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Abstract—Probably the most popular research platform originally never intended
to become one, the smartphone has been instrumental in ushering us into the
new era of studying human behavior. Even so, however, our analysis of research
papers published in the last decade shows that the smartphone is steadily losing
its prominence in mobile sensing research. The loss of a platform that is carried
by six billion users at almost all times could stifle research in areas varying from
human-computer interaction, over healthcare, to demography. Therefore, in this
article I investigate the potential reasons behind smartphone sensing falling out of
research fashion, and propose solutions for some key issues identified.

F ifteen years have passed since the first An-
droid and iOS smartphones hit the shelves and
marked the culmination of long-standing efforts

to realise a century-old prophecy of visionaries, such
as Nikola Tesla1, Isaac Asimov2, and Arthur Clarke3.

There is little doubt that smartphones have indeed
restructured our society – it is enough to compare the
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1In a 1926 interview with Collier’s magazine Tesla pro-
claimed that “When wireless is perfectly applied the whole
earth will be converted into a huge brain, which in fact it
is, all things being particles of a real and rhythmic whole.
We shall be able to communicate with one another instantly,
irrespective of distance. Not only this, but through television
and telephony we shall see and hear one another as perfectly
as though we were face to face, despite intervening distances
of thousands of miles; and the instruments through which we
shall be able to do his will be amazingly simple compared with
our present telephone. A man will be able to carry one in his
vest pocket.”

2In Visit to the World’s Fair of 2014, published in 1964,
Asimov ponders: “Communications will become sight-sound
and you will see as well as hear the person you telephone.
The screen can be used not only to see the people you call
but also for studying documents and photographs and reading
passages from books. The appliances of 2014 will have no
electric cords, of course, for they will be powered by long-
lived batteries"

3At a 1976 conference at MIT Clarke claimed that “The
wristwatch telephone will be technologically feasible very
soon. It will be completely mobile. And this would again
restructure society. You’ll tell the machine I’m interested in
such-and-such item, sports, politics and so forth, and the
machine will hunt the main central library and bring all this
to you selectively.”

way we navigate in space, make payments, watch the
news, take photos and share them with social contacts
today and fifteen years ago to observe the scale of the
impact. What’s more, there are no indications that the
impact is waning. The initial opportunities enabled by
sight-sound communication and ubiqutious information
delivery are as of lately supplemented by the promises
of artificial intelligence (AI), converting our pocket de-
vices into a true "huge brain" that Tesla envisaged.

Researchers from different domains were quick to
embrace the smartphone. The device was hailed for its
potential to provide objective information about the sur-
roundings thanks to multimodal sensors, to maintain a
dialogue with its owner by being at an arm’s reach at
all times, and to efficiently store, process, and transfer
data – all with essentially free rein that developers had
when building their mobile applications. Interwoven
with everyday life, the smartphone even served as
a foundation for novel research fields, such as the
computational social science [1].

A decade and a half later, smartphone hardware is
even more powerful, the array of embedded sensors
keeps growing, and the device is as pervasive as it
ever was, partly due to wireless connectivity expan-
sion. Application-wise, there is practically no aspect
of human behavior left untouched. New avenues for
exploration are only unfolding, primarily thanks to on-
device AI.

Considering the above, it seems certain that the
smartphone’s role as the most promising platform for
mobile computing research is unlikely to be threat-
ened anytime soon. Yet, observing the research trends
uncovered in the succeeding section of this article, it
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appears that the smartphone might slowly wane as a
research tool. Why would that be?

TRENDS
To investigate the role of the smartphone in mobile
computing research, in this section I chart the preva-
lence of mobile platforms as a researchers’ tool of
choice in publications related to mobile computing.
While numerous journals and conferences host such
publications, journals typically have long publication
cycles, preventing timely observation of recent trends,
which is why I will here focus on conferences. Re-
search utilising mobile platforms can be found in mul-
titrack conferences, such as ACM UbiComp and ACM
CHI, yet trends in platform usage can be difficult to
disentangle within the broader set of topics covered by
these conferences. Thus, I turn our attention to single
track conferences, and among them focus on Associa-
tion of Computing Machinery International Conference
on Mobile Systems, Applications, and Services (ACM
MobiSys) and Conference on Embedded Networked
Sensor Systems (ACM SenSys). These conferences
represents top-ranked4 conferences on mobile and
sensing systems research, and ones that have em-
braced the smartphone early on. Furthermore, accord-
ing to its call for papers, MobiSys “values technical
contributions with working implementations and prac-
tical evaluations”, making any use of the smartphone
for research clearly identifiable.

In this analysis, I examine 376 full-length research
papers published in MobiSys and 321 such papers
published in SenSys proceedings from 2013 to 2023.
2013 was the year when the smartphone was reported
to have already reached a substantial chunk of the
world’s general population, with more than two billion
active devices worldwide5. iPhone released model 5s,
the first smartphone to feature a 64-bit processor
and a specialized sensor data co-processor, while the
Android market was dominated by similarly powerful,
yet cheaper Samsung Galaxy line of devices. In addi-
tion, by 2013, researchers had fully acknowledged the
smartphone’s research potential, and seminal work, in-
cluding the Nokia’s Mobile Data Challenge had already
appeared [2] , thus I assume that the selected time
span will include the peak popularity of the smartphone
as a research platform. From the corpus of papers, I
separately count those that focus on Android, iPhone,

4CORE ranking A and A∗, respectively.
5https://www.statista.com/forecasts/1143723/smartphone-

users-in-the-world
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(a) Percentage of ACM MobiSys papers using a particular
smartphone platform.
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(b) Percentage of ACM SenSys papers using a particular
smartphone platform.

FIGURE 1: Smartphone as a research tool of choice in
ACM MobiSys and SenSys proceedings. Android used
to figure in almost three quarters of the MobiSys and
almost a half of SenSys research papers. A decade
later, this has changed to less than a quarter and
less than a tenth of papers, respectively. Meanwhile,
Windows Mobile and iPhone have failed to gain much
traction.

and Windows phone-based experimentation. While the
coding was in most cases straightforward, I exclude
papers that use the smartphone merely as a result
reporting platform (e.g. an Android app is present,
but its only purpose is to show information to a user
and the research itself is not inherently smartphone-
specific), yet, include research that is prototyped as an
Android mobile sensing app, but is deployed on tablets.

Figure 1 depicts the percentage of MobiSys and
SenSys papers whose research is focused on smart-
phones. Android’s clear dominance over other mobile
operating systems (OSs) can be attributed to its open-
source codebase, large developers’ community, and
compatibility with various hardware. However, we see
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that over time, the popularity of both Android and the
smartphone in general has fallen. By 2023 Android
was the tool of choice in only 24% of the papers
published at MobiSys, a two-third reduction over its
peak in 2015, when Android was used by 72% of the
MobiSys papers. Similar trends can be observed in
SenSys, where the percentage of papers relying on
Android sensing has fallen to 8% in 2023, c.f. 48% in
2013.

The figure also shows external events that may
have impacted Android’s popularity within the research
community, such as its restricted use on Huawei de-
vices, the enactment of GDPR, and the COVID-19 pan-
demics that made smartphone-based experimentation
somewhat more difficult. Nevertheless, the popularity
appears to be dwindling more persistently and long
before/after these events.

The arrival of new platforms, such as earables,
GPU-equipped boards, and unmanned aerial vehicles,
can only partly explain the shifting research grounds,
as each year’s proceedings feature only a few papers
using these new platforms6. Instead, research has also
spread over platforms whose mainstream use predates
the smartphone dominance, including FPGAs, micro-
controllers, and software-defined radio. Therefore, I
seek to answer whether changes in the smartphone
itself made it a less attractive research tool over time?

AFFORDANCES
To pinpoint the factors that have over time made the
smartphone less attractive as a research tool, I will first
examine the affordances that made it so desirable to
begin with.

A highly-cited paper from 2012 hails the arrival
of a platform that is compact and, for a piece of
technology, unusually intimate and personalized [1].
The 2012 smartphone comes embedded with a range
of sensors, from cameras that could be “continually
streaming users’ visual experiences into their smart-
phone memories, in case they want to share a clip with
friends, family, Facebook, insurers, or police”, to Blue-
tooth chipsets that, in combination with call logs, could
reveal presence of a user’s social contacts. The 2012
smartphone also allows apps to track other apps and
the content of the communications, such as call logs,

6I present a detailed breakdown of platforms used in Mo-
biSys research from 2013 to 2023 available at https://gitlab.fri.
uni-lj.si/lrk/smartphone-research-trends. The highest point of
popularity of a new platform is being seen in 2023 when five
MobiSys and five SenSys papers (12% and 21% of the total,
respectively) presented research on GPU-equipped boards.

voice calls, and text messages, a user’s interaction with
the device, as well as the Web browsing history and
online social network activity. For the near future, year
2025, the author envisions an ecosystem of external
sensors that, together with the smartphone will enable
monitoring various physiological signals, such as blood
pressure, hormone levels, even ovulation. From the
processing side, the 2012 smartphone already boasts
multicore CPUs and gigabytes of RAM, and the author
assures us that market competition among mobile
operating systems will streamline the development of
flexible apps that “can reach deeper into the guts of
the smartphone’s hardware”.

Two technical affordances unique to the smart-
phone can be unpacked from the above description.
First, the smartphone possesses immense sensing ca-
pabilities. Second, sensor sampling and data process-
ing can be executed continuously and allow behav-
ior tracking, thanks to the smartphone’s background
processing abilities. Have these affordances changed
throughout the years?

SENSING
The history of the smartphone reveals that the original
intention behind embedded sensors was to facilitate
interaction with the device, not provide a platform for
mobile sensing. For instance, the purpose of a built-
in inertial measurement unit (IMU) is to trigger screen
transition to the landscape mode when a device is
rotated, not to detect Parkinson’s disease symptoms
in the phone’s user, as has been done later by Arora
et al [3]. Since ingenious uses of sensors were borne
out of later efforts by researchers and app developers,
most sensors were not optimized for frequent use in
the first place, and their energy consumption was, at
least initially, rather high [4].

Substantial energy burden associated with sensor
sampling was tackled by OS designers, who, over time,
restricted and optimized access to sensor hardware,
in order to expand the battery life of a device. The
evolution of such restrictions is best observed in the
case of location sensing in Android.

The initial means of accessing location in An-
droid was through LocationManager class from
android.location package. Methods of this class
allow an application developer to select between GPS
and network-based location determination. The latter
is obtained by triangulation from signals of nearby
WiFi and cellular base stations, and is often less
accurate than GPS-based location determination. The
GPS chip, on the other hand, remains one of the most
energy hungry sensors in a smartphone [4]. While,
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from the battery consumption point of view, occasional
GPS sampling by a single app may go unnoticed, over
time the average number of apps installed on a single
user’s phone grew to about 80 [5], making it highly
probable that multiple applications frequently turn the
GPS chipset on to obtain accurate location.

In Android smartphones, severe battery drain
caused by location sensing was addressed with
the introduction of FusedLocationClient, a class
that abstracts the actual sensor used and only
allows the developer to issue a query specify-
ing whether the emphasis should be on location
precision or energy needed for obtaining the lo-
cation. Managed through Google Play Services,
FusedLocationClient would then, whenever possi-
ble, “recycle” location information obtained and cached
after a previous query. Consequently, an app request-
ing location information soon after another app has
obtained the location, might be served “stale” location
with virtually no battery cost incurred. While this im-
proves the battery life, it abstracts the location access
from the developer, potentially affecting mobile sensing
apps.

The energy consumption overhead of location sam-
pling was not the only issue with smartphone sens-
ing whose prominence grew with time. Early mobile
sensing apps collected sensitive data, such as raw
sound and video clips and location traces, in a manner
that would be completely unacceptable today due to
privacy concerns. Once privacy awareness increased,
mobile OSs responded with a suite of privacy control
mechanisms. These mechanisms are, however, often
in conflict with the needs of mobile sensing apps used
for research. In early versions of Android, permissions
to sample certain sensors, for instance a microphone
or a camera, had to be granted at the app install
time and were not retractable. Starting from Android
6.0 Marshmallow released in 2015, permissions had
to be acquired at runtime, before the first time the
permission-protected property was requested, making
it possible for users to install the app, yet prevent
the app from obtaining certain data, such as a user’s
location.

Considering location, further privacy-related re-
strictions were introduced in 2016 with Android
7.0 Nougat, where users were given an option to
permit location sampling only when the app was
actively used. This was additionally tightened in
Android 10 Q, where background location sens-
ing required an additional Manifest-level permission
ACCESS_BACKGROUND_LOCATION and an explicit ap-
proval from the user. Finally, starting from Android 11,
released in 2020, background location sensing can

only be enabled from outside the app, through device-
level settings that a lay user might not be familiar with.

Location sensing has witnessed the most radi-
cal permission overhaul, yet sensing other modalities
faced similar curbing. Physical activity recognition, for
instance, starting from Android 10 requires a sepa-
rate permission. Camera and microphone access have
been subject to permissions since the early days of
Android, yet, starting from Android 9 P, even if given
the permissions, apps can no longer obtain micro-
phone and camera recordings from the background.
Besides the sensing of physical properties, tighter
privacy controls have also targeted the sensing of on-
device events. Android 7.0 Nougat restricts sensing of
certain events, such as connectivity changes. This is
further tightened in Android 8.0 Oreo, where only a
limited number of exempt event broadcasts can be reg-
istered. Cross-app privacy has also been enhanced,
thus, it is not any more possible for an application
to read others’ notifications without a user explicitly
granting this permission through the Settings. Similarly,
obtaining information about CPU usage (via /proc/stat)
is not possible since Android O.

In the era of surveillance capitalism [6], increased
privacy-awareness and the resulting privacy-securing
tools certainly represent a positive move, especially
when it comes to a widely used personal device, such
as the smartphone. However, increased restrictions
on data collection severely hamper the smartphone’s
attractiveness as a research platform. A number of
seminal smartphone-based studies from the last 15
years that have relied on unrestricted access to a
user’s location [7], physical activity [8], microphone
recordings [9], and communication patterns [10] would
be virtually impossible to conduct on today’s devices.

BACKGROUND PROCESSING
Predicting a user’s depression from their mobility
traces [7], or a student’s grades from the places they
visit and the conversations they have [11], would not
be possible without the smartphone’s ability to sense
and process data even when the device is in one’s
pocket. Computation that is executed even when the
app is not actively used, i.e. is in the background, was
initially supported by Android’s Service class. This
is essentially a UI-less component that runs on the
main computational thread. Later, the class evolved
to IntentService, which automatically transfers the
processing to a separate thread, and an additional
class AsyncTask, that allow seamless transition be-
tween background and foreground processing. De-
pending on the interaction paradigm, the developers
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could use long-running Services, within them spawn
a separate thread and task it with periodically collecting
a user’s sensor data in the background, or use an
IntentService or an AsyncTask to collect data in
the background, while the user is interacting with the
UI.

One issue stemming from such a programming
model is that a background task would keep a device’s
RAM occupied for extended periods of time, impacting
the phone’s performance. Consequently, the termina-
tion of long-running background Services, in case the
system got low on resources, was implemented in
Android. An alternative method to perform frequent
data collection and processing, despite this limitation,
was to periodically spawn a new IntentService,
complete the data collection and processing, and then
the background thread would terminate automatically.
The component tasked with periodic initiation of the
IntentService was AlarmManager. This class al-
lowed one-off and periodic actions, even from within an
app that is not currently active and/or interacted with.

Another issue with background processing is that
it prevents the phone from transitioning to a power-
saving mode, leading to battery depletion. Just as in
the case of location sensing, while a periodic wake up
of a single app initiated by AlarmManager is unlikely
to have substantial impact on the battery use, frequent
wake ups by a myriad of apps installed on the same
phone will likely significantly reduce the battery charge
and hamper the phone’s usability. Project Volta, first
introduced with Android 5.0 Lollipop in 2014, intro-
duced an overhaul in the Android’s energy manage-
ment. The initial focus was on giving the developers
a tool to optimize their apps. For instance, the Bat-
tery Historian tool would assist with identifying hard-
ware features and processes consuming excessive
energy, while JobScheduler would help schedule
background tasks for times when a device is charging,
so as to minimize the impact on the battery. Users,
on the other hand, were provided with a switch for a
Battery Saving mode, which dims the screen, pauses
animations, and reduces background processing.

Except for the Battery Saving mode, however, the
decision to save the energy remained in the develop-
ers’ hands. The resulting energy savings were appar-
ently insufficient, and thus, additional energy saving
capabilities were introduced in 2015 with Android 6.0
Marshmellow. The most important in this case was
the Doze mode, depicted in Figure 2: when in this
mode, the phone would prevent network accesses, it
would prevent any but high-priority notifications from
arriving, and most critically for mobile sensing, it would
prevent background processes from running and would

FIGURE 2: Android Doze mode. The OS puts
the device in a low-power mode where network
accesses, alarms, notifications, and processing are
deferred until occasional Maintenance periods. (src:
developer.android.com/training/monitoring-device-
state/doze-standby)

defer certain alarms set through AlarmManager. This
is not to say that apps would not be able to do any
periodic background tasks – these tasks could still be
performed during the so-called Maintenance periods.
By forcing all apps to use common maintenance pe-
riods, the OS would ensure that more time is left for
the phone to save energy by remaining in the power-
saving mode. The transition to Doze mode became
more aggressive over time. While initially limited to
situations where the screen is off and the device is
static, with Android 7.0 Nougat a switch to Doze mode
would also happen when the phone was on the move.

Doze for the first time explicitly takes the energy
optimization related to background tasks away from
developers and delegates it to the OS. Here I should
also mention App Standby. This mode is, in a way, an
individual app’s Doze. Infrequently used apps, subject
to certain exceptions, are put in this mode, where their
background and network activity is restricted.

The above changes had a profound effect on mo-
bile sensing research apps. These applications often
rely on periodic background sensing and processing,
and would hardly ever provide enough added value
to their users to become frequently used apps. Thus,
they would in the best case be hampered by the Doze
mode, which would interfere with the strict periodicity
of the sensing envisioned by the researchers, and in
the worst case, would end up in the lowest of the App
Standby buckets (introduces in Android 9.0 Pie) re-
served for the apps that are almost never opened, and
on which significant restrictions in terms of background
processing are imposed.

ROAD AHEAD
The above is just a short excerpt of the changes
that affected the feasibility of what used to be the
standard mobile sensing practices in smartphones.
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Digging deeper, a whole gamut of individual vendors’
tweaks have imposed additional restrictions on back-
ground processing in particular7. Anyone trying to re-
implement apps from the golden age of smartphone
sensing is bound to face insurmountable obstacles
in the shape of imprecise timing of task execution,
restricted access to many sensors, and the need for
substantial involvement from the user side. Several ef-
forts, notably [12] and [13], provided practical solutions
engineered to go around the mobile OS restrictions of
that time, yet remained vulnerable to future restriction
tightening. Thus, it is unsurprising that, according to my
analysis of research trends, the most common reaction
appears to be to simply give up on the smartphone
sensing. Yet, the most pervasive personal computing
device – and the uniquely versatile research tool,
unlikely to be paralleled by any technology in the near
future – should not be discarded before every attempt
is made to salvage its former research appeal. Further-
more, with the loss of an easy-to-use data collection
tool, we potentially lose the ability to reproduce past
research findings. Thus, in the remainder of this article
I ponder on a few ways in which smartphone sensing
can be made compliant with the shifting trends of
personal data perception and smartphone utility.

RETHINKING THE DATA EXCHANGE
PLAYFIELD
The balance of power between users, whose data is
sensed, and companies or researchers, who would
benefit from this data, is traditionally uneven, as the
lack of social expectations, norms, and legislation re-
lated to personal data collection has provided a carte
blanche for blanket data harvesting without the need to
compensate the source. The perception of data owner-
ship is changing, not in small part due to GDPR, CCPA,
and similar regulations, which to smartphone users
give more leverage when it comes to negotiations on
how their data is used. This change in the balance
of power opens opportunities for new data exchange
paradigms.

Evidation Health8, for instance, offers a platform
that allows health researchers to obtain data collected
by participants’ smartphones and wearables. Evidation
mobile app integrates mobile sensing, experience sam-
pling method (ESM) querying, and sustains long-term
data collection through a system of monetary rewards

7https://dontkillmyapp.com/ keeps track of barriers to back-
ground processing on different device models and discusses
possible circumnavigations around these barriers.

8https://evidation.com/

that users obtain for the data they consensually share.
The financial burden of participation rewards falls on
the research institutions using the data.

Behind the scenes, Evidation and similar frame-
works require tremendous effort from the developers’
side, since acquiring participants’ data while comply-
ing to increasingly tighter sensing and background
processing restrictions becomes highly challenging.
However, the generality of the data trading concept
may make it attractive for OS vendors to integrate
such a marketplace in their products. As a result, the
sensing related to this could be exempt from some of
the restrictions detailed in the previous two sections. A
drawback of such integration, however, is that it could
potentially further entrench the role of OS vendors as
data gatekeepers. Indeed, commodifying data sensing
in the above manner could be based on, for instance,
Apple’s Health app, which already consolidates the
smartphone – smartwatch sensing ecosystem.

At the other end, the idea of individuals retaining
ownership of their data is not new, and a privacy-
preserving architecture called Personal Data Vaults
(PDVs) was originally proposed in 2010 [14]. The
most likely reason for PDVs remaining in the realm
of academia was the lack of incentive to actually give
users control of their data. With the new era of data
value and privacy awareness, we may expect this to
change.

EMBRACING PRIVACY
The pioneering mobile sensing app – CenceMe –
involved activity sensing from the background, periodic
sensing of the microphone, even a phone’s camera
taking photos at random moments and sending them to
a server [15]. Even if reimbursed, it is improbable that
today’s smartphone users would be willing to supply
such data. The humanity’s awareness of privacy issues
related to digital data has evolved, and the permissions
that users have to grant to an app collecting the above
data are the evidence of this.

One avenue towards more privacy-sensitive sens-
ing is to simply acquire less sensitive data. For in-
stance, less accurate location obtained by network
triangulation is deemed less sensitive than accurate
GPS location, and in certain situations can still be suf-
ficient for answering research questions posed. Such
modality substitution is not always possible, but is
worth considering, as avoiding sensitive data sampling,
among other things, increases the potential pool of
research study participants.

Differential privacy (DP) enables privacy-preserving
sharing of information pertaining to a group of users by
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slightly perturbing individual data, yet preserving the
properties of interest in the aggregated data [16]. DP
could ensure privacy guarantees, while simultaneously
providing the same value as the original data. Having
in mind that DP is already used by Apple for Quick-
Type predictive keyboard, for example, it is surprising
that DP-based sensing is not readily available for iOS
mobile app developers to use.

Privacy can be further protected by preventing the
sensed data from leaving the device. For instance,
instead of transferring raw GPS coordinates to the
server for the analysis, researchers can construct data
clustering models on the device and report back the
processed information, such as the amount of time
a user spent at home, with the location of the home
remaining hidden9. Android is already providing such
infrastructure for human activity recognition, as the
built-in classifier internally samples the sensors and
returns one of six activity categories without revealing
raw sensor data at all.

Constructing machine learning (ML) models from
the sensed data is often performed once data is ag-
gregated on a server. Requiring that the data remains
local renders the model construction much more chal-
lenging. One way of tackling this is federated learning
(FL), a paradigm where ML models are constructed
in a distributed manner by a group of devices, where
each device trains a model using its own dataset. Only
trained parameters of the model are aggregated at a
server and no data ever leaves the device on which
it was collected. FL is already harnessed by Google
and Apple for training the Gboard predictive keyboard
and Siri voice assistant, respectively. OS-level support
for FL is currently missing, yet independent research
efforts, such as Flower10, already enable smartphone-
based FL.

TRADING SENSING FOR PROCESSING
The separation of data collection from data processing
is evident in many mobile sensing studies conducted in
the last 15 years [15], [8], [7]. While this is convenient,
as such separation allows for different data processing
methods to be applied and different research questions
to be posed on the same dataset, it fails to minimize
the collected data. Precision, temporal resolution, and
the overall number of data samples can all be re-
duced, if data is collected with particular processing
pipeline in mind. For example, on-device Kalman fil-
tering could provide medium to long-term estimates

9I use this in the InterruptMe mobile app, for example [8]
10https://flower.dev

of the target phenomenon while masking individual
measurements [17].

Further avoidance of fine-graine sensing can be
achieved with Compressive sensing (CS), a signal pro-
cessing technique that allows the reconstruction of the
original signal from samples taken at rates signficantly
lower than the Nyquist rate [18]. In case of sparse
signals, perfect reconstruction can be achieved with
the number of samples proportional to K log(N/K ),
where K is the number of non-zero components in
the N-dimensional space of all possible signals. Many
real-world signals are naturally sparse. For instance,
human voice occupies only certain frequencies, pixels
in a camera image usually convey a certain struc-
ture, etc. In practice, CS can reduce the number of
samples needed for reconstruction by a few orders of
magnitude, compared to conventional sampling. CS
requires non-uniform sampling, thus it naturally fits
the processing paradigm imposed by Android’s Doze
mode (Figure 2), where the uniformity of task execu-
tion, necessary for traditional sampling, is inherently
broken. Furthermore, recently proposed techniques for
high-level inference from CS data reduce not only
the amount of data that is sampled, but also obviate
the need for sending data to the server for signal
reconstruction [19].

MOBILIZING OS VENDORS’ SUPPORT
Fine-grain in-context permission querying, location
sensing aggregated across multiple apps, assuring
that device sleep periods are uninterrupted, and similar
features introduced in mobile OSs over the last fifteen
years, have improved the smartphone experience for
end-users. At the same time, as most of these features
hamper the usability from the researchers’ point of
view, we should acknowledge that modern OSs have
hugely benefited from findings brought by early exper-
imental mobile sensing apps11.

To continue the proliferation of the smartphone
platform, OS vendors should ensure that the platform
remains a viable tool research. Doing this without hurt-
ing the end-user experience or compromizing security
is challenging, yet, many of the functionalities concep-
tualized in this section could coexist with features of
a modern user-oriented OS. For instance, differential
privacy-based sensing could be supported at API level
and access to such sensing could be guarded by a
new set of easier-to-obtain permissions; similarly, an

11The immediate impact of research on real-world ubiqui-
tous computing products has been observed at least since
the early nineties [20].
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API call could enable researchers to supply functions
that would be calculated on the phone, and only the
processed result will be reported; periodic sampling
compressive sensing-based sampling could also be
supported by APIs that work in conjunction with the
Doze mode; sensed data could be kept in PDVs and
permissions would be needed to access the data, not
initiate sensing, while on-device processing, e.g. in
form of federated learning, could be subject to more
lenient permissions.

Yet, even without significant changes, certain ap-
plications might be exempt from some of the OS re-
strictions. We have already witnessed this in 2020 with
(Google/Apple) Exposure Notification (GAEN) frame-
work12. GAEN, among other functionalities, enabled
long-running periodic bluetooth scanning, something
which is extremely difficult, if not impossible, to im-
plement in a regular Android/iOS mobile application.
GAEN runs as a system service on the smartphone
with a special permission by Google/Apple, thus is not
subject to the same restrictions as a regular app. Other
apps can harness the service, only if authorized by
Google/Apple. We can envision a similar arrangement
for research apps – sensing can be controlled by
system services and approved apps would get access
to the data. This, however, just like GAEN, could be
controversial, as deciding whether an app is indeed
a legitimate research app puts tremendous power in
OS vendors’ hands, due to ethical, legal, political, and
other consequences that such a decision may carry,
especially since malicious spyware apps could find
their way to users’ phones.

Finally, Android already has Developer options (by
default hidden) where the system behavior can be
configured, so to facilitate application debugging. A
similar Research mode could be implemented. When
put in such a mode, the smartphone would be less re-
strictive on long-running background processing, would
allow, for instance, background location sensing, and
so on. While such a solution would not turn six billion
phones to research devices, it could be useful for
small-scale studies where researchers supply a dozen
or so phones to study participants.

CONCLUSIONS
For years the smartphone represented the most ver-
satile, the most ubiquitous tool for mobile sensing.
It served as a foundation for research in areas as
diverse as natural resource conservation, earthquake

12https://www.google.com/covid19/exposurenotifications/

monitoring, and transport planning.
However, the clash between a wider usability of

the device and its ability to support (unrestricted) per-
sonal data acquisition has lead major OS vendors to
gradually restrict programmability of the device. This
has already been shown to have restricted the ease
of use of the smartphone as a research tool [13], [12].
The analysis presented here indicates that, perhaps as
a consequence, and in combination with external fac-
tors, such as tightened data collection legislation and
COVID-19 pandemics that restricted the opportunities
for smartphone-based user studies, the smartphone’s
predominance among research platforms in mobile
computing13 is waning. Yet, I believe that by revisiting
the methods we use for sensing and processing the
data, and through close collaboration of OS vendors,
legal authorities, the research community, and users,
whose privacy and data value will be taken into ac-
count, we can bring the smartphone its former glory
and set grounds for further scientific advancements
through mobile sensing.
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