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Paving the way towards the realization of Mark Weiser’s vision of ubiquitous computing [1], the 
research community has made incredible advancements on several fronts. When it comes to 
interacting with humans, for example, computers can already use pretty much anything as a touch- 
pad [2]. Similarly, when it comes to sensing the environment, computers can unobtrusively detect 

anything from a driver fatigue [3] to the presence of the queen bee in a hive [4]. When compared with these, 
advancements on the “core” front — the computing itself — appear to be rather orthodox and limited. 
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The last decade instilled a particularly 
strong driver that reshapes the way we 
reason about the computing ecosystem.  
The name of this force is deep learning 
(DL), and it demonstrated that with 
sufficiently capable computers we can 
unleash the power of data collected by 
omnipresent sensors. Successful integration 
of the sensing-learning-interaction pipe- 
line has already transformed the way we 
track our exercise regime, our means of 
authentication, and our approach towards 
getting rid of pests in agriculture.

Deep learning, however, often represents 
an insurmountable obstacle to ubiquitous 
computing. Its computational appetite is not 
poised to be satisfied with small edge devices 
that cannot afford to host high-performance 
CPUs and GPUs. Energy is especially critical,  
as deep learning not only incurs high power  
consumption, but also, due to the computa- 
tional complexity, reduces the time a device  
can spend in a low-power mode. Instead,  
a nowadays common solution is to transfer 
the data to the cloud. Here, heavy processing 
can take place without incurring any cost 
to the edge devices’ resources. In lieu, the 
price is paid through a potential loss of 
privacy and data confidentiality, additional 
communication delay, and the loss of 
autonomy. 

In their 2019 Turing award lecture, 
Hennessey and Patterson predict the move 
away from general purpose architectures 
towards specialized computing hardware [5]. 
Indeed, equipping edge devices with special 
accelerators represents a viable means of 
making local deep learning feasible, while 
avoiding cloud computing and keeping the 
data private. These accelerators are based 
on field-programmable gate arrays (FPGAs) 
or application-specific integrated circuits 
(ASICs) and are the subject of active research. 
Prototypes optimized for various deep 
learning models and applications have been 

demonstrated. Yet most of these accelerators 
fail to embrace the key property of ubiquitous 
computing — its dynamic nature.

In our preliminary work, we examined 
how an on-device deep learning model for 
a spoken keyword detection performs on 
a mobile device that transitions through 
environments characterized by different 
levels of noise [6]. We “slimmed” the model 
to different widths to observe how different 
levels of approximation impact the model 
performance and resource consumption. 
We demonstrated that successful keyword 
detection in noisy environments requires  
the full model, whereas detection in quiet  
environments can be completed with a model  
approximated to 25% of its parameters. 
Modern hardware accelerators that should 
bring deep learning to a wide gamut of 
devices, however, are either suited for a 
particular model or the other, and cannot 
adapt model parameters, their precision,  
or employ any other approximation to reduce  
the amount of computation on the fly.

Context-driven dynamic adaptation of deep 
learning is the guiding principle of our research 
vision. In Figure 1 (next page), we depict the 
idea: different contextual situations, such as 
varying environmental noise levels, make the 
inference problem more or less challenging 
(upper row); tuneable accelerators adapt the 
level of approximation, for instance, parameter 
quantization, according to the context (middle 
row), which in turn leads to computation and 
energy savings in periods when approxi- 
mation is tolerated (bottom row).

BEYOND STATIC ACCELERATION
To identify the opportunities for dynamic 
hardware accelerator adaptation, we first 
need to dig into the functioning of these 
chips that enable efficient handling of mas-
sive computation required by deep neural 
networks. These accelerators harness paral-
lelization and consist of a network-on-chip 
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mode, and the structure and functionality of 
the other architectural components can be  
dynamically adapted using several quality- 
scalable operating modes. To ensure this 
dynamic run-time accuracy reconfigurability, 
X-CGRA’s PEs exhibit the ability to switch 
between exact and different approximate 
configurations for the arithmetic units.  
This enables runtime adaptable accuracy, 
and a considerable energy consumption 
reduction at the price of modest quality 
degradation. The price, however, is paid 
in the placement overhead, as both the 
approximate and the supplementary part  
of arithmetic circuits have to be integrated 
in the design. 

OVERVIEW OF THE ACurracy 
Tunable Accelerator (ACTA) 
Platform
In the mobile realm, the opportunities 
for adaptable computation tend to be 
gradual – in direct sunlight, a mobile app 
for object detection from camera images 
might perform well even with significant 
approximation; as the day passes and the 
lighting conditions change, the app might 

(NoC) of processing elements (PEs) that 
perform multiple multiply-and-accumulate 
(MAC) operations at a time. Initial accelera-
tor implementations had fixed size PE sets 
regardless of the size of the network layers, 
which significantly limited their throughput. 

Adaptability is a way to address the above 
issue, and more recent implementations use 
multiple PE sets of different sizes, use packet-
switched NoCs, or exploit reconfigurability 
for changing to match the size of the PE 
sets and match the layer size. Such an 
approach is evident in the reconfigurable 
ASIC accelerator for convolutional neural 
networks (CNNs) described by Zhao et al  
[7, 1]. Each of its 24 reconfigurable PE 
supports nine 16-×16-bit MAC operations 
in parallel, and by reconfiguring the PEs,  
the accelerator can handle different sizes of 
convolution operations such as 1×1, 3×3, 
5×5, 7×7 and 11×11. Another reconfigurable 
accelerator that can adapt its structure to the 
size and dataflow pattern of a CNN layer is 
RC-CNN [8, 2]. It relies on a reconfigurable 
on-chip interconnection fabric that can 
organize a subset of the accelerator’s PEs 
as a PE set with the same size/dimension 
of the target CNN layer and customize the 
inter-PE connections for the layer’s dataflow 
pattern. RC-CNN reportedly increases the 
accelerator’s throughput due to improved 
PE utilization while reducing the network 
latency and energy consumption. 

In the mobile realm, however, oppor- 
tunities arise dynamically due to the varying 
needs for highly accurate computation. For 
instance, a network for inferring a user’s 
physical activity has to rely on more accurate 
computation once a user is performing 
a set of complex exercises, while it can 
recognize resting periods even with a 
highly approximated network [9]. The 
above-mentioned solutions, while using 
reconfigurability to optimize and adapt 
the hardware to the neural network that it 
executes, do not allow for dynamic, runtime 
adaptation of the network execution when 
the accuracy vs resource usage requirements 
change. The existence of software imple- 
mentations of precision-scaling solutions, 
such as network quantization, has inspired
research efforts targeting precision-recon- 
figurable hardware acceleration. One such 
example is [5] HyDRATE [10] – an accelera- 
tor based on a run-time configurable approxi- 
mate multiplier. The employed multiplier 

performs approximate blockwise multi 
plication, where blocks of input operands 
are multiplied to generate partial products. 
Approximate multipliers are also used in [11] 
where Xuan et al. introduce an accelerator-
based on an approximate multiplier support-
ing two multiplication modes: the exact 4-bit 
and the approximate sub-8-bit multiplica-
tion. The low precision of input operands  
and small reconfigurability choices repre-
sent the biggest drawback of the presented 
accelerator.

Coarse-grained reconfigurable archi- 
tectures (CGRAs) have been introduced  
to reach a balance between performance, 
power, and programmability in the quest  
for deploying energy-efficient deep learning  
on edge and IoT devices. An energy-efficient  
approximate CRA is proposed by Akbari  
et al. [12]: X-CGRA employs configurable 
arithmetic-logic units (ALUs), where tunability  
is achieved by choosing between exact and 
approximate addition and multiplication. 
The arithmetic circuit for multiplication  
and addition are composed of approximate 
and supplementary parts, where the supple- 
mentary part is power gated in approximate 

FIGURE 1. Mobile computing is characterized by context variability; tunable deep learning 
accelerators can harness approximation to match the amount of computation and the contextual 
requirements; the difference in resource usage between the fully precise and the approximated 
execution represents savings determined by the actual opportunities for approximation. 
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require more accurate computation to 
preserve the inference accuracy; at dusk, 
it might need to harness all the resources 
possible, i.e., use the fully-accurate network, 
to perform object recognition. The existing 
reconfigurable accelerators, including those 
presented in the previous section, offer either  
two (i.e., accurate or approximate) or a small 
number of accuracy modes. Furthermore, 
another defining property of mobile comput- 
ing is the need for portability. The existing 
accuracy-tunable accelerators usually host 
several arithmetical units with different 
accuracy, which renders them prohibitively 
large for small form factor of devices. 

To overcome the limitations of the existing  
solutions, we devise ACcuracy Tuneable 
Accelerator (ACTA), a platform that provides  
ultra-fast dynamic adaptation for mobile 
and IoT environments. The core element of 
the ACTA represents a dedicated Approxi- 
mate General matrix multiply hardware  
Unit (AGU), whose accuracy can be changed 
on the fly. The envisioned AGU is based on 
the iterative logarithmic product approxi- 
mation proposed by Babić et al. [13] and 
the design of an approximate GEMM 
unit presented by Pilipović et al. [14]. The 
AGU does not duplicate the functionality in 
multiple accuracy versions but incorporates 
a simple logic to approximate addition and 
multiplication, constituting the GEMM 
operation. The AGU harnesses specially 
crafted iterative computation, applied over 
the input operands for several clock cycles to 

achieve an arbitrary accuracy. Although AGU 
requires additional cycles to meet the desired 
accuracy, its compact design is preferable for 
mobile computing systems, where portability 
often trumps processing speed.

Figure 2 illustrates our design. During 
runtime, the host processor collects contextual 
data from sensors, e.g., audio data for noise 
assessment, motion, or battery level for overall 
power consumption, and determines the 
required computation accuracy level. The 
host processor then instructs the accelerator 
to meet the current accuracy demands. For 
the host processor, we envision the RISC-V 
processor due to open instruction set and 
the rising popularity of such processors in 
IoT applications. On the accelerator side, 
the control unit decodes the processor’s 
instructions and, by controlling the number 
of iterations the computation is refined 
with, tunes the accuracy of the AGUs. 
More accurate processing brings increased 
energy consumption and vice versa. The 
intermediate results and input operands are 
stored in scratchpad memory, which acts as 
the accelerator’s cache memory. Finally, the 
accelerator encompasses a unit that calculates 
special functions needed to process machine 
learning algorithms, such as activation, 
pooling, batch normalization, and others.

The ACTA is currently in early stages 
of development. However, we already have 
rough assessments of the improvements 
it brings. The synthesis results showed 
that the envisioned multiplier in the AGU 

design provides five times lower power-
delay-product energy consumption with 
almost two times smaller design than the 
exact multiplier. The loss of accuracy stands 
at 8% for a single iteration and drops down 
to 1% after two multiplication iterations. 
With this, ACTA is well suited not only for 
NN inference, but for the training as well. 
We plan to employ the ACTA platform in 
a federated learning scenario, where the 
accuracy tuning can be used to both bring 
training to low-end devices, and to ensure 
that the training duration is balanced with 
the quality of the trained model. Moreover, 
while the model updates may represent 
numerically sensitive operations, so ACTA 
would tune AGUs to complete the training 
with a higher accuracy, the aggregate model 
could be interpreted with different accuracy 
at different devices to meet the device’s 
capabilities and user needs.

HORIZONS
The integration of accuracy-tuneable 
accelerators is bound to spur another 
wave of DL proliferation. Not only will 
DL become introduced to a wider set of 
devices, but will also become more efficient, 
potentially opening new application avenues. 
For instance, the adaptation might enable 
a low-power wearable worn by an elderly 
person to perform fall detection continuously, 
whereas such detection could have been done 
only periodically previously to ensure the 
battery would last throughout the day. 

FIGURE 2. The ACTA’s architecture. The orange lines depict the control paths, while the blue 
ones represent data paths. The right side illustrates envisioned accuracy tunability and energy 
consumption of the approximate GEMM unit.

IN THIS ARTICLE,  
WE ARGUE THAT 
MOBILE DEEP 
LEARNING NEEDS A 
FLEXIBLE HARDWARE 
PLATFORM
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Nevertheless, the tuneable accelerator 
hardware is only one piece of the puzzle. 
With it in place, to start, we still need to 
quantify the relationship between the 
approximation levels and the resulting 
inference accuracy. Charting this relation- 
ship requires well designed validation 
datasets that closely mimic the inputs 
that will be observed in the wild. Second, 
we need to identify opportunities for 
approximation. What are the dimensions 
of the context that impact the accuracy of 
a (approximated) deep learning model? 
In ubiquitous computing these can vary 
widely – from a device’s location, over noise 
levels, to outside brightness, input quality, 
and other factors. Moreover, the end user’s 
requirements can vary with the context.  
For instance, a user may be willing to repeat 
a misclassified spoken keyword in one 
situation, but not in another. We believe 
that light models based on reinforcement 
learning can be used to develop the under- 
standing of a user’s context-dependent 
accuracy requirements. Finally, even if 
knowing whether a certain approximation 
fulfils a user’s requirements at a particular 
point in time, we need a broader view of the 
resources and the expected context to ensure 
that the operation is driven towards the final 
goal, which could be, for example, “to ensure 
that the battery lasts until the next time the 
device is charging.” For this, we envision 
novel model predictive control systems to be 
designed for approximate edge deep learning. 

In this article, we argue that mobile 
deep learning needs a flexible hardware 
platform. We presented the accuracy-
tuneable accelerator as a likely candidate and 
briefly surveyed the state of the art in this 
field, before detailing our recent research 
efforts founded in dynamically adaptable 
approximate multipliers. As we move 
beyond conceptualization, we look forward 
to solutions for the challenges towards the 
realization of accuracy-tuneable accelerator, 
as well as to innovative applications enabled 
by resource efficient adaptive learning on 
the edge. Thus, we use this opportunity to 
call the research community to join us in 
making deep learning truly ubiquitous. n
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