: monitor other on-device
factors that may impact
Interruptibility

« Hypothesis: application type,
content, sender, etc. determine
a user’s reaction
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[ Total

58
NotifyMe MObIle App Personalisation 0
! Tools Rl
Music & Audio 0
« Senses context Productivity 0
- Records reactionto a Entertainment 0
notification \
— Notification data
— Category
— Sender ID

- Gathers user preferences

— Where and when would you like to
receive notifications with similar
content
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Notification Reaction
Analysis

« Notification click count differs 100
between application types ®
(i.e. content type) and
sender-receiver relations

60

Notification Click Count (%)
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Notification Reaction

Prediction m ﬂ@ Ei%

« By using information type and ° % % %

Specificity (%)

soclal circle we were able to
predict the acceptance of a B o e S s
notification within 10 minutes 0

Using Informatign Type And Social Circle @

from its arrival time with an
average sensitivity of 70% and
a specificity of 80% T
- Better than user-defined rules Z g ﬁ %
University Of L]'Mbl]ﬂnﬂ ’ Naive‘Bayes AdaELoost Randon; Forest
. Faculty of Computer and
Information Science




User reaction does not imply user satisfaction

A. Mehrotra, V. Pejovic, J. Vermeulen, R. Hendley and M. Musolesi
My Phone and Me: Understanding User’s Receptivity to Mobile Notifications
University of Ljubljana ACM CHI'16, San Jose, CA, USA, May 2016.
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Towards Timely
Interaction

 Premise: we identified a
number of factors that impact
reactions, but reactions are
diverse

« Path: monitor users’ actions
and the surrounding factors

« Hypothesis: sensed context
reveals reaction and disruption
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My Phone and Me App

« Automated logging:

Notification time of arrival, seen,
removal

Notification response
Notification details (title, app)
Alert type

Context (activity, location, etc.)

« Experience sampling:

Sender-receiver relationship,
personality, task engagement
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Disruption Analysis

« Task complexity and
iInterruptibility:

— More disruptive if it arrives when
the user is in the middle of or
finishing a task

— Perceived disruption increases
with the complexity of an ongoing
task

— Fastertoreact if engagedin a
complex task

University of Ljubljana
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Also confirmed:

Pejovic et al.,,

“Investigating The Role of Task
Engagement in Mobile
Interruptibility”,

Smarttention workshop with
Ubicomp’15



How does a thought get disrupted?
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Find out more In:

“A Survey of Attention Management Systems
In Ubiquitous Computing Environments” by
Anderson et al., Ubicomp 2018.

Tuesday 2pm, Room 234
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Theory of Multitasking Wikcoibandt® | (SO couoa 8 I (8 Wit

 Resources: ° Procedural
Resource
— Perceptual and motor
— Cognitive

e Procedural memory e ‘ e ‘ I ®
. ural Buffer  : ; Visual Buffer : ; Vocal Buffer :
° DeCIaratIVe memory ..................... E N [ et [
. udition Visual Speech
« Mechanisms:
. ] Problem State Goal Declarative
— Resource use is exclusive — one SRR
. : Problem State : :  Goal Buffer : Retrieva
task at atime per resource R : R : e
— Multiple problem threads run in l
parallel, but processing is still serial
: . Procedural
, Salvucci and Taatgen. Threaded cognition: an 4 Resource
University of Liubljana integrated theory of concurrent multitasking.
Faculty of Computer and Psychological review 115.1 (2008): 101.
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Theory of Multitasking

¢ I nte rfe re n Ce W h e n tWO O r Procedural — attend | attend respond | respond
stimulus | tone stimulus | tone
more threads ask for the — #
same resource at a time Visal ] encode simulss [~
Aural encode tone .
Y
Manual press key —
Vocal say response
Borst et al.

The problem state: a cognitive bottleneck
in multitasking.

Journal of Experimental Psychology:
Learning, memory, and cognition 36.2
(2010): 363.
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Theory of Multitasking
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Borst et al.

What Makes Interruptions Disruptive?:
A Process-Model Account of the Effects
of the Problem State Bottleneck on
Task Interruption and Resumption.

I University of Ljubljana CHI'15 2015
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Implications on Mobile
Attention Management

Interruptions are more
disruptive if they require
problem state switching

) “Mr. Osborne, may | be excused?
B University of Ljubljana My brain is full.”

Faculty of Computer and
Information Science




Implications on Mobile
Attention Management

« Make them less disruptive by
Interrupting:
— At moments when a task is not

fully active (e.g. just starting, or
just finished)

— At moments when a task does
not require a problem state

— At moments when a user is
working on a task that is well
practiced, a routine

“Mr. Osborne, may | be excused?
. University of Ljubljana My mln " f"“.”

Faculty of Computer and
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Can we automatically infer task engagement
with smartphones?

G. Urh and V. Pejovic,
] TaskyApp: Inferring Task Engagement via Smartphone Sensing
. University of Ljubljana Ubittention workshop with ACM UbiComp’16, Heidelberg, Germany.

Faculty of Computer and
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TaskyApp :

TaskyApp

University of Ljubljana
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New task

Task complexity will be:

Background sensing of

. . Pretty hard
device movement, ambient
sound, collocation with other
devices arting after:
Data labelling via experience ) 5o s Oaos O sos

sampling and retroactive

assisted labelling

LABEL TASKS

CHECK STATISTICS




TaskyApp

TaskyApp

New task

Task complexity will be:

« Recruited eight office workers
for five weeks

— 232 labelled instances
(3035 unlabelled)

— Most data between
8am and 6pm ) 5s 155 (O 30s (O 60s

START SENSING

Pretty hard

arting after:

LABEL TASKS

CHECK STATISTICS
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Data Analysis

 Linear regression (N=232)
fit with sensed features as
Independent variables and
task difficulty (1-5) as a
dependent variable

— Movement data gives the most
informative features

— The regression explains only a
small part of the data (R?=0.19)

University of Ljubljana
Faculty of Computer and

Information Science

Variable Coefficient t (sig.)
ASE N 038 -1.84 (.068)
mean
Acc. Z-axis 026 1.43 (.153)
mean
Gyro. mean
intensity 0.003 4.06 (.000)
crossing rate
Gyro. i_ntensity 0.200 124(217)
variance ' B
Hour of day 067 3.49 (.001)
Majority 0.5 0.5




Data Analysis

« Classify a task engagement
moment as either “easy” or
“difficult” depending on the
sensed features

— We experimented with different
classifiers but Naive Bayes seems
to work best (probably due to the
low amount of data)

« 62.5% accuracy (52.8% baseline)
- “Favourable” errors

University of Liubljana
Faculty of Computer and

Information Science

EASY’ | DIFFICULT’
45 (19.4%) | 62 (26.7%) EASY
25(10.8%) | 100 (43.1%) | DIFFICULT




Can we automatically infer task engagement
with wearables?

M. Gjoreski, M. Lustrek and V. Pejovic,
] My Watch Says I'm Busy: Inferring Cognitive Load with Low-Cost Wearables
. University of Ljubljana Ubittention workshop with ACM UbiComp’18, Singapore.
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Physiological Signals for —
Cognitive Load Inference
« Premise: heart rate (variability),
electrodermal activity, pupll
dilation, EEG changes correlate

with CL changes
« Path: low-cost wearable

sensing devices can capture
sighals ~ cognitive load
« Hypothesis: ML on these data
to infer cognitive load

];H!

University of Ljubljana
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Collected Data

* Preliminary data:
— Demographics
— Cognitive capacities (N-back test)
— Personality (Hexaco) test

University of Ljubljana
. Faculty of Computer and
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Collected Data

« Primary (PC-based) task
— Adapted from Haapalainen et al.

— Six task types, each with three
difficulty levels

— NASA TLX after each task
« Physiological measurements

— Heart rate intervals (R-R), galvanic
skin response (GSR) and skin
temperature (ST)

« Secondary task

University of Ljubljana
Faculty of Computer and

Information Science




Experiment

Demographic 3 minutes 3 minutes Personality
Questionnaire Rest Rest Questionnaire

Task load Task load Task load | 3 minutes FRXEER
Intensity x |Quest. + Rest| Intensity x |Quest. + Rest| Intensity x |Quest. + Rest Rest >

Part 1 2-back task ‘

| 3-back task

« Demographics:
— 25 users (21 completed successfully)
— 20-58 years old
— 5 female

University of Ljubljana
Faculty of Computer and
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Data Overview

° EXt ra Cte d 8 1 p h yS i O | O g i C a I’ P-Task (ut8)TLX (ut8)Opacity r(TLX-DTD) r(TLX-Opacity) r(DTD-Opacity)
. .. HP  13.8+47 0.1+0.04 0.34 -0.01 0.13
demog raph|C Cogn|t|ve FA  179+7.8 0.1+0.03 0.16 -0.08 0.07
- ) ] GC 17.4+6.1 0.1+0.06 0.48 -0.06 -0.05
NC 17.7+7.7 0.08+0.03 0.34 -0.14 -0.01
Capath; and personallty SX  17.1+7.7 0.12%0.1 0.40 -0.21 -0.33
PT  17.4+9.0 0.14+0.16 0.43 -0.08 -0.27
feat ures Overall 16.9+7.4 0.1+0.08 0.34 -0.09 -0.13

* Predicting three CL measures: A—

— TLX (subjective)
- Secondary task
— Opacity (sec. task performace) shows very weak

— Task label (objective) correlation with
TLX or DTD

University of Liubljana
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]

Cognitive Load Prediction

Target .p.' Best | Best model Accuracy increase relative to Majority
« Cast into classification task — Mejorty | model | paccuracy [ WP FA_G6C_NC_ X PT_
. - . DTD 33% NB 51% 27% 11% 10% 22% 14% 24% 18%
[ ] CIaSSIerrS: Nalve BayeSIan’ Opacity 36% GB 46% 16% 5% 13% 6% 3% 20% 10%
Random Forest, Gradient
Boosting, AdaBoost, SVM, KNN,
Trees
Easy Medium Difficult
« Modestly better than the Easy 58 101 65
. Medi 98 163 63
basel Ine Di:ficl:::: 69 91 164
. . Precision 49% 46% 56%
« Confuses neighbouring Recall 9%  50%  51%
o of s : F1 49% 48% 53%
difficulties Aceuracy 510,

University of Liubljana
Faculty of Computer and
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Fully unobtrusive task engagement inference

T. Matkovi¢ and V. Pejovi¢,
] Wi-Mind: Wireless Mental Effort Inference
. University of Liubljana Ubittention workshop with ACM UbiComp’18, Singapore.

Faculty of Computer and
Information Science




Wireless Cognitive Load
Inference

* Premise: radar can detect
breathing and heart beat
related body movement

 Path: custom FMCW radar

« Hypothesis: filtered radar
signals as a basis for ML
models of CL

Bl University of Liubljana
Faculty of Computer and
Information Science




Wi-Mind

« Software-Defined Radio (SDR)
implementation of FMCW radar

 Monitor movement as a user is
solving tasks of different
difficulty

« Extract heart beat and
breathing-related features

e Build ML models

University of Ljubljana
Faculty of Computer and
Information Science

Feature
extraction

Machine Learning

\

Cognitive
load
estimation




From EM Waves to
Physiological Signhals
« Preprocessing:

— Unwrapping phase
— Filtering HF and LF noise

I University of Ljubljana
Faculty of Computer and
Information Science
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From EM Waves to M\/\WN\/\/\/
Physiological Signals y ol -
 Preprocessing: Sl .
— Unwrapping phase oo{
— Filtering HF and LF noise e
 Extracting breathing signal fime (<)
— Breathing rate (via FFT) features: mean 10
rate, power in different bands, etc. 05
— Inter-breath features (peak detection): o]
avg. interval, variation, I:E, etc. 2
+ Metafeature -
— Is the signal “clean”? -

University of Ljubljana 5 20 4 60 80 100
Faculty Of Comf?‘”@” and frequency (breaths per minute)
Information Science



From EM Waves to

Physiological Signals W
g 1.0 —— Signal
° PreprOCeSSing: g Filtered signal
— Unwrapping phase 05
— Filtering HF and LF noise 0] @, 8 0 o0 0 80 o0 P

° EX’[I‘aC’[ing heart beat Signals: 312 314 ;1:19 (5)318 320 322
— Heart rate (FFT)

— Heart rate variability HRV (peak 018
detection + filtering) features: RR .
intervals, LF and HF HRV ;i:“

£ 0.4

University of Ljubljana
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Faculty of Computer and frequency (beats per minute)
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\anation of Demographic data

WIMInd Experiments sy

« Primary (PC-based) task

. Putt
— Adapted from Haapalainen et al.  — jcosotpama (€ WMndsep e
— NASA TLX after each task
> Tasksoing [——> S(i"’,‘\"’s":_';‘it)'(‘;"
End of last task <
W University of Ljubljana
. Faculty of Computer and Finished
Information Science




WIMInd Experiments

Primary (PC-based) task
— Adapted from Haapalainen et al.
— NASA TLX after each task

« WIMInd wireless
measurements

« MS Band + Android app
« Demographics
— 23 users

— 20-38 years old

— 6 female, 17 male
University of Ljubljana
Faculty of Computer and
Information Science




Results

« Labelling signals via
time windows:
— Last 30 seconds of

task engagement
(label “busy”)
600 700 800 900 1000

— 30 seconds of explicit time (s)
relaxation
(label “relax”)

distance

distance
@

o
i

540 560 580 600 620 640 660 680
time (s)

B University of Ljubljana
Faculty of Computer and
Information Science



But first...

« Breathing rate validation

 Heart rate validation

University of Ljubljana
Faculty of Computer and
Information Science

breathing rate

heart rate
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False
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Inferring Task
Engagement (Binary)

« Normalised breathing rate

e Different ML models from the
“standard” toolbox

« Leave-one-person-out
validation

University of Ljubljana
Faculty of Computer and
Information Science

Method AUC Accuracy
k-NN 0.752 0.704
SVM 0.670 0.580

Random

forest 0.806 0.746
Naive

Bayes 0.780 0.723
Majority 0.5 0.5




Inferring Task
Engagement (Binary)

« Normalised breathing rate

e Different ML models from the
“standard” toolbox

« Leave-one-person-out
validation

« Personalised models improve
performance for some users
but overall no improvement

University of Ljubljana
Faculty of Computer and
Information Science

Method Accuracy
k-NN 0.604
SVM 0.721

Random

forest Bzl

Naive

Bayes 0.734
Majority 0.5




Inferring Task
Engagement (E/M/H)

« Unable to distinguish among
different complexity levels

« Results are better if we
consider only Easy and Hard
tasks

« Linear regression for TLX gives
similarly poor results

University of Ljubljana
Faculty of Computer and
Information Science

Method Accuracy
k-NN 0.343
SVM 0.328

Random

forest sl

Naive

Bayes 0.337
Majority 0.34




Neural Network Approach

* Long Short-Term Memory
(LSTM) neural network

« Raw wireless phase signal

« Accuracy results:
— Binary (busy/relaxed): 0.752
(vs 0.5 majority; 0.746 random forest)

— No improvement with tertiary (E/M/H)
or task-specific models

University of Ljubljana
Faculty of Computer and

Information Science



Towards (very accurate) unobtrusive cognitive
load inference




Summary

 (Relatively) successfully detect whether a person is
engaged in a task or not even with WiMind

« Detecting the level of engagement is challenging
even with direct sensing with off-the-shelf wearables

« Secondary task (the way we designed it) is
not a reliable proxy for task complexity or TLX

[

University of Ljubljana
Faculty of Computer and
Information Science




Expanding Our Approach

« Therole of personality traits

- Heterogeneous data sources:

— Phone: accelerometer, calendar
info, screen on/off

— Wristband: HR(V), GSR,
accelerometer, barometer, UV

— Wireless: breathing, HR(V)
« Task types that elicit the
strongest physiological
response

University of Ljubljana
. Faculty of Computer and

Information Science




Research Directions

« Which type of cognitive load
can/should we detect:
— Intrinsic
— Extraneous
— Germane

« Should we infer objective or
subjective task difficulty?

]

University of Ljubljana
Faculty of Computer and
Information Science




Collaborators

«  WiMind:
— Tilen Matkovic, Uni. of Ljubljana
* Wearables:

— Martin Gjoreski, Mitja Lustrek,
Institut Jozef Stefan, Ljubljana

« TaskyApp:
— Gasper Urh, Uni. of Ljubljana
* Mobile Interruptibility:

— Mirco Musolesi, Abhinav Mehrotra,
University College London

— Christoph Anderson,
University of Kassel
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Don't forget the other talks!

Attention Management Survey UbitTention Workshop
Christoph Anderson Friday whole day!
Tuesday 2pm (talk by Gjoreski and myself)

........

University of Ljubljana
Faculty of Computer and
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Thank You!

Dr Veljko Pejovié
Faculty of Computer and Information Science

University of Ljubljana, Slovenia

University of Ljubljana Veljko.Pejovic@fri.uni-lj.si
. Faculty of Computer and @veljkoveljko
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