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a b s t r a c t 

Increasing reliance on mobile broadband (MBB) networks for communication, vehicle navigation, healthcare, and 
other critical purposes calls for improved monitoring and troubleshooting. While recent advances in monitoring 
with crowdsourced and network infrastructure-based methods allow us to tap into a number of performance 
metrics from all layers of networking, huge swaths of data remain poorly explored due to a lack of tools suitable for 
fast, interactive, and rigorous MBB data analysis. In this paper we present RICERCANDO, a solution that enables 
rapid exploration of large heterogeneous MBB measurement data as well as the identification and explanation of 
unusual patterns detected in such data. RICERCANDO consists of a preprocessing module ensuring that time-series 
data is stored in the most appropriate form for mining, a rapid exploration module enabling iterative analysis 
of time-series and geomobile data to detect and single-out anomalies, and the advanced mining module that lets 
the analyst deduce root causes of observed anomalies. We implement and release RICERCANDO in open-source, 
and validate its usability on case studies from a pan-European MBB measurement testbed. 
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. Introduction 

In December 2018, after a glitch involving software certificates, up
o 32 million O2 mobile network customers in the United Kingdom and
ome 30 million SoftBank network customers in Japan were left with-
ut access to data services for up to 24 hours [1] . Despite its relatively
hort duration, the incident prompted public outrage and lead O2 to
ompensate its customers and request “tens of millions of dollars ” in
amages from Ericsson, a network equipment manufacturer whose soft-
are caused the issue. The glitch was yet another demonstration of the
alue of mobile connectivity and the need to rapidly detect and under-
tand the causes of mobile broadband network anomalies. 

In the global connectivity landscape, mobile wireless communica-
ions play a particularly prominent role. The advent of mobile wireless
ommunication had a tremendous impact on numerous aspects of our
ives – from the way we navigate in unknown environments, communi-
ate on the move, over the way we pay our bills, to the way we track
ur health and wellbeing. Underpinning and enabling all of this are mo-
ile broadband (MBB) networks. These networks have witnessed rapid
xpansion recently – MBB subscriptions have grown more than ten-fold
n the last decade and have reached 5.3 billion globally in 2018 [2] .
etwork performance is improving drastically – a few Mbps download

peeds enabled by 3G technology at the break of the millennium appear
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ncient in comparison with a few Gbps delivered by today’s 5G tech-
ology. Finally, MBBs are becoming more affordable – worldwide MBB
ccess prices halved between 2013 and 2016 [3] . Together with the ex-
ansion of novel paradigms that depend on fast ubiquitous connectivity,
uch as the Internet of Things (IoT), e-Health, smart cities and factories,
he above trends indicate that our reliance on MBB networks is to grow
ven further. 

MBB networks have penetrated into virtually all aspects of our ev-
ryday lives, became the inseparable part of today’s Internet, and en-
uring MBB networks’ reliability became a critical issue. Underpinning
he efforts to ensure reliability are network monitoring and data analysis
ethods. Despite the advances in MBB performance measurement meth-

ds [4–8] the problem of the identification of performance anomalies
nd, even more, the identification of root causes of network anomalies
emains unsolved. First, the sheer breadth of networks, both in terms
f the number of devices as well as their geographic spread, requires
onsideration of multiple views of the same phenomenon before any
onclusions can be made. Yet, frequent fine-grain measurements, nec-
ssary due to the networks’ dynamic behaviour, result in tremendous
mounts of data, rendering multifaceted/multigranular analysis a chal-
enging task. Second, the networks’ multilayered construction calls for
 joint consideration of (meta) information from different levels, from
hysical layer information on signal strengths, over transport layer re-
ransmissions, to packet delay and jitter. However, these data are col-
ected by different probes and sensors, and providing a unified view
n programme under grant agreement No. 644399 (MONROE) through the open 
ncy (grant no. N2-0136). BZ is also supported by Slovenian Research Agency 
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f the data coming from different sources calls for novel intelligent
ata consolidation strategies. Finally, current approaches to explaining
nomalies are rather ad-hoc and rely on networking experts’ intuition.
he increasing complexity of MBB networks prevents exhaustive search
or potential reasons for network malfunctioning, while statistical and
achine learning methods that could help pinpoint the causes of net-
ork anomalies often remain outside the network administrators’ ex-
ertise and are challenging to apply within the existing network traffic
nalysis and visualisation tools. 

In this paper we tackle the problem of detecting and explaining MBB
etwork performance issues. We do that through RICERCANDO, a MBB
etwork data analysis framework developed in tight collaboration of
etworking and data mining experts and designed to answer the above-
isted challenges. RICERCANDO enables multi-staged and flexible data
nalysis. Our framework handles the first stage of the analysis through a
ata representation scheme that merges data of different types and from
ifferent sources, and adapts them to time series-based organisation suit-
ble for querying with a different level of granularity. RICERCANDO
hen enables scalable interactive visual analysis of big network measure-
ent data. Next, we devise anomaly detection methods that pinpoint
easurements where network performance indicators significantly devi-

te from the expected values. Finally, through RICERCANDO’s machine
earning pipeline designed to help with the identification of key factors
hat might have caused the observed anomalies, we introduce rigorous
tatistical and machine learning methodology to MBB data analysis. 

Specific contributions that RICERCANDO brings to the research area
f network management include: 

• Design of data merging and re-sampling method for agile data ma-
nipulation; 

• Implementation of adaptable and multi-dimensional temporal and
geographical visualisation of MBB measurement data; 

• Implementation of various anomaly detection methods suitable for
time-series data; 

• Inclusion of support for modern data mining techniques in network
data analysis. 

Through a case study conduced on data collected through a pan-
uropean MBB network measurement testbed we demonstrate RICER-
ANDO’s ability to detect and explain network anomalies. Finally, we
ave released RICERCANDO as an open-source software and we invite
he community to join our efforts towards supporting rapid MBB net-
ork measurement data analysis. 

. Related work 

.1. Monitoring MBB networks and measurement data management 

A systematic method of monitoring is crucial for assessing the qual-
ty of service and troubleshooting in mobile broadband networks. Re-
ently, a wide range of approaches for MBB measurements have been
eveloped [9] . Approaches rely on either passive [5,8] or active mea-
urements [10] , or on a hybrid measurement methodology that com-
ines both [4,11–13] . Passive measurements merely observe the existing
etwork traffic, while active measurements inject own packets in order
o evaluate performance metrics. The downside of active measurements
s that the measurement process may impact the actual network under
est. 

In terms of the measurement point locations, certain approaches,
specially those initiated by national regulators, use dedicated moni-
oring equipment and a small number of controlled nodes, while oth-
rs rely on crowdsourced measurements conducted by a large num-
er of often uncoordinated users [14] . The former have the benefit of
eing unrestricted by the provider, of viewing the network as users,
nd of covering wide geographical areas. OpenSignal, for instance, has
ore than 100 million users across the globe [15] . However, crowd-

ourced measurements suffer from unreliability due to the lack of con-
rol over the measurement equipment. A mobile app-based measure-
ent software may be run on different phone models, with different

mplementations of the operating system, devices running different ap-
lications in parallel to the measurement app, different hardware issues
e.g. bent antennas), and devices placed in various locations during mea-
urements (e.g. bag/pocket/hand), all of which may impact measure-
ent results [16,17] . Recent commercial and research initiatives hence
se crowdsourced-like approach with specialised equipment dedicated
o network measurements [18] . 

Irrespective of the measurement approach, MBB measurement data
s large-scale, temporal, heterogeneous, and shaped by a number of fac-
ors related to measurement methodology and equipment. Storing, pro-
essing and reasoning upon such data is challenging, and a number of
olutions providing a structured approach to measurement data analy-
is have been developed. Svoboda et al. demonstrated the importance of
sing a well-defined methodology for packet delay measurement anal-
sis in order to obtain meaningful interpretation of the results [11] .
oMo provides a structure for fast prototyping of network measurement
ining applications [19] . Mostly concerned with data storage and flow,
oMo does not provide sufficient support for advanced analytics. Future
fforts were aimed at either increasing scalability, usability, or the num-
er of supported options for data analysis. ENTRADA, for instance, con-
erts pcap log file to Apache Parquet and enables stream mining [20] .
imilarly, DBStream was built to support rolling big data analysis [21] .
he tool’s utility has been demonstrated on a few use cases, including
n the analysis of signalling and data transfer behaviour of different
obile device types and different operating systems [22] . Designed by
etworking experts, these systems usually provide solutions to network
easurement data handling, yet stop at the point where advanced data
ining is needed. 

.2. Mining MBB measurements 

The complexity of MBB measurement data prompted networking re-
earchers to resort to ad-hoc and task-specific approaches to data min-
ng. Baltrunas et al. show that even simple correlation can help with
etwork reliability estimates [23] . In order to profile network coverage
n Norway, Lutu et al. perform hierarchical clustering of measurement
ata collected via train-mounted probes [24] . Narayanan et al. propose
 feature distribution similarity graph to analyse spatio-temporal mobile
easurement data [25] . The authors show the utility of the approach in
 case study of profiling mobile users’ behaviour from call detail records.
SkyPRO probe employs supervised classification to detect encrypted
kype traffic [26] . With RICERCANDO we go a step further and de-
ise a rich framework focused on discovering general anomalies in MBB
easurement data and identifying their root causes using unsupervised

earning. 
More advanced approaches try to automate the mining process, espe-

ially when it comes to anomaly detection, a key issue in network data
nalysis. An overview of statistical methods for anomaly detection for
omputer networking experts was presented by Callegari et al in [27] .
 recent advancement in the area of automated detection is ADAM,
 system that detects anomalies by estimating Kullback-Leibler diver-
ence between the incoming and previously collected data [4] . Once
n anomaly is detected, the system performs factor analysis to identify
eatures exhibiting a similar abrupt change. RCA tool initially detects
hange points by measuring the entropy of considered features [28] .
t then considers the full statistical distribution of the traffic features
o characterise anomalies. Ricciato et al. suggested two approaches to
ottleneck detection, the first one based on statistical analysis of the
ggregate rate, and the second method based on TCP performance indi-
ators [29] . Coluccia et al. proposed an anomaly detection methodology
hat identifies statistically significant deviations from the past behaviour
sing Maximum Entropy modelling [30] . In another study, the authors
nvestigated distributions of multiple features to detect traffic anoma-
ies, indicating that the alarm correlation across features may augment
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d  

s  
he accuracy of the detector [31] . In [32] Li et al. describe a random
orest-based approach for anomaly detection in passive measurements.

hile a clear intuition behind the rules of tree splitting provides a step
owards interpretable machine learning, the approach does not yield
 clear picture of which contextual parameter may have caused the
nomaly. Furthermore, unlike RICERCANDO, work presented in [32] is
ot a full-fledged open-source software framework. Association rule
ining is another popular approach for identifying potential causes of
etwork malfunctions. Zargarian et al. present a method for mining asso-
iation rules describing temporally and spatially correlated alarm events
rom a network log [33] . Similarly to RICERCANDO, this work aims to
upport networking experts by relieving them from the burden of big
ata analysis. RICERCANDO, however, integrates with Orange [34] , a
ata mining suite that hosts a wide range of statistical tools, while also
ncluding association rule mining. Moreover, RICERCANDO provides
ools for flexible data exploration enabling efficient visualisation of very
arge measurement datasets. Ahmed et al. identified network providers,
ocations, device types, and applications, or combinations of the above,
hat lead to performance degradation in a large 3G network [35] . The
roposed method relies on iterative construction of regression models
o detect underperforming measurements and association rule mining in
rder to single out the most prominent combinations. Intuitively, such
n approach focuses on the most apparent, recurring anomalies. Our
pproach to anomaly detection (presented in Section 4 ) enables closer
nspection and detection of even short-lasting deviations from the ex-
ected performance, while also providing statistical explanations for the
iscrepancy. 

In summary, the existing work in the area of network measurement
nalysis primarily focuses on either measurement data storage and man-
gement [19–21] , or on the development of methods for processing
nd profiling network measurements, and identifying anomalies in the
ata [4,25,27,30] . Furthermore, these tools often stop short of provid-
ng advanced data mining capabilities and instead rely on a networking
xpert’s presence in the loop 2 . Finally, despite interactive live data vi-
ualisation likely being the most efficient means of harnessing expert
nowledge [38] , the presented tools seldom provide any advanced vi-
ualisation capabilities. Recognising the shortcomings of the above ap-
roaches as well as the limitations of existing visualisation tools (further
laborated in Section 4.2 ), in RICERCANDO we implement a suite of
ata processing, mining, and visualisation methods specifically tailored
or MBB measurement data analysis. 

. MBB Measurement data characteristics and RICERCANDO 

nalysis approach 

A careful examination of the characteristics of MBB measurements
epresents a cornerstone of RICERCANDO. As discussed in the previous
ection, MBB measurements system can rely on passive or active mea-
urements, and can be performed through well-planned installations or
n an opportunistic crowd-sourced manner. Yet, certain properties char-
cterise MBB measurements irrespective of the measurement system im-
lementation. 

We base our requirements analysis on the examination of the re-
ated work of MBB measurement mining ( Section 2 ), but also on an in-
epth analysis of a state-of-the-art MBB measurement platform – MON-
OE. MONROE is an open access hardware-based platform for indepen-
ent, multihomed, large-scale experimentation in MBB networks [18] .
he MONROE project aims to create a pan-national reliable open-access
easurement platform for MBB networks 3 . The core of the system is a
2 This is explicitly evident in Siekkinen et al. TCP RCA approach [36] , but also 
hrough subtle issues related to data collection and interpretation process. For 
nstance, Michelinakis et al. show how peculiarities of packet scheduling at an 
TE base station impact capacity estimates inferred through measurements [37] . 
3 http://www.monroe-project.eu 

R  

s  

m  
ONROE node, a custom-built device fitted with a Debian-based sin-
le board computer and up to three LTE modems connected to differ-
nt providers. A centralised experiment scheduling system allows MON-
OE users to post custom-made experiments to distributed nodes and
emotely collect measurement results. In addition, each node indepen-
ently executes certain background experiments, such as periodic RTT
easurements to MONROE servers. Finally, all the experiment data and
eta-data are collected in a MONROE database implemented in Cas-

andra 4 . In 2018, the project operated 150 measurement nodes in four
uropean countries, with more than a half of the nodes being mounted
n buses, trains, and delivery trucks. 

We have been conducting MONROE data analyses from the projects
nception in 2016 and have obtained a thorough understanding of the
haracteristics of the measurement data. Similarly to other systems,
ONROE measurement data are characterised by: 

• Spatio-temporality: measurement nodes are geographically dis-
persed and often mobile; 

• Multi-modality: multiple aspects of network performance (RTT,
throughput, etc.) and meta-data (location, CPU load, etc.) are sam-
pled in parallel; 

• Heterogeneity of data exhibited through their varying granularity
and the lack of synchrony among different measured features; 

• Impact of the measurement methodology, hardware, and software
on the measurement results; 

• Lack of ground truth data. 

A MBB data analysis tool has to cope with the above characteristics of
he data on the implementation level. On the higher level, however, the
ool has to enable comprehensive analysis, requirements of which have
een discussed among the research community before. For instance, in
006 Ricciato indicated that network traffic analysis should include sta-
istical analysis that goes beyond simple ad-hoc solutions, visualisation
nd multidimensional exploration by networking experts and advanced
achine learning algorithms, and should allow the data to be pipelined

o other tools [39] . Recently, needs for additional higher-level infer-
nces from MBB measurements, such as Net neutrality violation detec-
ion, have also been voiced [40] . 

We design RICERCANDO to take into account the unique character-
stics of the MBB measurement data and directly answer the needs of
he research community. In RICERCANDO, we explicitly support inter-
ctive analysis and put the user in the loop. Moreover, our data storage
aradigm is adapted to support rapid visualisation and experimentation,
o that the expert knowledge can be harnessed in the best possible way.
imilarly, identifying a need for automated statistical analysis, we create
 machine learning pipeline that automatically detects and suggests ex-
lanations for network anomalies. At the same time, the system’s visual
omponent maintains a close dialog with an expert enabling iterative in-
estigation until the root cause of the issue is identified. Finally, recog-
ising the uniqueness of each measurement setup and varying goals of
hose who analyse networks, we do not restrict RICERCANDO to par-
icular mining techniques. Rather, we integrate it with the popular data
ining suite Orange 5 , allowing a wide range of current and future data
ining approaches. 

. RICERCANDO framework 

RICERCANDO is structured around modules that together create a
ata mining pipeline ( Fig. 1 ). The framework assumes that the data is
tored in a key-value database, such as Cassandra 6 used by the MON-
OE project. Data Preprocessing module ( Section 4.1.1 ) transforms and
tores the data so that it can be quickly retrieved along the temporal di-
ension. Data Merging Interface ( Section 4.1.2 ) enables different views
4 http://cassandra.apache.org 
5 http://orange.biolab.si 
6 http://cassandra.apache.org/ 
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Fig. 1. An overview of RICERCANDO framework. Boxes represent framework’s 
modules, while arrows represent data movement. Darker (red) arrows indicate 
that data is given in Python pandas format, suitable for interchange among dif- 
ferent processing modules and tools. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this 
article.) 
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9 We use InfluxDB ( www.influxdata.com ) in our implementation; compared 
to popular alternatives, such as Elasticsearch, InfluxDB delivers 6.1x greater 
ver the data. Rapid Exploration ( Sections 4.2 and 4.3 ) module consists
f three submodules that allow interactive visualisation of time-series
ata, geomobile data visualisation, and anomaly detection. Finally, Ad-

anced Mining module ( Section 4.4 ) interfaces with Orange data mining
uite and enables sophisticated machine learning and additional data
isualisation methods. 

RICERCANDO implementation consists of a core ricercando
ython library 7 , data preprocessing scripts written in Bash and Python,
upyter Notebooks for visual analysis, and an add-on for Orange data
ining suite. All the code, together with the installation instructions is

vailable on GitHub 8 . 

.1. Data preprocessing and interfacing 

.1.1. Storage and re-sampling 

MBB measurement data are often collected in relational or key-value
atabases, as they enable easy and efficient storage [4,21,41] . However,
tored in such a manner, data are not suitable for rapid interactive explo-
ation. This is especially true for data with a temporal dimension, which
s common in MBB measurements – nodes move in space/time, RTTs are
athered with periodic pings, anomalies and glitches impact subsequent
ode behaviour. Key-value and traditional relational databases severely
imit the performance and the flexibility of writing queries over time-
eries data. The volume of data and metadata gathered by MBB mea-
urements can be large. For instance, RTT measurements from MON-
OE platform produce approximately 20 million entries per day. Data
torage needs to support data sampling to allow zooming in and out on
 selected chunk of data, or to support concurrent analysis of data com-
ng from multiple nodes. MBB data comes from various sources, such as
ultiple nodes and multiple processes within a measurement node, and

re often not aligned along the common time axis. Consequently, merg-
ng the data in order to enable multidimensional analysis is challenging.

In RICERCANDO we devise data transformation and data storage
chemas to transform MBB data into minable representations. We use
emporal data abstraction and feature engineering guided by domain-
pecific knowledge, and we construct scripts that implement various
ata transformation tasks. To solve the temporal data mining problem
7 ricercando is also available via pip installer 
8 http://github.com/ivek1312/ricercando/ 

w
t
b
t

e transform the data to a time-series database 9 We store time-series
ata with the minimal temporal granularity determined by the mea-
urement equipment time resolution (usually in millisecond range). We
lso sample and store the data at a different granularity (e.g. 1 s, 1 min,
0 min, etc.). This is crucial for enabling interactive visualisation – if a
ser requests to visualise a whole day of data, we fetch data of a coarser
emporal granularity; for examining particular anomalies, we zoom in
nd provide fine-grain data. When sampling to low resolution the ag-
regation of values within the period depends on the type of data. Thus,
ith a few exceptions, for categorical variables we use mode function

hat returns the most frequently observed value in the considered time
rame, while for numerical we use either min, max , or mean . The intu-
tion for different aggregating functions stems from the diverse nature of
he observed variables. For instance, RSSI values are often volatile even
etween subsequent closely-spaced measurements, thus their mean is
sually considered [23] . On the other hand, for understanding network
ongestion, the minimum of the achieved throughput may be more in-
ormative than its mean. Finally, for the number of network users in a
ime period and for certain network resources (e.g. radio access bearer
equests) the maximum value in a time slice may be the most appropri-
te aggregation function for network troubleshooting purposes [43] . 

.1.2. Merging data from different sources 

Data mining and modelling is performed on datasets consisting of
nstances , where each instance represents a data point in a multidimen-
ional feature space. For example, a measurement of the GPS location,
TT, and the state of the measurement node at a point in time. As mea-
urement data come from various non-synchronised sources, we often
ave to merge individual data streams along the same time axis. A sketch
f the merging process we implement in the Data Merging Interface
odule is shown in Fig. 2 . For each of the time series (e.g. ping RTT,
PS coordinates, etc.) we find an intersection with a selected moment on

he common time axis, and then apply a different strategy for inferring
he value at the requested moment in time. 

Similarly to the need for different aggregation strategies elaborated
n Section 4.1.1 , the need for a range of value inference strategies stems
rom the diverse nature of the observed variables. For instance, a change
n a user’s location is limited by the physical properties, such as the
peed of movement. Thus, for GPS coordinates we perform interpola-
ion between the last measurement before and the first measurement
fter the given moment in time. For RTT we take an average of the mea-
urements recorded in a time window preceding the current moment.
ote that the approach used with the GPS coordinates would not be ap-
ropriate here – network malfunctions or connection switches (e.g. from
G to LTE connection) often result in sudden RTT changes, which would
e masked by the simple interpolation approach. For features indicating
iscrete events we keep track of the node’s state and assign the last ob-
erved state to the instance we are inferring the value for. For example,
he last value of the indicator stating that an experiment is currently
unning at the node would be extrapolated to the currently considered
ime. Finally, RICERCANDO allows further tuning of the merging pro-
ess, for example, by specifying the minimum freshness value of the data
efore it is included in a data instance – e.g. if no download speed mea-
urements were taken in the last 60 s, the instance will contain a null

alue for download speed . This can be further extended to “tighten ” the
eliability of the inferred values – e.g. the larger the difference between
he two GPS points we interpolate from, the less confident we become
bout the inferred value and we might consider replacing it with a null

alue. While we steer away from a fully automated merging and require
rite throughput, uses 2.5x less disk space, and delivered 8.2x faster response 
imes [42] ; furthermore, InfluxDB supports time-series signal analysis out of the 
ox. Nevertheless, RICERCANDO is not dependent on InfluxDB and alternative 
ime-series databases can also be used. 

http://github.com/ivek1312/ricercando/
http://www.influxdata.com
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Fig. 2. Data merging along the common time axis in 
RICERCANDO. 
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nput from a networking expert, this guarantees that the further analysis
s done on truly meaningful data. 10 

.2. Interactive visualisation of big MBB measurements data 

Iterative examination of visualised data is crucial for network data
ining [39] . These data, however, are multidimensional, temporal, and

eo-mobile, and very large, exemplifying the common “three Vs ” chal-
enges in big data visualisation: volume, variety, and velocity [47] . Con-
entional data visualisation tools that come with data mining pack-
ges, such as WEKA or Orange, struggle with MBB data, moreover,
he amount of data might even overburden specialised tools, such as
ableau [48] . Interactive Web-based visualisation frameworks, such as
okeh 11 , Holoviews 12 and Plotly 13 , strive to tackle the above chal-

enges, yet, they remain limited by the Web technology – it can handle
nly a limited amount of points before the Web browser chokes [49] .
rafana 14 represents a powerful and popular tool for data visualisation,
et, as in our framework data visualisation remains highly interactive
nd tightly connected with the data modelling pipeline, it requires a be-
poke solution. For instance, our time-series and geo-visualisation tools
erform adaptive sampling depending on the zoom level, interact with
eterogeneous data merging and allow the selected data to be quickly
unnelled into a Python Pandas Dataframe and forwarded to Orange for
urther inspection. Using an off-the-shelf solution for data visualisation
ould preclude such a flexible connection among different parts of our

ramework. 
To visualise a large number of data points the existing solutions

ely on methods, such as decimation and data-shading. Decimation re-
amples data in advance and displays only a predefined maximum num-
er of data points. Data-shading plots rasterised images rendered to
how the amount of detail appropriate for the current zoom level. While
enerally applicable, these methods are not suitable for interactive MBB
ata analysis – decimation omits random points, which may impact ex-
erts’ interpretation of the observed measurements, and data-shading
revents interactivity since rasterised image disallow further data selec-
ion and forwarding to a machine learning pipeline. Finally, neither of
he techniques tackles the problem of volume – how to automatically
repare the right amount of data for visualisation at query time. 
10 The inclusion of domain experts early on in the data preprocessing stage is 
ften emphasised as a crucial step in modern data mining [44–46] . 
11 https://bokeh.org/ 
12 http://holoviews.org/ 
13 https://plot.ly/ 
14 https://grafana.com/ 
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RICERCANDO’s original approach to data preprocessing (see
ection 4.1 ) is naturally suited for tackling the “three Vs ” chal-
enge. The volume challenge is tackled by storing and sampling the
ata at different granularity, the variety issue is tackled with dif-
erent merging/preprocessing techniques, and velocity is tackled with
peed-optimised adaptable granularity queries. Based on the above ap-
roaches, we develop two modules for rapid interactive visualisation
f MBB measurement data – one for time-series visualisation, the other
or geographical data visualisation, both implemented in the form of
upyter Notebooks. We opted for this environment, as opposed to cus-
om stand-alone programs, as it allows quick prototyping and tweaking
ccording to specific user needs and given datasets. 

Time-Series Visualisation module for a selected network probe
node) and a time period plots a target key performance indicator (KPI)
n a separate timeline for each of the node’s interfaces. An additional di-
ension can be represented through the colouring of each of the points

 Fig. 3 ). User is able to choose the preferred colour palette from var-
ous options. Finally, the tool enables hovering over a point, showing
alues of all the other dimensions associated with the same data point.
 key property of the Time-Series Visualisation module is its adaptabil-

ty to the amount of to-be-shown data. It relies on getdf function from
icercando Python module, which, for the given zoom level retrieves
ata from the database with an appropriate resolution, in order to pre-
erve the interactivity of the notebook. For example, viewing a whole
eek worth of measurements might use data aggregated on 30 min in-

ervals, whereas zooming into a particular RTT anomaly might fetch and
how data with 10 ms granularity. 

Geographical Data Visualisation module ( Fig. 4 ) supports visu-
lisation of a selected KPI of geo-referenced data from a measurement
ode on a separate map for each of the node’s interfaces, for the given
ime period. Such visualisation is a key tool for the identification of is-
ues affecting particular geographic regions. Similarly to the Time Series
isualisation module, hovering over a point shows values of all the other
imensions associated with the same data point. Geographical Data Vi-
ualisation module, too, relies on getdf function for adaptive data re-
rieval, so that the retrieved data resolution is adjusted to the current
ap zoom level. 

RICERCANDO modules, such as Time Series Visualisation, Geograph-
cal Data Visualisation, Anomaly Detection, and Advanced Mining mod-
le are designed to fit into each other just like LEGO® bricks and al-
ow flexible data analysis workflows. To support interoperability among
odules we rely on Python pandas DataFrame (dark/red lines in Fig. 1 ).

ndeed, each of the Jupyter notebook-based modules allows data selec-
ion (e.g. selecting a range of data points on a map) and storage (as a
ataFrame on local storage), and retrieval from another module, e.g. in
rder to perform advanced mining in Orange. 

https://bokeh.org/
http://holoviews.org/
https://plot.ly/
https://grafana.com/
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Fig. 3. Time-series visualisation in RICERCANDO. Y-axis represents RTT measured on each of the two interfaces of the same node, while colouring corresponds 
to the cell id (CID). Vertical lines represent MONROE experiment start/stop/loading moments. Plots below each of the RTT series show the frequency used by the 
interface. Figure shows node 562 with two interfaces. RTT in interface on top varied from 60 to 100 ms until 5h, while switching between different cell ids. From 

5h to 20h the cell id does not change and also RTT stays almost constant at 60 ms. The operating frequency from 4h to 21h is 1800 MHz. 
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Fig. 4. Geographical visualisation of RTT measured on two interfaces of the mobile node travelling through Oslo. The shades of the trace correspond to different 
values of RTT. On the right image a selected region contains RTT data stored for further analysis. 
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.3. Anomaly detection tool 

Anomalies occur frequently in computer network measurement data
nd can be caused by anything from misconfigurations to cyber at-
acks [50,51] . Anomaly detection plays a central role in RICERCANDO.

e implement a Jupyter Notebook that enables automatic detection and
isual inspection of anomalies in the data ( Fig. 8 ). Numerous detec-
ion methods relying on a range of techniques, from mining association
ules [52] , to modelling with Markov processes [53] , have been pro-
osed for anomaly inference (see [54] for a survey of anomaly detection
pproaches). 

What is an anomaly? Without any knowledge of the underlying
ystem that generates the data, an anomaly detection system aims to
nd “sufficiently different ” measurements in a stream of data. Alterna-
ively, the data are labelled as “anomalous ” if they do not follow the
atterns that a domain expert expects, based on her mental model of
ow the MBB network “should ” behave. While the first definition leaves
s struggling to find parameter values that would define “sufficiently
ifferent ” behaviour in automated anomaly detection systems (Romirer
nd Ricciato have pondered on this question in the context of delay mea-
urements in 3G networks [55] ), the second definition is limited by the
xpert’s (mis)understanding of the network phenomena. Thus, in RICER-
ANDO we aim to judiciously guide an expert in reasoning about the
bserved deviations. We implement methods for automated labelling of
sufficiently different ” measurements, while at the same time the meth-
ds’ parameters allow the experts, guided by an immediate visual feed-
ack, to adapt the labelling to the currently considered situation. Fur-
her, we “encode ” the underlying knowledge about the system to label
s anomalous only those values that do not conform to a pre-constructed
odel, therefore, moving the automation closer to the “expert ” side of

he spectrum. 
An anomaly is usually a previously unseen event and without sub-

tantial involvement of networking experts we cannot expect that a la-
elled training data set is available. Thus, lacking the ground truth, we
se unsupervised machine learning for anomaly detection. Certain MBB
easurements are clearly anomalous, characterised by rapid changes

ike sudden very high RTT. Consequently, our first approach to anomaly
etection relies on a simple comparison of a signal with the previously
 

bserved data. Yet, observed changes in MBB measurements need not be
nomalies, but reflections of natural changes in the underlying connec-
ivity (e.g. a handoff from 4G to 3G). Thus, our second more advanced
pproach to anomaly detection relies on detecting deviations from the
xpected measurement values, where these values are predicted by a
odel that takes the underlying connectivity context into account. Fi-
ally, we augment our toolbox with an anomaly detection method that
s founded in a statistical comparison between two sets of measured
alues. 

In summary, RICERCANDO implements three anomaly detection
ethods: 

• Rolling mean – a method based on a rolling window that compares
data in the current window with a long-term mean of the measure-
ments. Data points that are a number of standard deviations away
from the rolling mean are regarded as outliers and a large enough
cluster of outliers is identified as an anomalous region. The rolling
analysis recognises fast and large changes of the values in a time
series. The speed of change is related to the size of a rolling win-
dow, which in turn is related to the amount of data explored by the
window. The number of standard deviations from the rolling mean
determines the sensitivity of the method to the observed change. Dif-
ferent parameters for anomaly detection, including the rolling win-
dow size and the standard deviations threshold, can be set by the
user. A networking expert can identify and fix the parameters for
different applications, thus enabling subsequent automatic anomaly
detection. With this method abrupt falls or rises (spikes) are treated
as anomalies, while, for example, a gradually rising RTT due to in-
creased network congestion would not be considered an anomaly. 

• Baseline comparison – a detector that compares the actual value
of a data point with the value predicted based on a pre-constructed
model. Such a method can, for example, learn the expected RTT for
a node using 4G technology experiencing a certain RSRQ in a cer-
tain area, and correctly attribute changes in RTT to either contex-
tual changes – like fallback from 4G to 3G – or to an unexplained
anomaly. Due to a large parameter space the observed data point
might come with a previously unseen context. To cope with such a
case, RICERCANDO builds the model using the quantile regression
forest technique [56] that predicts the dependent variable value even
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Fig. 5. Anomaly detector determined two different anomaly re- 
gions (higher RTT values shaded grey) within the same data by 
using distinct values of detection parameters in each case. 
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if the context has not been observed before. Furthermore, we build a
model by using top N (by default 10) percent of the best performing
measurements from a given context. This ensures that well perform-
ing points are not misclassified as anomalies. 

• Distribution comparison 

15 – a detector that empirically infers dis-
tributions of the same variable in different segments of the data us-
ing kernel density estimation technique, and then compares the dis-
tributions using Kullback-Leibler divergence. Significant difference
between the previous and currently observed data distributions may
indicate an anomaly. 

The developed notebook allows the user to select a measurement
ode, a target KPI, and a time span in which the data is analysed. Ad-
itionally, the user can set a number of parameters that control the op-
ration of the tool, including the sensitivity of anomaly detection. In
he first step, the developed tool automatically detects the anomalies in
easured data based on one of the above detection methods selected.
esides these methods, the tool supports a simple integration of new
nomaly detectors. After one or more anomalies are detected, the tool
nables informative visualisation of regular and anomalous data. Based
n visual results a domain expert may adjust initial parameters to con-
rol the shape of the highlighted anomalies. This is demonstrated in
ig. 5 , where tuning of parameters produced two different anomaly
egions within the same data. Descriptive visualisation also allows the
xperts to quickly find important aspects in the data. The data can then
e saved so that anomalous regions are automatically labelled for fur-
her processing. 

An important feature of the anomaly detection tool is concurrent
nomaly detection. MBB data often contains measurements from a large
umber of nodes connected to a few different network providers, and de-
ecting anomalies that simultaneously appear at all interfaces connected
o the same provider is crucial for identifying whether the anomaly is
solated or affecting the whole network. In RICERCANDO we implement
n optional concurrent analysis that takes into account all probes con-
ected to a particular network. The output of the tool is a time diagram
howing a cumulative count of anomalies over time for the selected net-
ork – moments when such a count is high indicate network-wide issues

see Section 5.4 ). 
In all developed anomaly detection methods user can set various

arameters. Identifying the relevant set of parameter values is indeed a
15 This method is not suitable for streaming data analysis, therefore, we im- 
lement it in the Anomaly Detection module, but do not expose it through our 
UI. 
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omplex task and must be done carefully by experts in order to enable
utomatic anomaly detection. 

.4. Advanced mining 

Identifying root causes of the observed MBB behaviour is the final
oal of data analysis. The existing tools for MBB data analysis were
ostly developed by computer networking experts and support data pre-
rocessing, visualisation, and simple statistical analysis [4,19,23,36] .
ICERCANDO is developed in close collaboration with highly experi-
nced data mining experts – one of the RICERCANDO authors is leading
ata mining research lab with more than 20 years of practical data min-
ng experience in a range of domains. This synergy enables us to support
dvanced data mining for root cause analysis in RICERCANDO. 

A key enabler of advanced mining in RICERCANDO is Orange – a
opular GUI-based data mining toolbox where data processing work-
ows are constructed through visual programming by combing widgets .
 widget is a computational unit with interactive visual interface that
erforms a particular function related to data preprocessing, visualisa-
ion, and modelling. Orange supports a range of machine learning meth-
ds, from unsupervised (clustering), to supervised (classifiers, regres-
ions), from basic (e.g. naive Bayesian) to more complex state-of-the-art
nes (e.g. neural networks). Fig. 6 depicts MONROE measurement data
nalysis using an Orange workflow of widgets. 

Orange is limited in the amount of data it can handle. Thus, we
se it as the last step of RICERCANDO analysis. We develop an Orange
idget to import the data from RICERCANDO rapid exploration note-
ooks. Users can, thus, perform preliminary visualisation and analysis
f a larger dataset in a Jupyter Notebook before selecting a particularly
nteresting dataset and analysing it further in Orange. In addition, we
evelop a widget for direct access to MONROE data stored in a time-
eries database. 

One of the main questions a network analyst is interested in is which

actors may cause a particular anomaly? [57] . To answer this, we de-
elop an Orange widget that identifies Significant Groups of features that
ifferentiate between regular and anomalous data. Note that a dataset
ontaining labelled regular and anomalous data is automatically cre-
ted by our Anomaly Detection module and imported to Orange via the
Python Connector widget. The main test implemented within the Sig-
ificant Groups widget is the hypergeometric test. The test traverses all
ubsets of features and calculates the enrichment each subset brings to
he anomalous data region. Sorting the subsets according to the enrich-
ent, while also taking into account their significance levels, gives us a

ist of most probable causes for the detected anomaly. In addition, the
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Fig. 6. MONROE data analysis in Orange. A workflow composed of Orange widgets is shown in the upper left corner. Each widget performs a specific function. A 

window corresponding to Scatter Plot Before widget (lower left) shows anomalous RTT behaviour. Scatter Plot After window (middle right) shows distinct RTT dips. 
Feature Constructor widget is used for splitting the data into groups with low and normal RTT. Finally, Significant Groups widget performs a hypergeometric test and 
identifies Scheduling.Task.Started event as a feature value that discerns between the two groups, indicating that a background experiment impacts the 
observed RTT. 
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idget supports other comparison tests that may help with root cause
nalysis, such as the permutation test and the t -test. 

. Case studies 

The MONROE project provides large amount of data of various MBB
etwork parameters. Irregular patterns in the data can quickly be spot-
ed using the visualisations. However, to precisely define visually ob-
erved anomalies and to discover hidden anomalies that are not easy to
llustrate, we developed an automatic anomaly detector. Beside identifi-
ation of anomalies the computer tool also facilitates the determination
f their root causes. Among multiple occurrences of anomalies that we
ound, selected case studies focused on RTT data are thoroughly de-
cribed in this section. 

.1. Connection mode change 

The first anomaly we identified by using our automatic detection
ool’s rolling mean method is depicted in Fig. 7 (top). The figure shows
hat on the given measurement node after 11:30 the RTT mean changes
rastically from below 100 ms to approximately 250 ms. The anomaly
etector automatically recognised the shift and marked it as an anomaly
grey region). Running the hypergeometric test and calculating the en-
ichment each feature subset brings to the anomalous data region, we
ound out that a change in the device’s connectivity mode is the cul-
rit. A switch from LTE to 3G perfectly coincides with the anomaly, as
hown in Fig. 7 depicting the RTT and the interface’s mode on the com-
on time axis. Note that by automating the significant feature search
e remove the need for comprehensive visual analysis. 

This example shows the limitations of the automated approach re-
ying on domain-agnostic data deviation detection (see discussion in
ection 4.3 ). In Section 5.3 we present a model-based approach, which,
rmed with the knowledge based on the previously seen data, correctly
onsiders the above example to be non-anomalous, as it can be easily
xplained through the network interface mode change. 

.2. Measurement system interference 

In many instances we encountered sudden short-lasting drops in the
easured RTT. Fig. 8 shows RTT measurements within two hours from
0:00 to 22:00 on one of the interfaces. The majority of measurements
ave values near 100 ms, but between 21:05 and 21:20 there is a con-
entrated group of measurements with values around 80 ms. The shaded
rea marks an anomalous group which was identified by our rolling
ean detector. Many dispersed outliers can be seen in Fig. 8 , yet only
 cluster with a sufficient number of outliers composes an anomaly. In
uch situations the detection using the computer tool is more accurate
han just a visual observation of data. 

The significance analysis for this case shows that the root cause of
his anomaly is the event Scheduling.Task.Started ( Fig. 9 ), in-
icating that a start of an experiment on a node causes the anomaly. It
eems that running an experiment on a node triggers a drop in measured
TT values. 

We hypothesise that the cause of such behaviour is the discontinuous
eception (DRX) mode. DRX allows interfaces to save energy by going
o a low power mode when no data is being transmitted [58] . However,
RX may lead to the RTT increase if the ping packets, before the trans-
ission, have to wait for the interface to go back to a high power state.
ONROE platform pings are sent out with 1 second inter-packet time,
hile operators often set the DRX kick-in threshold to around 100ms.
onsequently, we expect that most of the MONROE ping packets, un-

ess an interface is already active because of an experiment, indeed have
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Fig. 7. The image on top shows the increase of RTT measurements 
after 11:30 and the bottom image shows how the shift correlates with 
the change of parameter DeviceMode. The vast majority of RTT values 
before 11:30 are around 100 ms, so the relatively rare outliers at that 
time do not form an anomaly. 

Fig. 8. The anomaly detected via rolling mean method is marked with 
a shaded area. Occasional outliers are coloured grey, however, they 
do not necessarily compose an anomaly. 

Fig. 9. Significance analysis determines the event Scheduling.Task.Started as the root cause of the anomaly shown in Fig. 8 . 
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above the baseline. 
o wait for the interface to go to the high power state before the RTT
easurements can be performed. To confirm the existence of DRX we

onducted our own ping experiments on the MONROE platform with
ariable inter-packet times. As expected, once ping packets were sent
ut with a higher frequency, the measured RTT dropped. 

.3. Baseline model anomaly detection 

The rolling mean anomaly detection method is limited in its ability to
dapt to well understood changes in the observed variable. For instance,
n the case examined in Section 5.1 the jump in ping RTT measurements
s not unusual, having in mind the device connection mode change. On
he other hand, the baseline method for anomaly detection uses a pre-
onstructed quantile regression tree model to infer the expected value
f the observed parameter in the light of the given context, i.e. values
f selected remaining parameters. Consequently, the method does not
ark as anomalous those measurements that can be explained with the
re-constructed model. This greatly reduces the number of false posi-
ives, as an “anomaly ” can, in fact, be explained by the model. 

In Fig. 10 we show model-predicted values of ping RTT (black line)
nd the observed values (grey dots). The baseline model takes in to ac-
ount RSSI (Received Signal Strength Indicator), RSRQ (Reference Sig-
al Received Quality) and RSRP (Reference Signal Received Power) as
ndependent variables. The prediction was created by quantile regres-
ion forests algorithm, taking into account the top percentile of pre-
icted RTT values. Here the higher percentile indicates the better (i.e.
maller) RTT value. The outliers are the points distant from the baseline,
eaning that their actual value highly disagrees with predicted value.

n top image are two shaded anomaly regions formed by outliers high
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Fig. 10. In the image on top the baseline is the predicted value of 
RTT with respect to parameters RSSI, RSRQ, and RSRP. The detector 
marked two anomalies. The first anomaly is resolved by using CID to 
construct the baseline as shown on bottom image. 

Fig. 11. Number of simultaneously occurring anomalies at all 
nodes connected to the same ISP. 
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The first anomaly can be explained by further refining the model via
etraining with the information on the expected RTT at different cell
Ds (CID) that a device connects to. This is clarified in bottom image
n Fig. 10 , where the baseline was constructed by quantile regression
orests algorithm that predicts RTT values with respect to CID. The three
teps in the baseline function in the bottom image correspond to three
ifferent cells that a device connected to. Therefore, the first anomaly
onstructed in top image is not considered an anomaly, if the CID pa-
ameter is taken into account. Note that the figure still does not ex-
lain why RTT measurements differ across different CIDs – this requires
urther investigation that goes beyond the capabilities of the collected
ataset. The second anomaly on the right side of both images in Fig. 10 ,
owever, is not due to different CID, so its root cause is the variation
n parameters other than CID, RSSI, RSRQ, or RSRP. In this way the
aseline anomaly detector not only uncovers anomalies that are impos-
ible to detect visually, but can also explain anomalies by choosing the
ppropriate independent variables for the quantile regression forests al-
orithm. 

.4. Network and system-wide anomalies 

We are further interested to determine whether a certain anomaly
ppears only at a particular network interface or, perhaps, at a number
f interfaces connected to the same Internet service provider (ISP), or
ven beyond – in a number of devices across the measurement system.
uch a case could indicate a systemic cause of the anomalies, similar to
he real-world example of network-wide outage from the opening para-
raph of this paper. In order to study such examples we enhanced our
nomaly detection tool to support concurrent anomaly detection over
 number of interfaces – essentially, it counts all anomalies happening
t the same time at nodes connected to the same ISP. Fig. 11 shows
he number of anomalies that occurred simultaneously at all nodes con-
ected to ISP YOIGO on June 2018. A pattern of periodic spikes can be
bserved. This anomaly is due to an RTT drop caused by a MONROE
latform experimenter running heavy experiments, similarly to the case
xamined in Section 5.2 . The large number of concurrent anomalies at
pikes correspond to experiments scheduled to run on different nodes of
he same operator at the same time. 

We further examined potential network-wide anomalies. Through
xploratory analysis at a few interfaces we noticed an anomaly caused
y missing data. We then ran the concurrent anomaly detection tool
or all the interfaces connected to a few different ISPs. In Fig. 12 we
how the cumulative anomaly count for two different ISPs – Vodafone
T and YOIGO. We see that both operators exhibit simultaneous peaks
hat are more than two standard deviations above the mean anomaly
ount. The same peak is observable with other ISPs (not shown in the
gure). This indicates a system wide anomaly, likely caused by a glitch

n the measurement system. 

. Lessons learnt 

Continuous experimentation and revising has marked the process of
ICERCANDO design and development. Different prototypes have been
eveloped, applied on the data, and evaluated, while at the same time
he underlying measurement platform (MONROE) kept evolving, essen-
ially making our goal a moving target. In this section we present some
f the main lessons learnt through the development process. 

Need for appropriate data preprocessing and representation. At the time
ICERCANDO started in June 2016 the MONROE platform was pro-
ucing only a modest amount of (meta) data from a limited number of
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Fig. 12. A system-wide anomaly due to the missing RTT data at ap- 
proximately 17:30 on January 1st 2018. 

n  

d  

c  

(  

s  

l  

a  

t  

m  

n  

M  

p  

p  

g  

d  

r  

d
 

w  

t  

d  

u  

f  

h  

d  

h  

u  

s  

b  

s
 

o  

F  

c  

w  

o  

i  

t  

a  

m  

a
 

e  

v  

C  

m  

e  

w  

u  

s  

e  

c  

t  

r  

t  

a  

b  

o  

r
 

t  

u  

i  

U  

S  

t  

c  

c  

t  

o  

m  

a
 

W  

t  

e  

i  

e  

c  

m  

d  

i  

C  

t  

m  

n  

a  

i  

o  

L  

c  

m

odes. However, over the course of the project the amount of collected
ata grew both because additional nodes were deployed, as well as be-
ause of the additional information that was collected on each node
e.g. different background experiments). MONROE data are by default
tored in a Cassandra no-SQL database. This, however, severely limits
arge-scale data mining of the platform data. While no-SQL databases en-
bles easy storage of key-value pairs, they are inappropriate for mining
emporal data. Most of the collected data indeed have a temporal di-
ension, thus time-based querying remains crucial. Another issue with
o-SQL databases is that they often do not support data sampling. In
ONROE, data are often collected with very fine granularity (e.g. a

ing every second), which makes (visual) inspection over a larger time
eriod impractical – there are simply too many points to be shown on a
raph. In the early stages of RICERCANDO we tried to adapt to the given
atabase. However, in the next step, in order to enable efficient tempo-
al large data analysis we devised a solution that relies on InfluxDB, a
atabase specifically designed for time-series data querying. 

Joining tables over the common timestamp field is another challenge
e have faced. Since timestamps are asynchronous, some tolerance on

imestamp joining had to be accounted for. One solution was sampling
ata at rounded timestamps directly on the database, which we also
sed for visualisation. Another solution was provided by mergeasof , a
unction from the pandas module, which is similar to a left-join. Here,
owever, we use it to match on the nearest backward timestamp with a
efined temporal tolerance between potentially merged instances. This
elped us obtain more meaningful data points with fewer missing val-
es. Data preprocessing and representation is usually the most difficult
tep, especially when dealing with large amounts of data. Our contri-
ution, released in a form of processing scripts automates this step and
treamlines further mining of MBB measurement data. 

Available data imposes explanation capacity limits. The interpretation
f some encountered anomalies eluded us. One of these is depicted in
ig. 13 . A drop in mean RTT value occurs around 7:00, similar to the
ase of ping experiment running on the node ( Fig. 8 ). However, there
ere no scheduled experiments in the case in Fig. 13 , so they are ruled
ut as root-cause of the anomaly. Also, the 2-hour extent of this anomaly
s longer than the 10-minute duration of an experiment. Furthermore,
he anomaly appeared only at one interface of the same node. The avail-
ble data is simply insufficient for explaining this anomaly. More infor-
ation, perhaps from specific operational logs of this particular device,

re needed. 
Effects of mobile broadband measurement system on the results. Uncov-

ring the role of seemingly unrelated system design decisions on KPI
alues is one of the key observations we arrived to, as we tested RICER-
ANDO on MONROE data. For instance, after significant amounts of
eta-data started arriving from MONROE nodes we discovered that RTT
xhibits occasional spikes (going above 5X the usual value) interspersed
ith lost ping packets. Further analysis with our Rapid Exploration tools
ncovered correlation between the observed anomaly and the node re-
ource utilisation spikes, indicating potential executions of CPU-heavy
xperiments. Consequently, our suggestion to include experiment exe-
ution information in the metadata was implemented by the MONROE
eam, which later allowed us to pinpoint a particular experiment that
esulted in the observed RTT behaviour. This is just one example where
he measurement system, in this case through heavy resource usage by
n experiment, resulted in anomalous measurements. The impact of the
ackground traffic on RTT measurements via DRX mode toggling is an-
ther example of the coupling of the measurement methodology and the
ecorded result, and is explained in Section 5 . 

We further revealed that geographical and Internet coordinates of
he measurement equipment impacts the observed measurement val-
es. For instance, in our testbed, all nodes and all interfaces were send-
ng ping probes to the same destination host IP of a server at Karlstad
niversity, Sweden. We noticed that the nodes located in Norway and
weden often had the mean RTT of the ping probes in the range be-
ween 40 ms and 60 ms, while it was not uncommon for the nodes in
ountries far from the destination host server to encounter mean RTT
lose to 100 ms. This observation precludes a cross-node anomaly de-
ection approach. Thus, rather than comparing the absolute difference
f feature values among distant nodes, we concentrated on individual
odelling and detection of relative changes in feature values recorded

t a single node. 
MBB measurement data analysis requires multidisciplinary expertise.

hile we were already aware of the need for interdisciplinary exper-
ise at the time we laid out plans for RICERCANDO, this need became
ven more evident as we progressed with development. First, MBB data
s often analysed by computer networking domain experts. The need for
xpertise in data mining, in particular in data representation, statisti-
al analysis, and geographical data analysis proved crucial and the data
ining part of our team got several enquiries to help with other projects’
ata analysis issues. The two fields, data mining and computer network-
ng, are seldom directly collaborating, and it is our hope that RICER-
ANDO results might facilitate this collaboration. Second, even when
he general knowledge of networking is present, MBB measurement data
ining requires in-depth knowledge of latest practices in broadband
etworks’ implementation. Such knowledge is often available only with
 close collaboration with relevant industrial players. Specifically, our
dentification of the DRX-related anomaly would not be possible with-
ut close collaboration with an industry professional experienced with
TE networks. Finally, visualisation of MBB measurement data, a cru-
ial aspect of RICERCANDO, was based on lessons learnt from our data
ining group’s previous efforts in big data visualisation [59,60] . 
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Fig. 13. Anomaly occurs only at one interface (bottom image) of the 
same node. 
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16 
. Conclusions 

In this paper we presented RICERCANDO – an MBB measurement
ata mining toolkit developed in close collaboration of networking and
achine learning experts. RICERCANDO goes beyond the existing tools

y allowing rapid iterative visual analysis and rigorous advanced data
ining of MBB data. The developed approach is founded in intelligent

ime-series data storage, re-sampling, and merging, followed by interac-
ive visualisation methods that enable quick focus on a particular mea-
urements of interest. Machine learning modelling then enables auto-
ated anomaly detection and root cause analysis via rigorous statistical
ethods. 

Compared to the existing attempts at MBB data analysis, such as [23–
5] , RICERCANDO does not provide merely descriptive statistics about
he underlying data and an implementation of a pre-selected mining
echnique. Rather, through integration with a full-fledged data min-
ng suite, Orange, RICERCANDO enables a vast array of data mining
echniques. The benefit of these techniques to not only identify, but
lso explain unusual network behaviour is evident in Section 5.2 where
he significance analysis is used to pinpoint the reason for the change
n RTT values. RICERCANDO’s visualisation toolbox incorporates time-
eries and geo-based visualisation. The richness of options in RICER-
ANDO’s visualisation toolbox is not on a par with the options provided
y popular solutions, such as Grafana, yet, neither was the provision of
uch options one of our design goals. Instead, compared to visualisation-
nly solutions, RICERCANDO fully integrates with the data mining
ipeline allowing interactive analysis through Pandas Dataframe-based
ommunication. Finally, RICERCANDO can be compared with other
BB measurement data anomaly detection tools [29,30,32,36] . Most

f these solutions focus on different methods for identifying unusual
ehaviour on a single measurement node, either through statistical
eans [30] or through in-depth knowledge of the underlying net-
orking protocols [36] . In RICERCANDO we harness machine learn-

ng modelling (e.g. quantile regression forest [56] ) and also provide
 bird’s eye view of the whole dataset. This is particularly evident in
ection 5.4 where we demonstrate how network-wide anomalies can be
etected with RICERCANDO. 

RICERCANDO represents a holistic solution for network measure-
ent analysis, yet, its modular design naturally supports framework ex-
ansion and evolution. Augmenting the anomaly detection module with
eep learning (DL) techniques, something that we are already work-
ng on, demonstrates this expandability. Deep learning relies on large
mounts of data in order to tune the models’ numerous parameters.
ith the constant stream of new values sampled at high frequency, MBB

raffic measurements are a great candidate for DL-based modelling. DL
ethods such as recurrent neural networks (RNNs) and deep Boltzmann
achines (DBMs) have been used to model time series data and recog-
ise anomalous events related to network security [61] . In our work,
e will concentrate on the autoencoder (AE), a technique that relies on

he dimensionality reduction to compress the representation of the usual
etwork traffic. When this AE is then fed with new measurements, any
ailure to compress and reconstruct the measurements through the AE
ndicates an anomaly [62] . Compared to the approaches we have im-
lemented in Section 4.3 , the AE-based approach implicitly learns what
he normal data should look like and is thus more likely to identify even
reviously unseen and unusual anomalies. 

In this we present a number of use cases demonstrating the usability
f the framework for anomaly detection and explanation. Although the
ramework was designed primarily for the analysis of data collected in
ONROE testbed, its usability is by no means restricted to a particu-

ar dataset. We have already harnessed RICERCANDO for mining MBB
easurement data gathered by the Slovenian Agency for Telecommuni-

ations (AKOS) with the goal of inferring Internet neutrality violations
n Slovenia. Moreover, although targeting MBB measurements, certain
arts of our framework could also be used in other environments, es-
ecially those characterised by heterogeneous measurements and mea-
urements generated by a large number of probes. For instance, Internet
ervice Providers (ISP) usually manage large fixed access networks com-
rised of diverse sub-networks. RICERCANDO’s geo-visualisation and
nomaly detection tools can assist ISPs in rapidly detecting and localis-
ng issues within their network. Similarly, in datacenter environments,
here different performance metrics (e.g. delay, throughput, packet

oss, etc.) need to be tracked, RICERCANDO’s anomaly detection module
ould provide support in detecting and explaining performance prob-
ems. 

RICERCANDO toolbox has a great potential to assist commercial tel-
os and government regulators with monitoring and understanding MBB
raffic, and we invite interested parties to download RICERCANDO 

16 ,
dapt it to their needs, enrich it with additional functionalities, and fur-
her contribute towards improved network measurement data analysis
nd understanding. 
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