
Review and Comparative Evaluation of Resource-Adaptive

Collaborative Training for Heterogeneous Edge Devices

BORIS RADOVIČ, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia and University

of Ljubljana, Faculty of Computer and Information Science, Ljubljana, Slovenia

MARCO CANINI, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia

VELJKO PEJOVIĆ, University of Ljubljana, Faculty of Computer and Information Science, Ljubljana, Slovenia

and Jozef Stefan Institute, Ljubljana, Slovenia

Growing concerns about centralized mining of personal data threatens to stile further proliferation of machine learning

(ML) applications. Consequently, a recent trend in ML training advocates for a paradigm shift ś moving the computation of

ML models from a centralized server to a federation of edge devices owned by the users whose data is to be mined. Though

such decentralization aims to alleviate concerns related to raw data sharing, it introduces a set of challenges due to the

hardware heterogeneity among the devices possessing the data. The heterogeneity may, in the most extreme cases, impede

the participation of low-end devices in the training or even prevent the deployment of the ML model to such devices.

Recent research in distributed collaborative machine learning (DCML) promises to address the issue of ML model training

over heterogeneous devices. However, the actual extent to which the issue is solved remains unclear, especially as an

independent investigation of the proposed methods’ performance in realistic settings is missing. In this paper, we present a

detailed survey and an evaluation of algorithms that aim to enable collaborative model training across diverse devices. We

explore approaches that harness three major strategies for DCML, namely Knowledge Distillation, Split Learning, and Partial

Training, and we conduct a thorough experimental evaluation of these approaches on a real-world testbed of 14 heterogeneous

devices. Our analysis compares algorithms based on the resulting model accuracy, memory consumption, CPU utilization,

network activity, and other relevant metrics, and provides guidelines for practitioners as well as pointers for future research

in DCML.

CCS Concepts: · Computing methodologies→Machine learning; Distributed artiicial intelligence.

Additional Key Words and Phrases: Federated Learning, Split Learning, Distributed Collaborative Learning, Ubiquitous and

Mobile Computing, Device Heterogeneity.

1 Introduction

The surge in Machine Learning (ML) applications we have witnessed in the last years has been rendered possible,
among other factors, by the increased computational capacity of modern hardware and the large volumes of data,
that have become publicly available. The former is highly concentrated in data centers, as the devices that often
collect the data, such as smartphones and IoT devices, have orders of magnitude lower computational power and
storage capacities. Consequently, the traditional worklow for ML has remained centralized in the sense that the
data is fully revealed and accessible by machines performing model training and evaluation.

Authors’ Contact Information: Boris Radovič, King Abdullah University of Science and Technology, Thuwal, Makkah, Saudi Arabia and

University of Ljubljana, Faculty of Computer and Information Science, Ljubljana, Slovenia; e-mail: boris.radovic@kaust.edu.sa; Marco

Canini, King Abdullah University of Science and Technology, Thuwal, Makkah, Saudi Arabia; e-mail: marco@kaust.edu.sa; Veljko Pejović,

University of Ljubljana, Faculty of Computer and Information Science, Ljubljana, Slovenia and Jozef Stefan Institute, Ljubljana, Slovenia;

e-mail: veljko.pejovic@fri.uni-lj.si.

This work is licensed under a Creative Commons Attribution 4.0 International License.

© 2024 Copyright held by the owner/author(s).

ACM 2376-3647/2024/12-ART

https://doi.org/10.1145/3708983

ACM Trans. Model. Perform. Eval. Comput. Syst.

HTTPS://ORCID.ORG/0009-0008-4142-931X
HTTPS://ORCID.ORG/0000-0002-5051-4283
HTTPS://ORCID.ORG/0000-0002-9009-0024
https://orcid.org/0009-0008-4142-931X
https://orcid.org/0000-0002-5051-4283
https://orcid.org/0000-0002-5051-4283
https://orcid.org/0000-0002-9009-0024
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.1145/3708983
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3708983&domain=pdf&date_stamp=2024-12-20

2 • B. Radovič et al.

In many cases, however, data privacy is of paramount importance. For instance, a wealth of personal data
such as sensor readings, images, and text, is typically stored on users’ smartphones. The usage of this data could
open space for numerous innovative applications, ranging from text auto-completion to personalized health
monitoring systems. However, despite the potential value of these applications, users are typically hesitant to
expose their data due to privacy and data ownership concerns [58]. Users’ unwillingness to share their private
data is evidenced by directives introduced by many countries to govern how companies can collect and store
user data [80]. To a certain extent, data anonymization approaches might allow us to circumvent these issues
and hence permit the usage of centralized approaches even in privacy-sensitive use cases. Yet, they do so at the
expense of a signiicant computational overhead [32, 88], increased network usage [16], and decreased model
performance [88].
Given the central role of smartphones and other data-collecting devices in contemporary society, a more

sensible approach than imposing some form of centralization of the ML worklow involves designing algorithms
speciically crafted to ensure privacy-sensitive operations. Such a łdecentralization” shift is further motivated by
edge devices’ frequent requirement to independently conduct inference on data, such as when operating oline.
In response to these concerns and challenges, the concept of Distributed Collaborative Machine Learning

(DCML) has emerged. In this work, we deine DCML as an umbrella term that encompasses all algorithms
designed a) to train models using data distributed across a set of devices without exposing the training data
to any server, and b) to distribute an appropriate model to the devices that request it. Notably, the advent of
Federated Learning (FL) and its seminal algorithm, FedAvg [58], have been pivotal in this domain. In fact, FL
has garnered signiicant attention and several companies utilize it to train models on users’ smartphones while
safeguarding privacy. Concrete examples include various features in Android, such as next-word prediction and
smart reply [33, 35], and Apple’s łSiri” voice assistant [100].
FL algorithms enable a privacy-preserving training process by moving the computation of model updates

to the data-collecting devices (also called łclients”). That is, a centralized server only orchestrates the training
process by a) selecting the clients to be used for training in the current server training round, b) serving to these
clients the current model, and c) aggregating the models returned by the clients after they inish training. This
way, the server obtains a reined model, that will be used in the next training round.

Within this general formulation, the FedAvg [58] algorithm and variants thereof [53, 72] require each client to
download and upload a complete version of the model at every server round. However, while such model-sharing
algorithms remain widely popular and continue to serve as baselines for comparing more advanced algorithms,
they are subject to two notable drawbacks ś they entail sending large volumes of data over the network and
they require all clients to use the same model architecture regardless of the resources they possess. The former
drawback may cause signiicant carbon emissions [102], while the latter may lead to unfairness and in general
compromise the accuracy of the model being trained [1, 2, 59]. When deploying FL algorithms on production
environments, such issues are exacerbated by the inherent heterogeneity1 present in DCML settings to such an
extent [9, 69, 102], that some researchers go as far as to say that łsharing parameters to transfer knowledge [...]
is a wrong design choice” [14].

Given the above, researchers have started reconsidering the use of a uniform ML model across all clients and
have begun devising novel approaches aimed at reducing the computational demands on low-end clients during
DCML training. These eforts have led to the exploration of approaches, such as Knowledge Distillation, Partial
Training, and Split Learning within the DCML setting. However, to the best of our knowledge, these algorithms

1In DCML, by client heterogeneity we might consider the heterogeneity of data-generating processes (DGPs), i.e. data non-IIDness, or the

heterogeneity of hardware capabilities. This paper focuses on the latter, which includes variations in clients’ network connection speeds,

available memory, and computing power.

ACM Trans. Model. Perform. Eval. Comput. Syst.

Review and Comparative Evaluation of Resource-Adaptive Collaborative Training for Heterogeneous Edge Devices • 3

have not yet been comprehensively pitted against each other. Moreover, as FL research primarily occurs in
simulation environments, several such algorithms have never been deployed in a realistic heterogeneous testbed.
This paper ills this gap by providing a comprehensive review and experimental comparison of the state-of-

the-art approaches designed to enable collaborative training among clients with heterogeneous computational
capabilities. That is, we focus on algorithms that either support Model Customization,2 i.e., allow diferent clients
to use diferent model architectures, or reduce the burden posed on the clients by oloading part of the training
computation to the server.

1.1 Paper Methodology, Structure, Contributions

To compile relevant literature for this survey, we conducted a systematic search on Google Scholar using the
keywords łHardware Heterogeneity”, łFederated Learning”, łSplit Learning” and łDistributed Machine Learning”.
The search was limited to academic publications and preprints. The inclusion criteria focused on works published
within the last ive years,3 referencing earlier fundamental papers when necessary. The resulting papers were
screened based on their titles, abstracts, and relevance to the survey’s scope.
As shown in Table 1, this is the irst paper that compares a diverse set of client-heterogeneity-aware DCML

algorithms both in a simulation environment and in a real-world testbed consisting of physical devices. Other
relevant papers either ofer a literature review [85] or, when they include experiments on real-world devices,
compare only baseline FL algorithms [7, 93, 95] and, in the case of Gao et.al. [28], some split-learning algorithms.

To summarize, the main contributions of this paper are the following:

(1) We present the irst survey of DCML algorithms explicitly designed to support model customization or
reduce the computational requirements on low-end clients by oloading part of the training burden to the
server.

(2) We propose a taxonomy of the existing algorithms in the ield and discuss the relation and the similarities
between them.

(3) We thoroughly compare representative algorithms from federated knowledge distillation, partial training,
and split learning using not only inference accuracy but also metrics that are often neglected in research [7],
e.g., network usage and CPU consumption.

We irst present a thorough overview of the three main families of algorithms that meet this paper’s criteria:4

we discuss federated knowledge distillation (FKD) in Section 2, partial training (PT) in Section 3, and split learning
(SL) in Section 4. We then present our experimental study, wherein we test representative algorithms from each
of the groups in both a simulation environment (Section 5) and a real-world testbed (Section 6). In Section 7 we
discuss the implications and limitations of our study, and we conclude the paper in Section 8. The code, which
can be used to reproduce the results reported in this paper, is publicly available at https://github.com/sands-
lab/lower_dcml_algorithms.

2 Model Customization via Federated Knowledge Distillation

Knowledge Distillation (KD) was initially introduced to transfer knowledge between a large łteacher” model and
a smaller łstudent” model [12, 38] and hence enable model deployment to devices with low computational and

2The terminology we use, łModel Customization”, should not be confused with the concept of łModel Personalization” [85], which is commonly

used in FL literature to indicate algorithms that aim to improve the predictive performance by tailoring models to the characteristics of

participating clients’ data in cases of statistical data heterogeneity among clients.
3To our knowledge, hardware heterogeneity had not received attention in the research community prior to this period.
4To our knowledge, no other algorithm meets the paper’s inclusion criteria. For example, asynchronous FL algorithms, while addressing

the issue of stragglers by using stale model updates, still assume that the model can it within the memory of every device [98]. Addition-

ally, quantization ś whether quantization-aware training to lower computing requirements [67] or gradient quantization to reduce data

communication [13, 78] ś is orthogonal to the approaches considered in this paper.

ACM Trans. Model. Perform. Eval. Comput. Syst.

https://github.com/sands-lab/flower_dcml_algorithms
https://github.com/sands-lab/flower_dcml_algorithms

4 • B. Radovič et al.

Table 1. Comparison of this paper with related ones.

Consider Federated

Knowledge Distillation

Algorithms

Consider Partial

Training Algorithms

Consider Split

Learning Algorithms

Deploy on

Real-World

Testbed

Tan et.al. [85] ✓ ✓ ✓ ✗

Baumgart et.al. [7] ✗ ✗ ✗ ✓

Woisetschläger et.al. [93] ✗ ✗ ✗ ✓

Wong et.al. [95] ✗ ✗ ✗ ✓

Gao et. al. [28] ✗ ✗ ✓ ✓

This paper ✓ ✓ ✓ ✓

memory capabilities [12]. Recently, KD has been applied in DCML scenarios, leading to the emergence of the
Federated KD (FKD) family of algorithms. Here, KD enables transferring knowledge between the clients and the
server and vice-versa through logits rather than model parameters, which brings the following beneits:

(1) Sending logits instead of high-dimensional models reduces the volume of exchanged data.
(2) Logits provide a model-agnostic interface, allowing each client to develop a model architecture that best

suits its computational and memory capabilities [52].
(3) Avoiding model parameter sharing makes the algorithms signiicantly more robust to adversarial attacks

and less prone to privacy leakages [14].

The main challenge of applying KD algorithms in DCML settings lies in the requirement that the teacher
and the student models are to be evaluated on the same data points, while in DCML clients are not supposed to
share any raw data among them. We next investigate the algorithms, that have been proposed to cope with this
challenge.

2.1 FKD without External Dataset

The FedKD [96] and the FML [77] algorithms propose a simple method for integrating KD in DCML settings.
During the local training phase, clients train both a small globally shared model and their private models
simultaneously with codistillation [5]. In other words, the model trained collectively across all clients is used to
inject knowledge into clients’ private models. However, while the algorithms allow clients to customize their
model, they impose a substantial computational burden as clients must concurrently train two models instead of
one.

Another simple way to apply KD in DCML settings is to deine the teacher knowledge as a ixed set of vectors
(łprototypes”), each representing a given class. For instance, in the Federated Distillation (FD) algorithm [45] the
server determines the average logits for every class across all clients. Such information is used during the local
training phase, in which clients penalize deviations of their outputs from the global logit of the corresponding
target class. This training procedure allows for a decrease in the communication overhead by several orders of
magnitude, however, the accuracy drop of such an algorithm might be as severe as 25% when compared to the
plain FedAvg algorithm [45]. In place of exchanging the average logits, averaged per-class higher-dimensional
intermediate embedding vectors might be exchanged instead, as in the FedProto algorithm [86]. In such a case,
the increased communication cost is compensated by better inference capabilities. Note, that both the FD and the
FedProto algorithm trivially allow clients to customize their models ś the only requirement, in the case of the
FedProto algorithm, is that all the client models need to share some embedding dimension.

ACM Trans. Model. Perform. Eval. Comput. Syst.

Review and Comparative Evaluation of Resource-Adaptive Collaborative Training for Heterogeneous Edge Devices • 5

The FedGKT algorithm [36] develops a model on the server without exchanging model parameters. Clients
start by training a small model that is horizontally divided into an encoder and a classiication head. The encoder
processes raw data to generate intermediate embeddings, while the classiication head ś potentially comprising
multiple layers ś uses these embeddings to produce inal predictions. After local training, clients share the
intermediate embeddings, inal logits, and ground-truth labels for each point in their dataset with the server.
The server then uses this information to train a large model that takes the embeddings and predicts the target
classes. In other words, the server trains a more complex classiication head than the one used locally by clients.
In FedGKT, both the client and the server employ KD to improve model convergence. Although innovative, this
algorithm requires clients to reveal their distribution over labels and does not develop a fully usable model on
the server ś such a model lacks the encoder part, which is only available to the clients that participated in the
training process.

2.2 FKD with External Dataset Dependency

The performance of the FKD approaches might be improved with an external dataset with similar properties to
the underlying clients’ datasets. In the Cronus algorithm [14], a public dataset is distributed to all clients, and
after every training epoch clients share the logits for a subset of data points from this dataset with the server,
which aggregates these values. During local training, the clients simultaneously train their local model on both
their private labeled data and the public data labeled with the global logits. In the related DS-FL algorithm [44],
the server aggregates the received logits with an alternative entropy-based approach, and during local training,
the clients irst complete the KD training stage before training the model on their local dataset. The FedMD
algorithm expands on these concepts by incorporating a transfer learning phase, as client models irst undergo
pre-training on the public dataset. Following this warm-up phase, the algorithm is akin to DS-FL, difering only
in the logit aggregation method, which in FedMD is the average.
In the algorithms just presented, the server’s role primarily involves lightweight synchronization tasks.

Conversely, several model-sharing algorithms leverage the server’s computational capabilities to enhance model
training. For instance, in the FedDF algorithm [56], multiple model architectures are concurrently trained, and
knowledge transfer occurs between these architectures using KD. Speciically, during a KD training phase on the
server, ine-tuned client models act as teachers, while aggregated global models are treated as students. Similarly,
the Fed-ET algorithm [19] allows clients to choose among a predeined set of model architectures with a common
classiication head. A consensus on predictions from ine-tuned client models is used to label data in the public
dataset and these pseudo-labels are then utilized to train a large server model with an identical classiication
head as the client models. To obtain the models that will be sent to clients in the next training iteration, Fed-ET
averages the lowermost layers of the ine-tuned client models and incorporates the classiication head of the
server model. The related FedAUX [75] algorithm extends the FedDF algorithm by introducing the so-called
certainty scores, which quantify the similarity of the clients’ local data to the data in the global dataset and are
hence used to weight the logits produced by the client models during the server KD stage. Certainty scores are
obtained after training a logistic regression model that aims to diferentiate between data points in the local
dataset and the ones in the global dataset. Yet, the FedDF, Fed-ET, and FedAUX algorithms force the client to
choose among a predeined number of model architectures and require the sharing of the full model updates.
In the FedGEMS algorithm [18] clients compute logits locally for each data point in the public dataset and

transmit this information to the server. The server aggregates these predictions and uses the pseudo-labels to
train a global model. Additionally, KD also occurs on the client side: selected clients receive pseudo-labels for
the public dataset and, similarly to the DS-FL and FedMD algorithms, train their local models to minimize the
discrepancy between their predictions and those received from the server. Extending this approach, the MHAT
algorithm [42] trains the server model using a combination of known target labels and client-produced logits.

ACM Trans. Model. Perform. Eval. Comput. Syst.

6 • B. Radovič et al.

2.2.1 FKD with model personalization. All the methods discussed thus far operate under the assumption that
every client receives identical information from the server, such as uniform global logits. However, this may lead
to suboptimal model performance in the presence of signiicant statistical heterogeneity among client data. The
KD-pFL algorithm [105] overcomes this limitation by introducing a square matrix that quantiies data similarity
between every pair of clients. This similarity matrix is used to construct personalized logits, i.e., each client
receives a weighted average of other clients’ logits based on the matrix coeicients. The matrix, which expresses
the similarity between clients’ data, is trained on the server using KD.

The COMET algorithm [20] combines FKD algorithms with client clustering techniques [11, 31, 76] to compute
personalized logits. In detail, the COMET algorithm clusters the logits sent by clients to the server using the
K-Means clustering algorithm. The resulting centroids are then sent back to the clients, who select the centroid
closest to their logits and use it during local training for KD.

2.3 FKD Summary

Despite the promising perspectives, FKD algorithms still face several issues and open questions:

(1) Impact of model heterogeneity: Though most algorithms are designed to work even in cases of extreme model
heterogeneity by allowing a łcontinuous” space of possible models, experimentally it has been observed,
that allowing some clients to use too simple models might hinder convergence of all the models [52]. While
lowering the impact of the logits produced by simple models represents a potential means to ameliorate
this, a thorough study of the impact of severe model heterogeneity is required.

(2) Model architecture selection: The analysis of how clients should independently choose their model architec-
ture and its implications in real-world deployments has yet to be addressed.

(3) Statefulness: Algorithms that do not develop a fully usable server model require clients to be stateful,
i.e., clients must train their model from scratch and hence be involved in model training across multiple
training rounds. While feasible in cross-silo FL with a small number of reliable clients, this requirement is
impractical in cross-device FL settings, where sampling from millions of devices may result in less than 1%
of clients participating in training [82].

(4) External dataset dependency: All algorithms that develop a fully usable server model depend on an external
dataset. Yet, obtaining an appropriate centralized dataset might not be feasible, and utilizing a dataset with
a diferent distribution than those of the clients could lead to degraded model performance [56].

We conclude this chapter by reporting in Table 2 the main characteristics and properties of the algorithms we
analyzed.

3 Model Customization via Partial Training

3.1 Characterization of PT approaches

Partial Training (PT) represents a group of model-sharing FL approaches that depart from the requirement of
homogeneous client models by permitting each client to receive and train only a subnet of the global model. Such
sub-models are obtained by dropping neurons in fully-connected layers, excluding ilters in convolutional layers,
and reducing the depth of the network.
In PT clients are therefore oblivious to the fact that the model they receive is merely a segment of the larger

model held by the server because, as outlined in the proposed generalized Algorithm 1, the server alone manages
all the coordination of the various sub-models. In particular, during each server epoch, the server selects a portion
of the model for each participating client in the current training round and extracts the relevant weights. In
Algorithm 1 we indicate that the task of constructing sub-models is carried out by the Decompose function, which
takes as input the global model architecture � � , client meta-data ��� , and possibly some algorithm-speciic state

��−1. The client meta-data ��� might consider the clients’ computational capabilities, their available memory, and

ACM Trans. Model. Perform. Eval. Comput. Syst.

Review and Comparative Evaluation of Resource-Adaptive Collaborative Training for Heterogeneous Edge Devices • 7

Table 2. Summary of FKD algorithms. � is the number of classes, � the dimension of the embedding space, � and �� the
number of parameters of the global and client �’s model, � ∈ (0, 1) an arbitrary constant, and |� | and |�� | the cardinality of
the public and client �’s private datasets respectively.

Algorithm
Required

distillation

dataset

Distribute

public dataset

to clients

Fully customized

model

architecture

Number of exchanged

loating point values

per round by client

Distillation

happens on

Available

server

model

FedKD [96] ✗ ✗ ✓ � Client ✓

FML [77] ✗ ✗ ✓ � Client ✓

FD [45] ✗ ✗ ✓ �2 Client ✗

FedProto [86] ✗ ✗ ✓ � ·� Client ✗

FedGKT [36] ✗ ✗ ✓ |�� | · � Client & Server ✗

Cronus [14] Unlabeled ✓ ✓ � · |� | ·� Client ✗

DS-FL [44] Unlabeled ✓ ✓ � · |� | ·� Client ✗

FedMD [52] Labeled ✓ ✓ � · |� | ·� Client ✗

FedDF [56] Unlabeled ✗ ✗ �� Server ✓

Fed-ET [19] Unlabeled ✗ ✗ �� Server ✓

FedAUX [75] Unlabeled ✓ ✗ �� Server ✓

FedGEMS [18] Labeled ✓ ✓ |� | ·� Client & Server ✓

MHAT [42] Labeled ✓ ✓ |� | ·� Client & Server ✓

KD-pFL [105] Unlabeled ✓ ✓ |� | ·� Client ✗

Comet [20] Unlabeled ✓ ✓ |� | ·� Client ✗

Algorithm 1 General structure of Partial Training algorithms

Require: � > 0 number of training rounds, � set of training clients
1: Server initializes global model � (1)

2: �0 ← initialize parameters for sub-model extraction
3: for � = 1 to � do

4: � ⊆ � ← sample subset of available clients

5: {��� }
|� |
�=1 ← collect meta-information of the devices

6: {� �� }
�
�=1, �

� ← Decompose
(

� � , {��� }
|� |
�=1, �

�−1
)

7: for � ∈ � in parallel do
8: Server sends model � �� to client �

9: � �+1� ← train model � �� on client �’s dataset ��
10: Client � sends updated model � �+1� to server
11: end for

12: � �+1 ← Aggregate
(

{� �+1� }
�
�=1, �

�
)

13: end for

some properties of their local data, while ��−1 might include information about the way the sub-models were
constructed in the previous epochs, the current value of model parameters, and the state of the random number
generator. After extracting the sub-models, the server transmits the model segments to the clients, who train the
received model and upon completing the local training, send back the updated model parameters to the server.

ACM Trans. Model. Perform. Eval. Comput. Syst.

8 • B. Radovič et al.

Finally, the server aggregates the weights using its Aggregate function by considering how the sub-models were
constructed.

The decomposition and the aggregation function therefore form a pair that characterizes any PT algorithm. In
particular, depending on the properties of these two functions, PT algorithms may be categorized into static,
dynamic, and independent subnetwork training (IST).

3.2 PT with Static Decomposition

In static decomposition the server constructs the sub-models deterministically and consistently across all the
training rounds and clients. That is, the sub-model returned by Decompose(� � , ��� , �

�−1) are uniquely determined

by the value ��� , while the state �
�−1 does not inluence the resulting models. Note, that this does not imply that

some client � necessarily receives the same sub-model in all training rounds, as ��� might change over time.
Two representatives of this category are the HeteroFL [23] and the FjORD [39] algorithms. In HeteroFL the

server determines a discrete number � of model capacities {�� }
�
�=1 and constructs the corresponding sub-model

architectures {��� }
�
�=1 by varying the width of the network, that is, by changing the number of channels in

convolutional layers and the number of neurons in fully-connected layers. More in detail, the submodels are
constructed in such a way, that for any two model capacity classes �1 < �2, it holds that ��1 ⊂ ��2 , so that
the models efectively form a hierarchy. Similarly, the FjORD algorithm [39] introduces a hierarchy of nested
sub-models using the so-called Ordered Dropout.

In some cases, the properties of the data might be used to determine the sub-models to be formed. For instance,
small datasets for NLP tasks are likely to contain only a subset of all the possible tokens, and features in the
click-through rate domain are typically extremely sparse [73]. In such cases, the inherent sparsity of the data
ofers a natural way for sub-model construction. The FedSelect [15] algorithm leverages such data sparsity to
construct the submodels, for instance, by removing the weights associated with the input neurons that always
take the value 0. Unfortunately, this method is limited as it is subject to the sparsity of the data (for instance, it
cannot be applied to image data). Furthermore, it can only be applied in the irst and last fully connected layers.

3.3 PT with Dynamic Decomposition

A limitation of the PT algorithms with static decomposition, which directly stems from their static nature, lies
in the fact that they allow the training of a model only as large as the largest model that can be trained on the
clients. Dynamic decomposition algorithms avoid this model size bottleneck by iteratively serving diferent model
parts of the model. Such iteration may be achieved by either constructing the submodels pseudo-randomly or by
introducing some heuristics regarding which parts of the model should be trained. An example of the former is the
Federated Dropout algorithm [13, 92], in which the server translates the meta-information ��� into a single scalar
� ∈ (0, 1) and extracts the submodel by randomly sampling a fraction � of neurons in fully connected layers and
channels in convolutional layers. However, recent research has shown the inefectiveness of this approach [17].
In the related FedSPU algorithm [63] the server sends the whole model to the clients, yet it instructs them to
freeze a random part of the network sampled randomly. In contrast with the Federated Dropout algorithm, this
solution sufers from higher memory usage and forward propagation time, while the backpropagation time
remains unaltered.
Two representatives of PT with heuristics-based model extraction are the FedRolex [4] and the PriSM [62]

algorithms. In the former, diferent model parts are trained with a rolling strategy, i.e., a rolling window iteratively
loops over the entire model to extract the sub-models. Conversely, in the PriSM algorithm the server creates
low-rank sub-models using the singular value decomposition. Some model pruning algorithms5 fall into this

5Not all model pruning approaches it within the proposed formulation. For instance, in the Hermes [51], Sub-FedAvg [90], and PruneFL [46]

algorithms, clients initially receive and train the full model. During training clients incorporate a regularization term into the loss function,

ACM Trans. Model. Perform. Eval. Comput. Syst.

Review and Comparative Evaluation of Resource-Adaptive Collaborative Training for Heterogeneous Edge Devices • 9

heuristic-extraction category as well; for instance, in the FedMP [47] and the FL-PQSU [99] algorithms, the server
constructs submodels by selecting the neurons with the highest importance. Such importance is deined using
the l1 norm, e.g., the importance of a ilter in a convolutional layer is deined as the sum of the absolute values of
the corresponding kernel’s weights.

3.3.1 PT via Independent Subnetwork Training. Independent subnetwork training (IST) can be viewed as a special
case of PT with dynamic decomposition. In contrast to the latter, the Decompose function randomly creates
models that have separate and non-overlapping segments of the model being trained [103]. This design simpliies
the Aggregate function, rendering it trivial: if a parameter was trained in an epoch, the server copies the updated
value into the new version of the global model; otherwise, the previous value of the parameter is retained.

In its original formulation, IST was proposed for fully connected layers [103]. In such a case, the sub-models are
constructed by partitioning the neurons in every hidden layer into equally sized groups and extracting the weights
connecting any two neurons that belong to the same partition [103]. IST has later been integrated into other
model architectures. The ResIST algorithm applies the IST principles for training the ResNet architectures [37]
by distributing residual blocks to clients in such a way that each client trains a shallower network. Next, the
GIST algorithm [94] applies IST to graph neural networks and AsyncDrop[25] to convolutional neural networks.
IST has also been applied in hierarchical FL settings (HFL).6 Namely, the HIST algorithm [27] proposes to

distribute an independent subnetwork to every edge server and make each such server train its model segment
with a model-sharing FL algorithm for a given number of server rounds, before aggregating the results on the
global server level and distributing new subnetworks to the edge servers.

IST speeds up the training convergence if compared to local SGD [84] and data parallel training (DPT), though
such speed-ups typically come at the cost of a slightly reduced inference accuracy [26, 27, 94, 103]. In contrast
with the DPT, wherein at some point the training time starts increasing as we add more training machines
because of the gradient communication overhead overshadowing the beneits of parallel computation [26, 103],
IST does not sufer from performance degradation issues.

Despite its sound theoretical background [79], IST did not gain much attention in DCML settings. This has led
to a notable research gap concerning various practical deployment conditions. For example, the blind replication
of client-provided values by the server in the updated model introduces vulnerabilities to potential adversarial
attacks. Additionally, the inluence of statistical data heterogeneity on the eicacy of IST-trained models remains
largely unexplored.

3.4 Partially Local Federated Training

The Partially Local Federated Training (PLFT) algorithms ofer a compromise between PT and the SL approaches
we discuss in Section 4. Similar to SL, PLFT involves partitioning the model horizontally into public and private
segments. Conversely, akin to PT, these algorithms update the clients’ models by sharing a portion of the overall
model parameters. Speciically, the public segment of the model ś comprising either the lowermost or uppermost
layers [70] ś is trained using a model-sharing algorithm, while the remaining layers remain private to each client.
In general, deciding which model parameters to designate as shared and which ones as private is an open

question, as diferent choices perform best in diferent scenarios [36]. In the LgFedAvg [54] and the FedGH [101]
algorithms, the lower layers in the model are private and the upper ones are shared, while in the PerFed
algorithm [6] the opposite route is taken, i.e. the lower layers are collaboratively trained and the upper ones are
privately trained by the clients.

which encourages certain model parameters to be pushed to zero, efectively reducing the model size. We do not consider these algorithms as

they require the clients to train the whole (large) model before obtaining a smaller version.
6In HFL clients only communicate with the geographically closest edge server and edge servers communicate with the global server. Therefore,

there is a hierarchy in the communication.

ACM Trans. Model. Perform. Eval. Comput. Syst.

10 • B. Radovič et al.

These algorithms reduce the communication burden if compared to algorithms that require the exchange of
the full model, however, they require the clients to be stateful. The FedRecon algorithm [82] attempts to solve
this issue by introducing the notion of a łReconstruction” algorithm, which is used to initialize the private model
weights as the clients need them. More in detail, a client selected for training partitions its private dataset into a
support and a query part, and uses the former to initialize the private parameters and the latter to train the whole
model after the private part has been initialized.
PLFT algorithms can handle heterogeneous models under the condition, that the customized client models

have the same architecture of the shared layers. However, to the best of our knowledge, this direction has never
been empirically tested. We explore this direction in Section 5.
We conclude this section by listing in Table 3 the main characteristics of the algorithms presented in this

section.

Table 3. Summary of Partial Training Algorithms.

Decomposition

type

Client receive

non-overlapping

model weights

Deterministic

weight extraction
Model partitioning

HeteroFL [23] Static ✗ ✓ Vertical
FjORD [39] Static ✗ ✓ Vertical

FedSelect [15] Static ✗ ✓ Vertical
Federated Dropout [13] Dynamic ✗ ✗ Vertical

FedRolex [4] Dynamic ✗ ✓ Vertical
FedSPU [63] Dynamic ✗ ✗ Vertical
PriSM [62] Dynamic ✗ ✓ Vertical
FedMP [47] Dynamic ✗ ✓ Vertical

FL-PQSU [99] Dynamic ✗ ✓ Vertical
IST [103] Dynamic ✓ ✗ Vertical

ResIST [37] Dynamic ✗ ✗ Vertical
GIST [94] Dynamic ✓ ✗ Vertical
HIST [27] Dynamic ✗ ✗ Vertical

AsyncDrop [25] Dynamic ✓ ✗ Vertical
LgFedAvg [54] Dynamic ✗ ✓ Horizontal
FedGH [101] Dynamic ✗ ✓ Horizontal
PerFed [6] Dynamic ✗ ✓ Horizontal

FedRecon [82] Dynamic ✗ ✓ Horizontal

4 Split Learning

4.1 Introduction to Split Learning

Split learning (SL) [34, 71, 91] is a distributed model training approach where the model is horizontally partitioned
into multiple segments distributed across two or more training nodes. In its simplest form, SL involves only two
nodes, i.e., the client possessing the training data and the irst � layers of the model, and the server possessing
the remaining � − � layers, � being the total number of layers in the model. We visually compare the diference
between SL, PT, and traditional model-sharing algorithms in Figure 1.

ACM Trans. Model. Perform. Eval. Comput. Syst.

Review and Comparative Evaluation of Resource-Adaptive Collaborative Training for Heterogeneous Edge Devices • 11

§

(a)

§

Client-side

model

Server-side

model

(b) (c)

Fig. 1. (a) In model-sharing algorithms, the whole model is distributed to all the training clients. (b) In SL the model is
partitioned horizontally. (c) In PT the model is partitioned vertically, i.e., clients train a reduced yet complete version of the
model.

After both actors initialize their model segment, training proceeds through standard backpropagation. Specii-
cally, the client irst conducts a forward pass on a batch of local data on its model segment and sends the resulting
so-called łsmashed” embeddings along with the corresponding target labels to the server. The server continues
the forward pass on its model portion, determines the loss, and updates its weights by backpropagating the error
until its irst layer. Then, the server communicates the gradient information to the client, enabling this way the
client to perform the backward pass on its segment of the neural network.7 Therefore, SL allows clients to train a
larger model than the one they could on their own and without sharing their raw data.

The above two-node setting can be extended with several architectural variations. Of particular interest is the
so-called łU-shaped” architecture [66, 91, 106], in which the client holds both the lowermost and topmost layers
of the model. On the one hand, this coniguration removes the need for the client to share target values with the
server, as the client computes the loss itself, but on the negative side, requires four passes over the network ś
two during the forward pass and an equal number during the backward pass.

Whenmultiple clients aim to collaboratively train a model, several approaches are available. Gupta et al. propose
a formulation where clients take turns in training. That is, after client � completes training, it sends the updated
client-side model parameters to client � + 1 in a round-robin fashion [34]. However, given that only one client is
engaged in model training at any given time, this leads to low resource usage, increased convergence time, and,
when clients’ data present statistical heterogeneity, might lead to the so-called łcatastrophic forgetting” [24, 89].

To overcome the low resource utilization issue, the SplitFed algorithm [87] proposes to combine SL with
model-sharing algorithms by training the client-side models in parallel and periodically averaging them as in the
FedAvg algorithm. The SplitFed algorithm comes in two variants, as the authors observe that during training
the server model might either be private to every client (SplitFed �1) or be shared among all clients (SplitFed
�2). When each client trains its private server model, such server models are averaged at the end of the training
round. Consequently, this version is efectively equivalent to the FedAvg algorithm. In the SFLG algorithm [29]
authors generalize these algorithms by observing that the number of models being trained on the server may be
any value between one and the number of clients. The SplitFed �3 algorithm [30] proposes to keep the client-side
part of the model private to clients and only average the updates of the server model to reduce catastrophic
forgetting [49]. On the negative side, this prevents from developing of a public client-side mode that may be
served to new clients.

7Such a two-node scenario is, from a technical point of view, equivalent to pipeline-parallel training [43].

ACM Trans. Model. Perform. Eval. Comput. Syst.

12 • B. Radovič et al.

One of the main design questions in SL is determining the number of layers to be trained on the client.
Employing a shallow network on the clients reduces their resource usage; however, it also increases the risk of
potential privacy breaches [3]. Kim et. al. propose an algorithm that determines the optimal number of layers to
be trained on clients in cases of IoT devices by introducing a set of utility functions, which take into consideration
the energy consumption, the privacy of the data, and the consumed time [48].
Compared to model-sharing FL, SL reduces the volume of shared data over the network when training large

models and in the presence of a large number of clients [81]. Conversely, SL has the disadvantage of requiring
network involvement for every batch of data. To address this network issue, Han et al. propose the FSL algorithm,
where clients use a shallow auxiliary head to compute a loss for updating the client-side model [55]. The loss
computed on the server updates only the server-side model, removing the need for the server to share gradients
with clients. Similarly, in the AdaSplit algorithm [21], client models are trained using locally generated losses.
However, unlike the FSL algorithm, in AdaSplit clients irst train their models for a ixed number of rounds and
subsequently update the server model with sparse updates. Therefore, the purpose of the client loss in FSL and
AdaSplit is to enable updating client models in the absence of the gradient from the server. However, client losses
can also be used to maximize the amount of information contained in the smashed data as in the LocFedMix
algorithm [64].

4.2 Split Learning Summary

In summary, SL represents a distinct group of DCML algorithms separate from the FL category. Broadly, SL
algorithms facilitate collaborative model training among clients with minimal memory and computational
requirements by delegating some computational tasks to the server. The presented analysis evidenced that SL
needs further research in terms of:

(1) Scalability: as every client consumes some server resources, such as memory and computing time, SL
approaches seem best suited to small-scale scenarios. Consequently, there is a need for a study to address
its scalability issues and propose efective mitigation strategies.

(2) Privacy: an issue in SL arises from clients sharing target labels and the possibility that the server may
reconstruct raw data based solely on the embeddings. While the former issue can be addressed with the
U-shaped architecture, the latter remains an active area of research [68].

(3) Implementation: to the best of our knowledge, no existing framework is speciically designed for easy
prototyping, implementing, and deploying SL algorithms. We develop such a framework as part of the
contributions of this paper, see Appendix A.

We conclude by reporting the properties of the considered SL algorithms in Table 4.

ACM Trans. Model. Perform. Eval. Comput. Syst.

Review and Comparative Evaluation of Resource-Adaptive Collaborative Training for Heterogeneous Edge Devices • 13

Table 4. Summary of Split Learning algorithms.

Client avoids

sharing target label
Client collaboration

Number of server models �

during training

SL [34] ✗ Sequential � = 1
U-Shaped SL [91] ✓ Sequential � = 1
SplitFed �1 [87] ✗ Parallel � = �

SplitFed �2 [87] ✗ Parallel � = 1
SplitFed �3 [30] ✗ Parallel � = 1

SFLG [29] ✗ Parallel 1 ≤ � ≤ �
FSL [55] ✗ Parallel � = 1

AdaSplit [21] ✗ Parallel � = 1

5 Experimental Analysis in Simulation Environment

In this section, we conduct a comprehensive evaluation of a diverse set of algorithms discussed in this paper. Our
objective is to provide insights and contributions as follows:

• To chart the landscape of algorithmic efectiveness, we analyze the performance of the implemented
algorithms across various metrics such as model accuracy, convergence speed, communication overhead,
and resource utilization.
• We validate the reported results from the original papers and uncover new insights by executing the
algorithms in a real-world testbed.
• We provide actionable guidelines that can assist researchers and practitioners in navigating the trade-ofs
associated with the analyzed algorithms and hence help them make informed decisions regarding the most
suitable collaborative algorithm for their speciic use case.

5.1 Experimental setup

Scenario: We consider a scenario where a group of devices with varying computational capacities collaborates
to train a shared model. These devices are grouped into � clusters based on their computational capabilities, i.e.,
all clients within a cluster can train a common model architecture. We consider � = 3, distinguishing between:

(1) High-capacity devices, which can train a Large model.
(2) Mid-capacity devices, which can train a Medium model.
(3) Low-capacity devices, which can only train a Small model.

Unless stated otherwise, we consider 21 clients evenly distributed across the three computational tiers. Each
client trains the largest model it can handle; for example, a mid-capacity device always trains a Medium model,
even though it could also train a Small model. Additionally, every client uses the same model architecture across
all algorithms. For instance, low-capacity devices consistently train the Small model across all algorithms.
Considered algorithms: The selection of algorithms for implementation is made to maximize diversity. Specif-
ically, we choose a set of algorithms that cover a broad range of algorithmic ideas surveyed in this paper. In
selecting the algorithms for the experimental section, we consider their simplicity, the clarity of their descrip-
tions in the original papers, their novelty, and the initial results we obtain. We also prioritize algorithms with
open-source implementations and those for which we can reproduce the results reported in the papers. For the
FKD family of algorithms, we consider the FD [45], FedKD [96], FedMD [52], and FedDF [56] algorithms. For the
PT family of approaches, we consider the HeteroFL [23], Federated Dropout [13], and LgFedAvg [54] algorithms.

ACM Trans. Model. Perform. Eval. Comput. Syst.

14 • B. Radovič et al.

Finally, we take SplitFed �1 and SplitFed �2 [87] as representative of SL algorithms. A detailed discussion of the
implementation of these algorithms for our use case is provided in Appendix A.1.

We refer to algorithms that require clients to share the weights of the model being trained and hence develop
a server-side model as łstateless”. Examples of such algorithms include FedAvg, HeteroFL, FedDF, and Feder-
ated Dropout. Conversely, algorithms that develop a private model without sharing the corresponding model
parameters, such as FedMD, FedKD, FD, and LgFedAvg, are classiied as łstateful”.
Experimental procedure: Our experimental evaluation consists of two stages. In the irst stage, we perform
a grid search over possible hyperparameter values for each algorithm to determine the best hyperparameter
coniguration. These initial tests take place in a simulation environment wherein we artiicially mimic compu-
tational heterogeneity among (virtual) clients. Subsequently, in the second stage, we use the hyperparameter
coniguration determined in the irst step and deploy the algorithms, depending on the experiment type, either
in a simulated environment or in a real-world testbed. We limit ourselves to small-scale scenarios because of
the inite number of physical devices in the testbed at our disposal. We also assume full client participation in
every server round as otherwise it would not be possible to compare stateful and stateless algorithms.8 Details
about the experimental setup, including model architecture, hyperparameter search space, and data partitioning
procedure, are discussed in Appendix A.
Training task:we focus on common classiication benchmarks using the CIFAR10, CIFAR100 [50], and CINIC10 [22]
image classiication datasets and the Ag-News text classiication dataset [107]. For brevity, we here present results
for CIFAR10 and leave the results on CIFAR100 and CINIC10 for Appendix B and on Ag-News to Appendix C. We
explore two data scenarios: a) data distributed in an IID fashion, where clients have similar distributions over the
target labels, and b) in a non-IID manner, where labels are distributed based on the Dirichlet distribution [41, 104].
Regardless of the distribution of client labels, clients’ datasets are divided into disjoint training, validation, and
test subsets. During training, the server instructs clients to compute the validation accuracy of the current model
every ive server training rounds. The validation accuracy serves two purposes. First, it allows the server to
detect convergence deined as the lack of improvement of the average validation accuracy over four consecutive
evaluation rounds (which span 4 · 5 = 20 training rounds). Second, clients use the validation accuracy to select the
version of the model that will be used at the end of training ś note that each client might choose a model from a
diferent server round. Thus, by łtest accuracy” we denote the highest validation accuracy model’s performance
on the client’s test set.

5.2 Baseline accuracy comparison

We introduce an intuitive baseline that is founded on the FedAvg algorithm. In place of training a model across
all clients as is the case of the FedAvg algorithm, we train a model with FedAvg only across clients of the same
computational capacity. That is, after clustering clients into � clusters by considering their available computing
resources, we run the FedAvg algorithm � times, each time only involving clients of the considered cluster. To
the best of our knowledge, no paper to date has examined this option for a heterogeneous model environment.
Note, that this approach is tightly related to clustered FL algorithms [11, 76], wherein after clustering the clients
according to the properties of their data, a separate model is trained independently for each cluster. In contrast
with these solutions, however, in our case we introduce architectural model heterogeneity. Though this solution
is likely to yield unsatisfactory results for clients in underrepresented capacity groups, we argue that it is a valid
baseline as it entails no overhead for clients and introduces only minimal overhead for the server, as in this
scenario the server is required to average and store � models in memory instead of one. We refer to this extended
version of the FedAvg algorithm as cFedAvg.

8In stateless algorithms the global model is trained in every epoch, while in stateful algorithms the client model is trained only if the client is

selected in the current training round.

ACM Trans. Model. Perform. Eval. Comput. Syst.

Review and Comparative Evaluation of Resource-Adaptive Collaborative Training for Heterogeneous Edge Devices • 15

Table 5. Test accuracy (in %) and corresponding standard error achieved by FedAvg on the proposed CIFAR10 seting w.r.t.
the number of local training epochs performed on the clients. All clients denotes training the model across all clients, while
Cluster clients denotes training the model across the clients in the corresponding capacity group. That is, the accuracy of the
baseline cFedAvg algorithm is the weighted average of the Cluster clients accuracy.

Small model Medium model Large model

All clients Cluster clients All clients Cluster clients All clients Cluster clients

1 local epoch 76.4 ±0.4 70.7 ±1.0 82.0 ±0.2 77.1 ±0.4 83.7 ±0.2 77.7 ±0.4

2 local epochs 78.5 ±0.2 70.6 ±0.7 82.9 ±0.1 76.8 ±0.3 84.1 ±0.2 77.6 ±0.4

4 local epochs 78.3 ±0.2 70.2 ±0.9 82.7 ±0.1 76.2 ±0.5 83.7 ±0.1 77.2 ±0.4

Takeaway 1: A trade-of exists between the size of the model and its accessibility to low-end devices, with both

factors signiicantly impacting the inal model’s accuracy.

We report in Table 5 the accuracy for the proposed baseline, wherein we train a model only across the clients
that support it, as well as the accuracy we would obtain if all clients trained the same model architecture with
the FedAvg algorithm.9 The results are expected, as larger models consistently outperform smaller models and
at the same time, when a given model is trained across all clients, it yields superior performance than when
trained on a subset of clients. A point worth emphasizing is that the accuracy of the Small model trained across
all clients is similar and in some cases smaller than the accuracy of the Large model trained only on the subset of
clients that support such a model. We argue that these results collectively showcase the necessity of employing

heterogeneous model architectures in heterogeneous environments. Ideally, algorithms should allow transferring
knowledge between diferent capacity groups of clients. Hence, when using an ideal algorithm, the accuracy of
any model should approach the accuracy that the model achieves when trained across all clients.

5.3 Accuracy with respect to dataset size

In Figure 2 we report the accuracy we obtain with the considered algorithms w.r.t. the size of the training dataset
of the clients. In each experiment, every client samples and uses � data points from its training set. Afterward,
the server executes the algorithm until convergence.
The SplitFed algorithms achieve the highest accuracy for any � . This is expected, as in these algorithms all

clients collectively train a slightly modiied version of the Large model ś recall, that the SplitFed �1 algorithm
is equivalent to the FedAvg algorithm with the diference, that the burden of training is distributed between
clients and server. Therefore, the highest accuracy we get in the case of SplitFed �1, 83.3% when � = 2000, is in
line with the results reported in Table 5. A point worth emphasizing is that in the SplitFed algorithms, every
client holds and trains 57184 parameters, which is very close to the number of parameters of the Small model
(52823 parameters) used by low-capacity devices in FL algorithms. It follows, that all the devices, including the
low-capacity ones, can train the same Large model.

Takeaway 2: In an IID data scenario, SL consistently yields the best accuracy.

9These results were obtained in the simulation environment, allowing for the emulation of scenarios where all clients possess the capability

to train the largest model. However, according to the problem deinition, low-capacity clients cannot use the Large model.

ACM Trans. Model. Perform. Eval. Comput. Syst.

16 • B. Radovič et al.

400 800 1200 1600 2000

0.40

0.50

0.60

0.70

0.80

Large Model

400 800 1200 1600 2000

Medium Model

400 800 1200 1600 2000

Small Model
cFedAvg

FD

FedDF

FederatedDropout

FedKD

FedMD

HeteroFL

LgFedAvg

SplitFed v1

SplitFed v2

Size of client training dataset

A
cc
u
ra
cy

Fig. 2. Average client test accuracy w.r.t. the training dataset size and model size. Each subplot shows the average test
accuracy of clients training the corresponding model, e.g., the accuracy in the łLarge modelž plot is the average test accuracy
of the clients that train the Large model. In this and the following plots, solid lines indicate the stateless FL algorithms,
doted lines stateful FL algorithms, and dashed lines SL algorithms.

Within the family of stateless FL algorithms, the HeteroFL algorithm is particularly successful for the mid-
capacity cluster of devices training the Medium model, while the performance is very similar to the cFedAvg
algorithm for the Large and Small models.10 Regarding FedDF, we notice that the algorithm requires the client
models to be very well ine-tuned on clients’ datasets for KD on the server to be useful. In the opposite case, KD
might be detrimental ś for instance, when the training set size consists of only 400 instances, the algorithm does
not converge. Apart from this, the FedDF algorithm helps the Small model to boost its performance, as the FedDF
algorithm achieves the highest test accuracy for the Small model for any � ≥ 800.

We also implement and test the Federated Dropout algorithm but we obtain unsatisfactory results, most notably
for the Small model ś the average accuracy does not reach 30% and is hence not visible in the rightmost plot in
Figure 2. We hypothesize that this result is due to two reasons. First, the algorithm seems not well suited for
cases in which diferent model sizes are trained at the same time ś in [13] the experiments are performed by
using a constant sub-model size for all clients. Second, the Small model has, using the terminology from [13], a
federated dropout rate of 0.2. Such a rate is signiicantly smaller than the smallest dropout rate considered in the
referenced paper, i.e. 0.5, which has already been shown to yield unsatisfactory results [13].

Regarding stateful algorithms, the FedMD algorithm is particularly successful when the � is small. This is due
to the fact, that the importance of the public dataset consisting in our case of 1000 data points is more pronounced
when there is a paucity of local training data. Conversely, the FedKD algorithm is particularly successful when
the dataset is large, with the low-capacity cluster of devices having the highest beneits.

The accuracy obtained with LgFedAvg is lower than that of the other stateful algorithms. In the oicial GitHub
repository of the project [57] it is stated, that to obtain the results shown in the paper, it is irst necessary to
pretrain the model with the FedAvg algorithm. We therefore hypothesize that the algorithm might be better
suited for reining the model obtained with FedAvg rather than training the model from scratch.

Takeaway 3: In an IID data scenario, there is a signiicant gap between stateful and stateless algorithms.

10The reduction in training data introduced by the cFedAvg algorithm may result in signiicantly worse performance in other scenarios, such

as when training a BERT model for text classiication tasks. See Appendix C.

ACM Trans. Model. Perform. Eval. Comput. Syst.

Review and Comparative Evaluation of Resource-Adaptive Collaborative Training for Heterogeneous Edge Devices • 17

0.2 0.5 1.0 2.0 10.0
Alpha

0.0

0.2

0.4

0.6

0.8

C
os
in
e
si
m
ila
ri
ty

Q1
Q2
Q3

(a)

0.2 0.5 1.0 2.0 10.0
0.4

0.5

0.6

0.7

0.8 cFedAvg
FD
FedDF
FederatedDropout
FedKD
FedMD
HeteroFL
LgFedAvg
SplitFed v1
SplitFed v2

Alpha
A
cc
u
ra
cy

(b)

Fig. 3. (a) First, second, and third quartile of the
(�
2

)

cosine similarities between client distribution vectors, where � is the
number of clients. (b) Average test accuracy across all clients obtained by the algorithms using the corresponding non-IID
datasets.

5.4 Impact of data heterogeneity

We next analyze how the performance of the considered algorithms changes as the degree of data non-IIDness
between clients’ datasets varies. We follow a well-established practice of simulating heterogeneity by sampling
data according to the Dirichlet distribution, efectively mimicking the label skew type of non-IIDness [41, 104].
The Dirichlet distribution has a parameter � , which, as shown in Figure 3(a), determines the degree of non-IIDness:
the lower the value of this parameter, the more skewed the data is among the clients; conversely, as � increases,
the distribution over the target labels becomes more uniformly distributed among the clients.
In Figure 3(b) we observe, that stateful algorithms perform better in cases of signiicant data non-IIDness.

This result is caused by the fact, that when the data is highly skewed, each client has only a fraction of the
overall labels in its private datasets. Consequently, the local model’s task is simpliied as the model needs to
discriminate between fewer classes. On the other hand, as noted by several researchers [40, 108], the performance
of model-sharing algorithms tends to improve as the degree of non-IIDness decreases.

Takeaway 4: Stateful algorithms better cope with the label skew type of non-IIDness.

5.5 Impact of client capacity

The experiments conducted thus far have assumed an equal distribution of devices across the three capacity classes.
However, this scenario is unlikely to occur in practice, as certain capacity tiers are likely to be overrepresented
compared to others. Here, we present how various algorithms perform as the distribution over the available
capacity tiers changes. For simplicity, we assume that the 20 clients with IID data comprising this experiment
may choose only among two separate models: the Large model and a comparison model, which can be either the
Medium or the Small model.

It can be observed in Figure 4 that stateful algorithms exhibit relatively stable performance as the distribution
over trained model sizes changes. However, they tend to achieve better accuracy as the percentage of clients
training the Large model increases. This trend is most noticeable when the comparison model is the Small one.
Stateless algorithms are sensitive to variations in the distribution over trained model sizes. When all devices

train the Large model, the HeteroFL, cFedAvg, and Federated Dropout algorithms yield the same accuracy.

ACM Trans. Model. Perform. Eval. Comput. Syst.

18 • B. Radovič et al.

0 20 40 60 80 100
0.3

0.4

0.5

0.6

0.7

0.8

Large-Medium models

0 20 40 60 80 100

Large-Small models

cFedAvg
FD
FedDF
FederatedDropout
FedKD
FedMD
HeteroFL
LgFedAvg

Percentage of clients training Large model

A
cc
u
ra
cy

Fig. 4. Average test accuracy across all clients w.r.t. the number of devices that train the Large model. Clients, that do not
train the Large model, use theMedium model (let figure) or the Small model (right figure).

However, as the percentage of clients training a Large model decreases, the average accuracy also decreases. For
instance, Federated Dropout shows a rapid decrease in performance, especially when the comparison model
is Small. In contrast, the cFedAvg and HeteroFL algorithms demonstrate similar performance, with HeteroFL
slightly outperforming when the comparison model is the Medium one. Note also, that when all devices train
a Small model, the average accuracy of the HeteroFL model is lower than that of cFedAvg, which may seem
counterintuitive as both algorithms train the same model and use the same aggregation strategy. This diference
arises due to the scaling of model outputs in the HeteroFL algorithm, i.e., the two algorithms have diferent
training procedures on the clients.11 Finally, note that we did not report the results for SL algorithms, as in the
discussed scenario all the clients train the same model regardless of their capacity.
In Figure 4 we also note, that the average accuracy for both HeteroFL and cFedAvg is higher when all the

devices train a smaller model if compared to the case when only a small portion of clients train the Large model.
This demonstrates the trade-of between having multiple model sizes on one hand and training each such model
only on a fraction of the clients on the other.

Takeaway 5: In stateless algorithms, having only amarginal fraction of clients with largemodels might be detrimental

ś better let all the clients use a smaller model.

6 Deploying the Algorithms in a Real-World Testbed

We now transition from experimenting in a simulated environment to deploying the algorithms on the Collabo-
rative Learning Experimentation Testbed (CoLExT) [10], which includes 14 heterogeneous devices. We report
the properties of the devices in the testbed in Table 6, while a picture of the testbed can be seen in Figure 5. To
categorize each device into its respective capacity tier, we performed manual proiling of their performance. This
involved running all models on all device types and selecting the most suitable model for each device based on
training time.

Throughout this section, we train a model on an IID data setting using the CIFAR10 dataset. We set each client
to use a training dataset with 1000 images to enable resource consumption comparison across diferent clients,
and we set all algorithms to train the model for two epochs on the clients in each server training round. We apply
no modiications to the FL and the SplitFed �2 algorithms, while for the SplitFed �1 algorithm we test the original

11We cannot make the two training procedures the same as the initial magnitudes of the model parameters are diferent.

ACM Trans. Model. Perform. Eval. Comput. Syst.

Review and Comparative Evaluation of Resource-Adaptive Collaborative Training for Heterogeneous Edge Devices • 19

Fig. 5. Picture of the employed
testbed.

Table 6. Listing of devices comprising the testbed with corresponding
properties.

RAM
(GB)

CPU
(cores)

GPU
Assigned
capacity
tier

Count

Jetson
AGX Orin

64 12@2.2GHz ✓ High 1

Jetson
Orin Nano

8 6@1.5GHz ✓ High 3

LattePanda
Delta 3

8 4@2.9GHz ✗ Medium 4

Orange
Pi 5B

16 8@2.4GHz ✗ Low 6

formulation [87] and an extended version of the algorithm that employs the U-shaped architecture [91]. We refer
to the former as łPlain SL” and to the latter as łU-shaped”.

6.1 Convergence times

To begin, we examine how accuracy evolves over time. Each algorithm we analyze employs distinct training
procedures and loss functions, resulting in varying training times across devices.

The results, reported in Figure 6, illustrate that the SL algorithms achieve the highest validation accuracy and
converge reasonably fast. The accuracy result is in line with the discussion of Section 5.2, however in this case, the
diference in accuracy between FL and SL algorithms is further ampliied because in our testbed the low-capacity
tier is over-represented. The diference in accuracy between the two SplitFed �1 versions we see in the plot is
attributed to the longer training time of the U-shaped coniguration. We also observe that SplitFed �2, where
clients train a common model on the server, achieves signiicantly faster convergence, though some authors
observe that the faster training pace of the server model may harm in some cases model convergence [65].

Regarding the FL algorithms, cFedAvg exhibits the fastest convergence rate. This rapid convergence is attributed
mostly to the fact, that the training processes of diferent capacity tiers are decoupled. It follows, that the high-
capacity cluster converges extremely quickly. However, ultimately, HeteroFL achieves the highest validation
accuracy. The FedDF algorithm sufers from very slow convergence because of the expensive KD stage happening
on the server. Among the stateful algorithms, the FedKD and FedMD algorithms achieve comparable accuracy,
with the FedKD algorithm demonstrating faster convergence due to the fact, that it does not require training the
model on the public dataset. Finally, we observe that also in this case the FD and the LgFedAvg algorithms attain
the lowest accuracy among the considered algorithms.

6.2 Network consumption

Before delving into the results concerning network usage, it is important to note, that while the considered
algorithms vary signiicantly, the types of exchanged data remain limited. That is, stateless algorithms transmit the
complete model and SL algorithms transmit embeddings and gradients. Most variability in terms of transmitted
data can be observed in the stateful family of algorithms, wherein clients transmit either a reduced model version
(FedKD), logits on the public dataset (FedMD), or class prototypes (FD).

ACM Trans. Model. Perform. Eval. Comput. Syst.

20 • B. Radovič et al.

0 20 40 60 80 100

Elapsed time (m)

0.15

0.25

0.35

0.45

0.55

0.65

0.75

A
cc
u
ra
cy

cFedAvg

FD

FedDF

FederatedDropout

FedKD

FedMD

HeteroFL

LgFedAvg

SplitFed v1 - Plain SL

SplitFed v1 - U-shaped

SplitFed v2 - Plain SL

Fig. 6. Evolution of the average validation accuracy across all clients through time on the testbed.

We present in Figure 7 the volume of sent12 and received bytes by the considered algorithms. As also noted
by Gao et. al. [28], SL algorithms cause signiicantly higher network involvement than FL algorithms ś we
here do not diferentiate between SplitFed �1 and SplitFed �2 because they transfer the same amount of data
over the network. This fact comes as no surprise as the embedding of a single image consists in our case of
24576 parameters. It follows, that in each epoch every client, which in this experiment has 1000 data points
and performs two local training epochs, sends 24576 · 1000 · 2 ≈ 49.1M parameters to the server. Conversely,
among FL algorithms, the largest communication happens when clients send the Large model consisting of 1.2M
parameters at the end of the training stage.
Among the FL family of algorithms, stateless algorithms exhibit traic volumes that are one or more orders

of magnitude higher than those of the FedKD and FD algorithms, a diference that gets ampliied with larger
model sizes. As for the FedMD algorithm, there is a considerable initial downlink investment due to clients
downloading the public dataset, while the amount of data sent by this algorithm remains comparable to other
stateful algorithms.

6.3 Local training resource consumption

We next analyze resource utilization during local training on clients, speciically focusing on CPU and memory
usage.13 Similar to our indings on network activity, we observe limited variability in local training procedures.
We hence collectively refer to the most straightforward training method, wherein clients locally optimize the
plain cross-entropy loss and is employed by the FedAvg, HeteroFL, LgFedAvg, and Federated Dropout algorithms,
as łvanilla training”. Conversely, we denote the regularized training procedure used by FedDF as łFedProx” [53].
We detail the training time for the irst training round along with the subsequent rounds’ average training

times in Table 7. Notably, the initial round on devices equipped with a GPU is 68% to 77% slower than subsequent
rounds due to the CUDA context creation overhead, which includes loading the driver and kernels. This initial
sluggishness results in the Latte Panda, which lacks a GPU, achieving a training time comparable to the Jetson
Orin Nano equipped with a GPU during the irst round. Consequently, it is beneicial to utilize the GPU-equipped

12Sent bytes include resource consumption statistics, which are not typically sent in production environments. This traic accounts for

approximately 50kB per minute.
13For memory, we measure the Resident Set Size (RSS).

ACM Trans. Model. Perform. Eval. Comput. Syst.

Review and Comparative Evaluation of Resource-Adaptive Collaborative Training for Heterogeneous Edge Devices • 21

F1 E2 F4 E5 F7 E8 F10

105

107

109

Received bytes

F1 E2 F4 E5 F7 E8 F10

Sent bytes

FD

FedKD

FedMD

Large model

Medium model

Small model

SplitFed - Plain SL

SplitFed - U-shaped

Stage of training process

B
yt
es

Fig. 7. Cumulative amount of sent and received bytes through training. Vertical dashed lines denote the beginning of a
training round, and vertical doted lines denote the beginning of an evaluation round. F� represent fit round � while E�
represent evaluation round � .

Table 7. Training time in seconds in the first and subse-
quent epochs when training a Small model with vanilla
training.

device type
First

epoch [s]
Other

epochs [s]

Jetson
AGX Orin

7.87 4.67

Jetson
OrinNano

9.39 5.29

Latte Panda
Delta3

9.98 10.39

Orange
Pi5B

19.02 17.46

Table 8. Ratio between metrics collected when training
a Large and Small model with vanilla training.

device type
CPU
util.

Memory
util.

Round
time

Jetson
AGX Orin

0.898 1.017 1.214

Jetson
Orin Nano

0.910 1.019 1.186

Latte Panda
Delta3

1.044 1.321 10.226

Orange
Pi5B

0.972 1.413 5.582

devices multiple times to amortize the initial GPU setup cost. Because of this consideration, all the values we
report from this point on are measured by excluding the irst training round.

Takeaway 6: The presence of a GPU is the primary indicator of the client capacity, however, GPU initialization is

slow.

Next, we report in Table 8 the ratio between the resource usage when devices train a Large compared to the
Small model with vanilla training. We note, that switching the model being trained from Small to Large causes
the training time to increase by 18 − 21% when the device has a GPU, while CPU-only devices present a time
increase of multiple folds. It is also interesting to note, that memory usage does not scale proportionally to the
model size because the majority of the memory consumption is not caused by the models per se, but rather by

ACM Trans. Model. Perform. Eval. Comput. Syst.

22 • B. Radovič et al.

Table 9. Ratio between memory usage and client training time when training the Small model with the displayed training
procedure if compared to the plain vanilla training.

FedProx FedKD FD
device type mem util round time mem util round time mem util round time

JetsonAGXOrin 1.000 1.170 0.998 1.376 1.002 1.237

JetsonOrinNano 0.997 1.163 0.997 1.392 0.998 1.201

LattePandaDelta3 1.014 1.005 1.004 1.290 0.991 1.004

OrangePi5B 1.030 1.020 1.004 1.486 1.001 1.010

the deep learning library.14 We therefore conclude that the size of the model, when it falls within the range of
several million parameters, is unlikely to pose a memory issue. For instance, a model with 1 million parameters,
assuming 32-bit precision, would occupy approximately 4MB of memory. During training, this value increases
due to the storage of activations and possibly optimizer states. However, even with these additions, the memory
footprint remains modest compared to that of the PyTorch library. Based on our tests, loading PyTorch into
memory requires, depending on the CPU architecture (ARM or x86) between 200MB to 350MB.

Takeaway 7: When the model being trained has a parameter count in the order of millions, the memory footprint of

the model is negligible if compared to the memory occupied by the deep learning library.

6.3.1 Comparison of FL algorithms. We report in Table 9 the ratio between diferent training procedures and
vanilla training. We see, that as observed also by Baumgart et. al. [7], devices featuring a GPU exhibit a greater
increase in training time compared to CPU-only devices in case of the FedProx and FD training procedures:
for GPU-equipped devices, the round time increases range from 16% to 23%, while devices equipped solely
with a CPU experience a round time increase of no more than 2%. The higher increase in training times on
GPU-equipped devices is due to operations in the training procedures that cannot be eiciently performed on the
GPU, e.g. computing the prototype matrix in the FD algorithm. As expected, since the FedKD algorithm trains
two separate models with codistillation, the training time increases for this procedure are higher compared to
the other two training procedures, with time increases ranging from 29% to 49%. Consistently with the results
discussed above, also in this case we note that memory consumption does not exhibit any signiicant variation
between the diferent algorithms.

6.3.2 Comparison of FL with SL algorithms. In Table 10 we compare the client resource usage when training a
Large model with vanilla training and the two SL variants, i.e. plain and U-shaped. Consistent with the indings
of Wong et. al., we observed that devices equipped with a GPU exhibit signiicantly lower CPU usage during
training [95]. Oloading a part of the computation to the server beneits all the devices when it comes to CPU
and GPU utilization, as these two metrics signiicantly decrease when using SL if compared to vanilla training.
This computation oloading also causes a signiicant decrease in training times on the devices that lack a GPU,
e.g., the round time decreases from 68.06s to 27.84s in the case of Latte Panda Delta 3.

The beneits of SL diminish to some extent when using the U-shaped architecture. In this case, clients need to
serialize and deserialize more tensors, transmit more data over the network as discussed in Section 6.2, and run
a forward and backward step on the last convolutional layer. The combination of all these factors leads to an
increase in training time, as well as higher CPU and GPU involvement.
Devices with GPUs experience longer training times in SL compared to standard local training. This delay

arises from various factors including serialization, deserialization, and increased CPU-GPU traic. However,

14We did not optimize the memory usage but rather used the default PyTorch settings.

ACM Trans. Model. Perform. Eval. Comput. Syst.

Review and Comparative Evaluation of Resource-Adaptive Collaborative Training for Heterogeneous Edge Devices • 23

Table 10. Absolute average CPU and GPU utilization and round training time for training a Large model with the two SL
variants and vanilla training.

Vanilla Training Plain SL U-shaped

device type
CPU
(%)

GPU
(%)

round
time (s)

CPU
(%)

GPU
(%)

round
time (s)

CPU
(%)

GPU
(%)

round
time (s)

Jetson
AGX Orin

81.05 38.90 3.77 20.37 5.02 22.93 21.15 5.47 27.37

Jetson
Orin Nano

80.73 44.29 4.11 24.33 5.86 17.45 25.92 6.25 20.10

Latte Panda
Delta3

382.82 0.00 68.06 200.22 0.00 27.84 216.96 0.00 29.68

Orange
Pi5B

461.35 0.00 56.39 213.53 0.00 30.39 212.19 0.00 34.47

the primary bottleneck occurs at the central server, which possesses only one GPU and handles simultaneous
requests from 14 clients, leading to a signiicant slowdown in training.

7 Discussion

7.1 Limitations

The presented study compared a diverse set of algorithms by focusing on two key practical aspects of DCML
deployments, i.e. model performance and system resource usage. We limited ourselves to these two broad
dimensions as DCML is an extremely complex topic and capturing all situations that may arise in practice is
close to impossible. For instance, other aspects we did not consider in this paper include:

• Privacy: Depending on the type of exchanged data, a łcurious” server may discover more or less of the
underlying clients’ datasets. In the paper, we only reported the original authors’ privacy considerations
when available. Also, we did not consider diferential privacy, so future research could compare algorithms
based on their resilience to such artiicially-injected noise.
• Scalability: Researchers have observed diminishing returns when adding clients beyond a certain point in
the FedAvg algorithm [60, 102]. While this observation also applies to the SplitFed �1 algorithm, future
research should explore whether this property holds for the other considered algorithms.
• Type of data non-IIDness: In Section 5.4 wemimicked data non-IIDness by partitioning the datasets according
to the Dirichlet distribution, efectively achieving the label-skew type of non-IIDness [69]. However, in
real-world scenarios, client datasets may present diferent types of non-IIDness such as concept shift.
• Client availability patterns: Throughout the experimental section we assumed that all clients are available
all the time, while in practice, client availability may vary throughout the day [9].
• Software Heterogeneity: While the devices in our testbed had various hardware resources, they were
homogeneous in terms of the operating system, with all clients running Linux. In other deployments,
clients might difer in their underlying software, such as training models on Android and iOS smartphones.
• Unreliable networks and Client Failures: The devices in our testbed were connected via a fast (1Gbps) and
reliable Ethernet network. In extreme cases, network issues could prevent clients from uploading data in
time, potentially leading the server to register client training as a failure. This is not the only cause of client
failures.
• Malicious clients: Clients may intentionally attempt to compromise the convergence of the algorithm.

ACM Trans. Model. Perform. Eval. Comput. Syst.

24 • B. Radovič et al.

We also acknowledge that though we aimed to provide a comparison that is as unbiased and fair as possible,
practical DCML deployments are bound to difer to some extent from our setup:

• We conducted the whole experimental section following the most common practice in FL research of
training a model from scratch. However, thanks to the abundance of pre-trained models available in many
domains, FL ine-tuning of a pre-trained model is also possible [61]. In such a case, several issues discussed
throughout the paper get mitigated. For instance, when ine-tuning a model, it is common practice to freeze
the initial layers of a model. In such a case, in model-sharing algorithms, clients only need to share the
updates of the trainable parameters. It follows, that the amount of exchanged data reduces.
• Even though we attempted to optimize as much as possible the implemented algorithms according to
the information at our disposal, we do not claim that the algorithms could not be further improved. For
instance, it is possible that models of diferent sizes would beneit from having diferent training parameters
(e.g., smaller models having larger learning rates and smaller regularization strength). However, this is a
dimension we did not consider in this survey as such a case was not explicitly discussed in the original
papers where the algorithms were introduced.

One inal limitation of our work is that the algorithm comparisons are purely empirical. While we provided
intuitive explanations for observed accuracy diferences whenever possible, future research could ofer a more
analytical comparison of the algorithms.

7.2 Impact and Future Work

The experiments conducted in our study revealed that there is no single best algorithm; instead, each algorithm
balances computational, network, and accuracy requirements diferently. As developing a comprehensive set of
use cases to identify the most suitable algorithm for each is challenging, we believe the takeaways listed in this
paper provide valuable insights that can assist practitioners in selecting the most appropriate DCML algorithm
for their application.
On a high level, we observed that for FL algorithms, sharing model parameters as in the FedAvg, cFedAvg,

and HeteroFL algorithms remains the most efective approach for achieving optimal model accuracy. While
reducing the shared data volume and fully customizing the model architecture as in the FD, FedKD, and FedMD
algorithms may seem appealing, our indings indicate that this often leads to a notable decrease in model accuracy.
Additionally, our results demonstrate that the cFedAvg algorithm, despite its simplicity, delivers comparable
performance to algorithms explicitly tailored for model-heterogeneous scenarios. This suggests opportunities for
advancing and reining model customization algorithms in future research.
However, these results prompt us to consider the extent to which model customization is the solution to the

device heterogeneity challenges outlined in this study. Speciically, as repeatedly shown in Section 5, achieving the
best accuracy often necessitates large models. Consequently, when employing FL, low-end devices are excluded
from this process, as training large models on such devices leads to extended training times and places a signiicant
burden on clients, as demonstrated in Section 6. Conversely, these devices may train a large model when assisted
by a server as is the case in SL approaches.

Therefore, given the limitations of both FL and SL algorithms, we believe that to solve the device heterogeneity
issues, a promising direction is to view these technologies not as mutually exclusive but rather as complementary
to each other. Speciically, while plain SL may not be suitable for large-scale deployment and training large models
with FL approaches on low-end devices may be infeasible, integrating SL and FL can harness the strengths of both
approaches. For instance, considering the close relationship between the SplitFed and the FedAvg algorithms, one
can assign a diferent number of layers to each device depending on the device’s computational availability [74, 97]
and hence let every client collaborate in training a large model while minimizing the burden posed on the central
server.

ACM Trans. Model. Perform. Eval. Comput. Syst.

Review and Comparative Evaluation of Resource-Adaptive Collaborative Training for Heterogeneous Edge Devices • 25

8 Conclusion

In this paper, we have explored three distinct families of algorithms designed to facilitate DCML on devices with
constrained computing and memory resources. Our investigation revealed that each algorithmic family possesses
unique strengths and weaknesses. For instance, FKD algorithms ofer model customization by exchanging logits
instead of model parameters. However, they often necessitate stateful clients and entail training models from
scratch, limiting their competitiveness. SL-based approaches incur high network traic and computational
overhead on the server, while PT-based algorithms enable clients to train models with a size that is proportional
to their capacities but may still lag in accuracy compared to the introduced cFedAvg baseline.
To evaluate these algorithms, we conducted experiments in both simulated and live real-world testbeds

comprising heterogeneous devices. Our indings underscore the inherent trade-ofs between network utilization,
model accuracy, and client resource consumption. These results shed light on the complexities involved in
optimizing DCML algorithms for diverse device environments and highlight the need for further research to
develop more robust and eicient solutions in this domain.

Acknowledgments

This publication is based on work supported by the King Abdullah University of Science and Technology (KAUST)
Oice of Research Administration (ORA) under Award No. ORA-CRG2021-4699, and by the Slovenian Research
Agency through the projects łContext-Aware On-Device Approximate Computing” (J2-3047) and core funding
No. P2-0098. For computer time, this research used the resources of the Supercomputing Laboratory at KAUST.
We are thankful to Amândio R. Faustino for his support in conducting the experiments.

References
[1] Ahmed M. Abdelmoniem, Chen-Yu Ho, Pantelis Papageorgiou, and Marco Canini. 2022. Empirical Analysis of Federated Learning in

Heterogeneous Environments. In EuroMLSys.

[2] Ahmed M. Abdelmoniem, Atal Narayan Sahu, Marco Canini, and Suhaib A. Fahmy. 2023. REFL: Resource-Eicient Federated Learning.

In EuroSys.

[3] Sharif Abuadbba, Kyuyeon Kim, Minki Kim, Chandra Thapa, Seyit Ahmet Çamtepe, Yansong Gao, Hyoungshick Kim, and Surya Nepal.

2020. Can We Use Split Learning on 1D CNN Models for Privacy Preserving Training?. In ACM ASIA Conference on Computer and

Communications Security (ASIA CCS).

[4] Samiul Alam, Luyang Liu, Ming Yan, and Mi Zhang. 2022. FedRolex: Model-Heterogeneous Federated Learning with Rolling Sub-Model

Extraction. In NeurIPS.

[5] Rohan Anil, Gabriel Pereyra, Alexandre Passos, Róbert Ormándi, George E. Dahl, and Geofrey E. Hinton. 2018. Large Scale Distributed

Neural Network Training Through Online Distillation. In ICLR.

[6] Manoj Ghuhan Arivazhagan, Vinay Aggarwal, Aaditya Kumar Singh, and Sunav Choudhary. 2019. Federated Learning with Personal-

ization Layers. (2019). arXiv:1912.00818 [cs.DC]

[7] Gustav A. Baumgart, Jaemin Shin, Ali Payani, Myungjin Lee, and Ramana Rao Kompella. 2024. Not All Federated Learning Algorithms

Are Created Equal: A Performance Evaluation Study. (2024). arXiv:2403.17287 [cs.DC]

[8] Daniel J. Beutel, Taner Topal, Akhil Mathur, Xinchi Qiu, Titouan Parcollet, and Nicholas D. Lane. 2020. Flower: A Friendly Federated

Learning Research Framework. (2020). arXiv:2007.14390 [cs.DC]

[9] Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp, Dzmitry Huba, Alex Ingerman, Vladimir Ivanov, Chloe Kiddon, Jakub Konečný,

Stefano Mazzocchi, H Brendan McMahan, Timon Van Overveldt, David Petrou, Daniel Ramage, and Jason Roselander. 2019. Towards

Federated Learning at scale: System design. (2019). arXiv:1902.01046 [cs.DC]

[10] Janez Božič, Amândio R. Faustino, Boris Radovič, Marco Canini, and Veljko Pejović. 2024. Where is the Testbed for my Federated

Learning Research?. In ACM/IEEE Symposium on Edge Computing (SEC).

[11] Christopher Briggs, Zhong Fan, and Peter Andras. 2020. Federated Learning With Hierarchical Clustering of Local Updates To Improve

Training on Non-Iid Data. In International Joint Conference on Neural Networks (IJCNN).

[12] Cristian Buciluǎ, Rich Caruana, and Alexandru Niculescu-Mizil. 2006. Model Compression. In SIGKDD.

[13] S Caldas, J Konečny, H B McMahan, and others. 2018. Expanding the Reach of Federated Learning by Reducing Client Resource

Requirements. (2018). arXiv:1812.07210 [cs.DC]

ACM Trans. Model. Perform. Eval. Comput. Syst.

https://doi.org/10.1145/3517207.3526969
https://doi.org/10.1145/3517207.3526969
https://doi.org/10.1145/3552326.3567485
https://doi.org/10.1145/3320269.3384740
http://papers.nips.cc/paper_files/paper/2022/hash/bf5311df07f3efce97471921e6d2f159-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/bf5311df07f3efce97471921e6d2f159-Abstract-Conference.html
https://openreview.net/forum?id=rkr1UDeC-
https://openreview.net/forum?id=rkr1UDeC-
http://arxiv.org/abs/1912.00818
http://arxiv.org/abs/1912.00818
https://arxiv.org/abs/1912.00818
https://doi.org/10.48550/arXiv.2403.17287
https://doi.org/10.48550/arXiv.2403.17287
https://arxiv.org/abs/2403.17287
https://arxiv.org/abs/2007.14390
https://arxiv.org/abs/2007.14390
https://arxiv.org/abs/2007.14390
https://arxiv.org/abs/1902.01046
https://arxiv.org/abs/1902.01046
https://arxiv.org/abs/1902.01046
http://doi.org/10.1109/SEC62691.2024.00027
http://doi.org/10.1109/SEC62691.2024.00027
https://doi.org/10.1109/IJCNN48605.2020.9207469
https://doi.org/10.1109/IJCNN48605.2020.9207469
https://doi.org/10.1145/1150402.1150464
http://arxiv.org/abs/1812.07210
http://arxiv.org/abs/1812.07210
https://arxiv.org/abs/1812.07210

26 • B. Radovič et al.

[14] Hongyan Chang, Virat Shejwalkar, Reza Shokri, and Amir Houmansadr. 2019. Cronus: Robust and Heterogeneous Collaborative

Learning with Black-Box Knowledge Transfer. (2019). arXiv:1912.11279 [cs.DC]

[15] Zachary Charles, Kallista A. Bonawitz, Stanislav Chiknavaryan, Brendan McMahan, and Blaise Agüera y Arcas. 2022. Federated Select:

A Primitive for Communication- and Memory-Eicient Federated Learning. (2022). arXiv:2208.09432 [cs.DC]

[16] Tianyu Chen, Hangbo Bao, Shaohan Huang, Li Dong, Binxing Jiao, Daxin Jiang, Haoyi Zhou, Jianxin Li, and Furu Wei. 2022. THE-X:

Privacy-Preserving Transformer Inference with Homomorphic Encryption. In Annual Meeting of the Association for Computational

Linguistics (ACL).

[17] Gary Cheng, Zachary Charles, Zachary Garrett, and Keith Rush. 2022. Does Federated Dropout actually work?. In IEEE Computer

Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

[18] Sijie Cheng, Jingwen Wu, Yanghua Xiao, and Yang Liu. 2021. FedGEMS: Federated Learning of Larger Server Models via Selective

Knowledge Fusion. (2021). arXiv:2110.11027 [cs.DC]

[19] Yae Jee Cho, Andre Manoel, Gauri Joshi, Robert Sim, and Dimitrios Dimitriadis. 2022. Heterogeneous Ensemble Knowledge Transfer

for Training Large Models in Federated Learning. In International Joint Conferences on Artiicial Intelligence (IJCAI).

[20] Yae Jee Cho, Jianyu Wang, Tarun Chirvolu, and Gauri Joshi. 2023. Communication-Eicient and Model-Heterogeneous Personalized

Federated Learning via Clustered Knowledge Transfer. IEEE Journal of Selected Topics in Signal Processing (2023).

[21] Ayush Chopra, Surya Kant Sahu, Abhishek Singh, Abhinav Java, Praneeth Vepakomma, Vivek Sharma, and Ramesh Raskar. 2021.

AdaSplit: Adaptive Trade-ofs for Resource-constrained Distributed Deep Learning. arXiv:2112.01637 [cs.LG]

[22] Luke Nicholas Darlow, Elliot J. Crowley, Antreas Antoniou, and Amos J. Storkey. 2018. CINIC-10 Is Not ImageNet or CIFAR-10. (2018).

arXiv:1810.03505 [cs.DC]

[23] Enmao Diao, Jie Ding, and Vahid Tarokh. 2021. HeteroFL: Computation and Communication Eicient Federated Learning for

Heterogeneous Clients. In ICLR.

[24] Qiang Duan, Shijing Hu, Ruijun Deng, and Zhihui Lu. 2022. Combined Federated and Split Learning in Edge Computing for Ubiquitous

Intelligence in Internet of Things: State-of-the-Art and Future Directions. Sensors (2022).

[25] Chen Dun, Mirian Hipolito Garcia, Chris Jermaine, Dimitrios Dimitriadis, and Anastasios Kyrillidis. 2023. Eicient and Light-Weight

Federated Learning via Asynchronous Distributed Dropout. In AISTATS.

[26] Chen Dun, Cameron R. Wolfe, Christopher M. Jermaine, and Anastasios Kyrillidis. 2022. ResIST: Layer-wise decomposition of ResNets

for distributed training. In Conference on Uncertainty in Artiicial Intelligence (UAI).

[27] Wenzhi Fang, Dong-Jun Han, and Christopher G. Brinton. 2024. Submodel Partitioning in Hierarchical Federated Learning: Algorithm

Design and Convergence Analysis. In IEEE International Conference on Communication (ICC).

[28] Yansong Gao, Minki Kim, Sharif Abuadbba, Yeonjae Kim, Chandra Thapa, Kyuyeon Kim, Seyit Ahmet Çamtepe, Hyoungshick Kim, and

Surya Nepal. 2020. End-to-End Evaluation of Federated Learning and Split Learning for Internet of Things. In International Symposium

on Reliable Distributed Systems (SRDS).

[29] Yansong Gao, Minki Kim, Chandra Thapa, Alsharif Abuadbba, Zhi Zhang, Seyit Camtepe, Hyoungshick Kim, and Surya Nepal. 2022.

Evaluation and Optimization of Distributed Machine Learning Techniques for Internet of Things. IEEE Trans. Comput. (2022).

[30] Manish Gawali, C. S. Arvind, Shriya Suryavanshi, Harshit Madaan, Ashrika Gaikwad, K. N. Bhanu Prakash, Viraj Kulkarni, and

Aniruddha Pant. 2021. Comparison of Privacy-Preserving Distributed Deep Learning Methods in Healthcare. In Medical Image

Understanding and Analysis (MIUA).

[31] Avishek Ghosh, Jichan Chung, Dong Yin, and Kannan Ramchandran. 2020. An Eicient Framework for Clustered Federated Learning.

In NeurIPS.

[32] Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine, Kristin E. Lauter, Michael Naehrig, and John Wernsing. 2016. CryptoNets: Applying

Neural Networks to Encrypted Data with High Throughput and Accuracy. In ICML.

[33] Google. 2022. How Messages Improves Suggestions With Federated Technology. https://support.google.com/messages/answer/

9327902?hl=en. Accessed: 2023-11-11.

[34] Otkrist Gupta and Ramesh Raskar. 2018. Distributed Learning of Deep Neural Network Over Multiple Agents. Journal of Network and

Computer Applications (2018).

[35] Andrew Hard, Kanishka Rao, Rajiv Mathews, Françoise Beaufays, Sean Augenstein, Hubert Eichner, Chloé Kiddon, and Daniel Ramage.

2018. Federated Learning for Mobile Keyboard Prediction. (2018). arXiv:1811.03604

[36] Chaoyang He, Murali Annavaram, and Salman Avestimehr. 2020. Group Knowledge Transfer: Federated Learning of Large CNNs at

the Edge. In NeurIPS.

[37] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual Learning for Image Recognition. In CVPR.

[38] Geofrey E. Hinton, Oriol Vinyals, and Jefrey Dean. 2015. Distilling the Knowledge in a Neural Network. (2015). arXiv:1503.02531 [cs.DC]

[39] Samuel Horváth, Stefanos Laskaridis, Mário Almeida, Ilias Leontiadis, Stylianos I. Venieris, and Nicholas D. Lane. 2021. FjORD: Fair

and Accurate Federated Learning under heterogeneous targets with Ordered Dropout. In NeurIPS.

[40] Kevin Hsieh, Amar Phanishayee, Onur Mutlu, and Phillip B. Gibbons. 2020. The Non-IID Data Quagmire of Decentralized Machine

Learning. In ICML.

ACM Trans. Model. Perform. Eval. Comput. Syst.

http://arxiv.org/abs/1912.11279
http://arxiv.org/abs/1912.11279
https://arxiv.org/abs/1912.11279
https://doi.org/10.48550/arXiv.2208.09432
https://doi.org/10.48550/arXiv.2208.09432
https://arxiv.org/abs/2208.09432
https://doi.org/10.18653/v1/2022.findings-acl.277
https://doi.org/10.18653/v1/2022.findings-acl.277
https://doi.org/10.1109/CVPRW56347.2022.00382
https://arxiv.org/abs/2110.11027
https://arxiv.org/abs/2110.11027
https://arxiv.org/abs/2110.11027
https://doi.org/10.24963/ijcai.2022/399
https://doi.org/10.24963/ijcai.2022/399
https://doi.org/10.1109/JSTSP.2022.3231527
https://doi.org/10.1109/JSTSP.2022.3231527
https://arxiv.org/abs/2112.01637
https://arxiv.org/abs/2112.01637
http://arxiv.org/abs/1810.03505
https://arxiv.org/abs/1810.03505
https://openreview.net/forum?id=TNkPBBYFkXg
https://openreview.net/forum?id=TNkPBBYFkXg
https://doi.org/10.3390/s22165983
https://doi.org/10.3390/s22165983
https://proceedings.mlr.press/v206/dun23a.html
https://proceedings.mlr.press/v206/dun23a.html
https://proceedings.mlr.press/v180/dun22a.html
https://proceedings.mlr.press/v180/dun22a.html
https://doi.org/10.1109/ICC51166.2024.10622512
https://doi.org/10.1109/ICC51166.2024.10622512
https://doi.org/10.1109/SRDS51746.2020.00017
https://doi.org/10.1109/TC.2021.3135752
https://doi.org/10.1007/978-3-030-80432-9_34
https://proceedings.neurips.cc/paper/2020/hash/e32cc80bf07915058ce90722ee17bb71-Abstract.html
http://proceedings.mlr.press/v48/gilad-bachrach16.html
http://proceedings.mlr.press/v48/gilad-bachrach16.html
https://support.google.com/messages/answer/9327902?hl=en
https://support.google.com/messages/answer/9327902?hl=en
https://doi.org/10.1016/j.jnca.2018.05.003
https://arxiv.org/abs/1811.03604
https://arxiv.org/abs/1811.03604
https://proceedings.neurips.cc/paper/2020/hash/a1d4c20b182ad7137ab3606f0e3fc8a4-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/a1d4c20b182ad7137ab3606f0e3fc8a4-Abstract.html
https://doi.org/10.1109/CVPR.2016.90
http://arxiv.org/abs/1503.02531
https://arxiv.org/abs/1503.02531
https://proceedings.neurips.cc/paper/2021/hash/6aed000af86a084f9cb0264161e29dd3-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/6aed000af86a084f9cb0264161e29dd3-Abstract.html
http://proceedings.mlr.press/v119/hsieh20a.html
http://proceedings.mlr.press/v119/hsieh20a.html

Review and Comparative Evaluation of Resource-Adaptive Collaborative Training for Heterogeneous Edge Devices • 27

[41] Tzu-Ming Harry Hsu, Hang Qi, and Matthew Brown. 2019. Measuring the Efects of Non-Identical Data Distribution for Federated

Visual Classiication. (2019). arXiv:1909.06335 [cs.DC]

[42] Li Hu, Hongyang Yan, Lang Li, Zijie Pan, Xiaozhang Liu, and Zulong Zhang. 2021. MHAT: an Eicient Model-Heterogenous Aggregation

Training Scheme For Federated Learning. Information Sciences (2021).

[43] Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Dehao Chen, Mia Xu Chen, HyoukJoong Lee, Jiquan Ngiam, Quoc V. Le,

Yonghui Wu, and Zhifeng Chen. 2019. GPipe: Eicient Training of Giant Neural Networks using Pipeline Parallelism. In NeurIPS.

[44] Sohei Itahara, Takayuki Nishio, Yusuke Koda, Masahiro Morikura, and Koji Yamamoto. 2023. Distillation-Based Semi-Supervised

Federated Learning for Communication-Eicient Collaborative Training With Non-IID Private Data. IEEE Transactions on Mobile

Computing (2023).

[45] Eunjeong Jeong, Seungeun Oh, Hyesung Kim, Jihong Park, Mehdi Bennis, and Seong-Lyun Kim. 2018. Communication-Eicient

On-Device Machine Learning: Federated Distillation and Augmentation under Non-IID Private Data. (2018). arXiv:1811.11479

[46] Yuang Jiang, Shiqiang Wang, Víctor Valls, Bong Jun Ko, Wei-Han Lee, Kin K. Leung, and Leandros Tassiulas. 2023. Model Pruning

Enables Eicient Federated Learning on Edge Devices. IEEE Transactions on Neural Networks and Learning Systems (2023).

[47] Zhida Jiang, Yang Xu, Hongli Xu, ZhiyuanWang, Jianchun Liu, Chen Qian, and Chunming Qiao. 2024. Computation and Communication

Eicient Federated Learning With Adaptive Model Pruning. IEEE Transactions on Mobile Computing (2024).

[48] Minsu Kim, Alexander C. DeRieux, and Walid Saad. 2023. A Bargaining Game for Personalized, Energy Eicient Split Learning over

Wireless Networks. In IEEE Wireless Communications and Networking Conference (WCNC).

[49] James Kirkpatrick, Razvan Pascanu, Neil C. Rabinowitz, et al. 2016. Overcoming Catastrophic Forgetting in Neural Networks. (2016).

arXiv:1612.00796

[50] A Krizhevsky. 2009. Learning Multiple Layers of Features From Tiny Images. (2009).

[51] Ang Li, Jingwei Sun, Pengcheng Li, Yu Pu, Hai Li, and Yiran Chen. 2021. Hermes: An Eicient Federated Learning Framework for

Heterogeneous Mobile Clients. In MobiCom.

[52] Daliang Li and Junpu Wang. 2019. FedMD: Heterogenous Federated Learning via Model Distillation. (2019). arXiv:1910.03581 [cs.DC]

[53] Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith. 2020. Federated Optimization in

Heterogeneous Networks. In MLSys.

[54] Paul Pu Liang, Terrance Liu, Ziyin Liu, Ruslan Salakhutdinov, and Louis-Philippe Morency. 2020. Think Locally, Act Globally: Federated

Learning with Local and Global Representations. (2020). arXiv:2001.01523 [cs.DC]

[55] Yunming Liao, Yang Xu, Hongli Xu, Zhiwei Yao, Lun Wang, and Chunming Qiao. 2023. Accelerating Federated Learning With Data

and Model Parallelism in Edge Computing. IEEE/ACM Transactions on Networking (2023).

[56] Tao Lin, Lingjing Kong, Sebastian U. Stich, and Martin Jaggi. 2020. Ensemble Distillation for Robust Model Fusion in Federated Learning.

In NeurIPS.

[57] Terrance Liu and Paul Liang. 2020. Federated Learning with Local and Global Representations. https://github.com/pliang279/LG-FedAvg.

Accessed: 2024-03-06.

[58] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Agüera y Arcas. 2017. Communication-Eicient Learning

of Deep Networks from Decentralized Data. In AISTATS.

[59] Muhammad Tahir Munir, Muhammad Mustansar Saeed, Mahad Ali, Zafar Ayyub Qazi, Agha Ali Raza, and Ihsan Ayyub Qazi. 2023.

Learning Fast and Slow: Towards Inclusive Federated Learning. In European Conference on Machine Learning and Principles and Practice

of Knowledge Discovery in Databases (ECML PKDD).

[60] John Nguyen, Kshitiz Malik, Hongyuan Zhan, Ashkan Yousefpour, Mike Rabbat, Mani Malek, and Dzmitry Huba. 2022. Federated

Learning with Bufered Asynchronous Aggregation. In AISTATS.

[61] John Nguyen, Jianyu Wang, Kshitiz Malik, Maziar Sanjabi, and Michael G. Rabbat. 2023. Where to Begin? On the Impact of Pre-Training

and Initialization in Federated Learning. In ICLR.

[62] Yue Niu, Saurav Prakash, Souvik Kundu, Sunwoo Lee, and Salman Avestimehr. 2022. Federated Learning of Large Models at the Edge

via Principal Sub-Model Training. (2022). arXiv:2208.13141 [cs.DC]

[63] Ziru Niu, Hai Dong, and A. Kai Qin. 2024. FedSPU: Personalized Federated Learning for Resource-constrained Devices with Stochastic

Parameter Update. (2024). arXiv:2403.11464 [cs.DC]

[64] Seungeun Oh, Jihong Park, Praneeth Vepakomma, Sihun Baek, Ramesh Raskar, Mehdi Bennis, and Seong-Lyun Kim. 2022. LocFedMix-SL:

Localize, Federate, and Mix for Improved Scalability, Convergence, and Latency in Split Learning. In WWW.

[65] Shraman Pal, Mansi Uniyal, Jihong Park, Praneeth Vepakomma, Ramesh Raskar, Mehdi Bennis, Moongu Jeon, and Jinho Choi. 2021.

Server-Side Local Gradient Averaging and Learning Rate Acceleration for Scalable Split Learning. (2021). arXiv:2112.05929 [cs.DC]

[66] Kamalesh Palanisamy, Vivek Khimani, Moin Hussain Moti, and Dimitris Chatzopoulos. 2021. SplitEasy: A Practical Approach for

Training ML models on Mobile Devices. In HotMobile.

[67] Eunhyeok Park, Sungjoo Yoo, and Peter Vajda. 2018. Value-Aware Quantization for Training and Inference of Neural Networks. In

European Conference on Computer Vision (ECCV).

ACM Trans. Model. Perform. Eval. Comput. Syst.

http://arxiv.org/abs/1909.06335
http://arxiv.org/abs/1909.06335
https://arxiv.org/abs/1909.06335
https://doi.org/10.1016/j.ins.2021.01.046
https://doi.org/10.1016/j.ins.2021.01.046
https://proceedings.neurips.cc/paper/2019/hash/093f65e080a295f8076b1c5722a46aa2-Abstract.html
https://doi.org/10.1109/TMC.2021.3070013
https://doi.org/10.1109/TMC.2021.3070013
http://arxiv.org/abs/1811.11479
http://arxiv.org/abs/1811.11479
https://arxiv.org/abs/1811.11479
https://doi.org/10.1109/TNNLS.2022.3166101
https://doi.org/10.1109/TNNLS.2022.3166101
https://doi.org/10.1109/TMC.2023.3247798
https://doi.org/10.1109/TMC.2023.3247798
https://doi.org/10.1109/WCNC55385.2023.10118601
https://doi.org/10.1109/WCNC55385.2023.10118601
http://arxiv.org/abs/1612.00796
https://arxiv.org/abs/1612.00796
https://doi.org/10.1145/3447993.3483278
https://doi.org/10.1145/3447993.3483278
http://arxiv.org/abs/1910.03581
https://arxiv.org/abs/1910.03581
https://proceedings.mlsys.org/paper_files/paper/2020/hash/1f5fe83998a09396ebe6477d9475ba0c-Abstract.html
https://proceedings.mlsys.org/paper_files/paper/2020/hash/1f5fe83998a09396ebe6477d9475ba0c-Abstract.html
http://arxiv.org/abs/2001.01523
http://arxiv.org/abs/2001.01523
https://arxiv.org/abs/2001.01523
https://doi.org/10.1109/TNET.2023.3299851
https://doi.org/10.1109/TNET.2023.3299851
https://proceedings.neurips.cc/paper/2020/hash/18df51b97ccd68128e994804f3eccc87-Abstract.html
https://github.com/pliang279/LG-FedAvg
http://proceedings.mlr.press/v54/mcmahan17a.html
http://proceedings.mlr.press/v54/mcmahan17a.html
https://doi.org/10.1007/978-3-031-43415-0_23
https://proceedings.mlr.press/v151/nguyen22b.html
https://proceedings.mlr.press/v151/nguyen22b.html
https://openreview.net/forum?id=Mpa3tRJFBb
https://openreview.net/forum?id=Mpa3tRJFBb
https://doi.org/10.48550/arXiv.2208.13141
https://doi.org/10.48550/arXiv.2208.13141
https://arxiv.org/abs/2208.13141
https://doi.org/10.48550/arXiv.2403.11464
https://doi.org/10.48550/arXiv.2403.11464
https://arxiv.org/abs/2403.11464
https://doi.org/10.1145/3485447.3512153
https://doi.org/10.1145/3485447.3512153
https://arxiv.org/abs/2112.05929
https://arxiv.org/abs/2112.05929
https://doi.org/10.1145/3446382.3448362
https://doi.org/10.1145/3446382.3448362
https://doi.org/10.1007/978-3-030-01225-0_36

28 • B. Radovič et al.

[68] Dario Pasquini, Giuseppe Ateniese, and Massimo Bernaschi. 2021. Unleashing the Tiger: Inference Attacks on Split Learning. In ACM

Special Interest Group on Security, Audit and Control (SIGSAC).

[69] Peter Kairouz et.al. 2021. Advances and Open Problems in Federated Learning. Foundations and Trends® in Machine Learning (2021).

[70] Krishna Pillutla, Kshitiz Malik, Abdelrahman Mohamed, Michael G. Rabbat, Maziar Sanjabi, and Lin Xiao. 2022. Federated Learning

with Partial Model Personalization. In ICML.

[71] Maarten G. Poirot, Praneeth Vepakomma, Ken Chang, Jayashree Kalpathy-Cramer, Rajiv Gupta, and Ramesh Raskar. 2019. Split

Learning for Collaborative Deep Learning in Healthcare. (2019). arXiv:1912.12115 [cs.DC]

[72] Sashank J. Reddi, Zachary Charles, Manzil Zaheer, Zachary Garrett, Keith Rush, Jakub Konečný, Sanjiv Kumar, and Hugh Brendan

McMahan. 2021. Adaptive Federated Optimization. In ICLR.

[73] Stefen Rendle. 2010. Factorization Machines. In International Conference on Data Mining (ICDM).

[74] Eric Samikwa, Antonio Di Maio, and Torsten Braun. 2022. ARES: Adaptive Resource-Aware Split Learning for Internet of Things.

Comput. Networks (2022).

[75] Felix Sattler, Tim Korjakow, Roman Rischke, and Wojciech Samek. 2023. FedAUX: Leveraging Unlabeled Auxiliary Data in Federated

Learning. IEEE Transactions on Neural Networks and Learning Systems (2023).

[76] Felix Sattler, Klaus-Robert Müller, and Wojciech Samek. 2021. Clustered Federated Learning: Model-Agnostic Distributed Multitask

Optimization Under Privacy Constraints. IEEE Transactions on Neural Networks and Learning Systems (2021).

[77] Tao Shen, Jie Zhang, Xinkang Jia, Fengda Zhang, Gang Huang, Pan Zhou, Kun Kuang, Fei Wu, and Chao Wu. 2020. Federated mutual

learning. (2020). arXiv:2006.16765 [cs.LG]

[78] Nir Shlezinger, Mingzhe Chen, Yonina C. Eldar, H. Vincent Poor, and Shuguang Cui. 2021. UVeQFed: Universal Vector Quantization for

Federated Learning. IEEE Transactions on Signal Processing (2021).

[79] Egor Shulgin and Peter Richtárik. 2024. Towards a Better Theoretical Understanding of Independent Subnetwork Training. In ICML.

[80] Dan Simmons. 2022. 17 Countries with GDPR-like Data Privacy Laws. https://insights.comforte.com/countries-with-gdpr-like-data-

privacy-laws. Accessed: 2023-12-06.

[81] Abhishek Singh, Praneeth Vepakomma, Otkrist Gupta, and Ramesh Raskar. 2019. Detailed Comparison of Communication Eiciency

of Split Learning And Federated Learning. (2019). arXiv:1909.09145

[82] Karan Singhal, Hakim Sidahmed, Zachary Garrett, Shanshan Wu, John Rush, and Sushant Prakash. 2021. Federated Reconstruction:

Partially Local Federated Learning. In NeurIPS.

[83] Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, and Martin A. Riedmiller. 2015. Striving for Simplicity: The All Convolu-

tional Net. In ICLR.

[84] Sebastian U Stich. 2018. Local SGD Converges Fast and Communicates Little. (2018). arXiv:1805.09767 [cs.DC]

[85] Alysa Ziying Tan, Han Yu, Lizhen Cui, and Qiang Yang. 2023. Towards Personalized Federated Learning. IEEE Transactions on Neural

Networks and Learning Systems (2023).

[86] Yue Tan, Guodong Long, Lu Liu, Tianyi Zhou, Qinghua Lu, Jing Jiang, and Chengqi Zhang. 2022. FedProto: Federated Prototype

Learning across Heterogeneous Clients. In AAAI.

[87] Chandra Thapa, Mahawaga Arachchige Pathum Chamikara, Seyit Camtepe, and Lichao Sun. 2022. SplitFed: When Federated Learning

Meets Split Learning. In AAAI.

[88] Nguyen Truong, Kai Sun, Siyao Wang, Florian Guitton, and Yike Guo. 2021. Privacy Preservation in Federated Learning: An Insightful

Survey From The GDPR Perspective. Computers & Security (2021).

[89] Valeria Turina, Zongshun Zhang, Flavio Esposito, and Ibrahim Matta. 2020. Combining Split and Federated Architectures for Eiciency

and Privacy In Deep Learning. In CoNEXT.

[90] Saeed Vahidian, Mahdi Morafah, and Bill Lin. 2021. Personalized Federated Learning by Structured and Unstructured Pruning under

Data Heterogeneity. In IEEE International Conference on Distributed Computing Systems (ICDCS) Workshops.

[91] Praneeth Vepakomma, Otkrist Gupta, Tristan Swedish, and Ramesh Raskar. 2018. Split Learning for Health: Distributed Deep Learning

Without Sharing Raw Patient Data. (2018). arXiv:1812.00564 [cs.DC]

[92] Dingzhu Wen, Ki Jun Jeon, and Kaibin Huang. 2022. Federated Dropout - A Simple Approach for Enabling Federated Learning on

Resource Constrained Devices. IEEE Wireless Communications Letters (2022).

[93] Herbert Woisetschläger, Alexander Isenko, Ruben Mayer, and Hans-Arno Jacobsen. 2023. FLEDGE: Benchmarking Federated Machine

Learning Applications in Edge Computing Systems. (2023). arXiv:2306.05172

[94] Cameron R. Wolfe, Jingkang Yang, Fangshuo Liao, Arindam Chowdhury, Chen Dun, Artun Bayer, Santiago Segarra, and Anastasios

Kyrillidis. 2024. GIST: Distributed Training for Large-Scale Graph Convolutional Networks. Journal of Applied and Computational

Topology (2024).

[95] Kok-Seng Wong, Manh Nguyen-Duc, Khiem Le-Huy, et al. 2023. An Empirical Study of Federated Learning on IoT-Edge Devices:

Resource Allocation and Heterogeneity. (2023). arXiv:2305.19831

[96] Chuhan Wu, Fangzhao Wu, Lingjuan Lyu, Yongfeng Huang, and Xing Xie. 2022. Communication-Eicient Federated Learning via

Knowledge Distillation. Nature Communications (2022).

ACM Trans. Model. Perform. Eval. Comput. Syst.

https://doi.org/10.1145/3460120.3485259
https://ieeexplore.ieee.org/document/9464278
https://proceedings.mlr.press/v162/pillutla22a.html
https://proceedings.mlr.press/v162/pillutla22a.html
http://arxiv.org/abs/1912.12115
http://arxiv.org/abs/1912.12115
https://arxiv.org/abs/1912.12115
https://openreview.net/forum?id=LkFG3lB13U5
https://doi.org/10.1109/ICDM.2010.127
https://doi.org/10.1016/j.comnet.2022.109380
https://doi.org/10.1109/TNNLS.2021.3129371
https://doi.org/10.1109/TNNLS.2021.3129371
https://doi.org/10.1109/TNNLS.2020.3015958
https://doi.org/10.1109/TNNLS.2020.3015958
https://arxiv.org/abs/2006.16765
https://arxiv.org/abs/2006.16765
https://arxiv.org/abs/2006.16765
https://doi.org/10.1109/TSP.2020.3046971
https://doi.org/10.1109/TSP.2020.3046971
https://openreview.net/forum?id=XUc29ydmLX
https://insights.comforte.com/countries-with-gdpr-like-data-privacy-laws
https://insights.comforte.com/countries-with-gdpr-like-data-privacy-laws
http://arxiv.org/abs/1909.09145
http://arxiv.org/abs/1909.09145
https://arxiv.org/abs/1909.09145
https://proceedings.neurips.cc/paper/2021/hash/5d44a2b0d85aa1a4dd3f218be6422c66-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/5d44a2b0d85aa1a4dd3f218be6422c66-Abstract.html
http://arxiv.org/abs/1412.6806
http://arxiv.org/abs/1412.6806
http://arxiv.org/abs/1805.09767
https://arxiv.org/abs/1805.09767
https://doi.org/10.1109/TNNLS.2022.3160699
https://doi.org/10.1609/aaai.v36i8.20819
https://doi.org/10.1609/aaai.v36i8.20819
https://doi.org/10.1609/aaai.v36i8.20825
https://doi.org/10.1609/aaai.v36i8.20825
https://doi.org/10.1016/j.cose.2021.102402
https://doi.org/10.1016/j.cose.2021.102402
https://doi.org/10.1145/3386367.3431678
https://doi.org/10.1145/3386367.3431678
https://doi.org/10.1109/ICDCSW53096.2021.00012
https://doi.org/10.1109/ICDCSW53096.2021.00012
http://arxiv.org/abs/1812.00564
http://arxiv.org/abs/1812.00564
https://arxiv.org/abs/1812.00564
https://doi.org/10.1109/LWC.2022.3149783
https://doi.org/10.1109/LWC.2022.3149783
https://arxiv.org/abs/2306.05172
https://arxiv.org/abs/2306.05172
https://arxiv.org/abs/2306.05172
https://doi.org/10.1007/s41468-023-00127-8
https://doi.org/10.48550/arXiv.2305.19831
https://doi.org/10.48550/arXiv.2305.19831
https://arxiv.org/abs/2305.19831
https://www.nature.com/articles/s41467-022-29763-x
https://www.nature.com/articles/s41467-022-29763-x

Review and Comparative Evaluation of Resource-Adaptive Collaborative Training for Heterogeneous Edge Devices • 29

[97] Di Wu, Rehmat Ullah, Paul Harvey, Peter Kilpatrick, Ivor T. A. Spence, and Blesson Varghese. 2022. FedAdapt: Adaptive Oloading for

IoT Devices in Federated Learning. IEEE Internet of Things Journal (2022).

[98] Chenhao Xu, Youyang Qu, Yong Xiang, and Longxiang Gao. 2023. Asynchronous Federated Learning on Heterogeneous Devices: A

Survey. Computer Science Review (2023).

[99] Wenyuan Xu, Weiwei Fang, Yi Ding, Meixia Zou, and Naixue Xiong. 2021. Accelerating Federated Learning for IoT in Big Data

Analytics With Pruning, Quantization and Selective Updating. IEEE Access (2021).

[100] Mark Xue and Julien Freudiger. 2019. Designing for Privacy. https://developer.apple.com/videos/play/wwdc2019/708. Accessed:

2023-11-11.

[101] Liping Yi, Gang Wang, Xiaoguang Liu, Zhuan Shi, and Han Yu. 2023. FedGH: Heterogeneous federated learning with generalized

global header. In ACM International Conference on Multimedia.

[102] Ashkan Yousefpour, Shen Guo, Ashish Shenoy, Sayan Ghosh, Pierre Stock, Kiwan Maeng, Schalk-Willem Krüger, Michael G. Rabbat,

Carole-Jean Wu, and Ilya Mironov. 2023. Green Federated Learning. (2023). arXiv:2303.14604 [cs.DC]

[103] Binhang Yuan, Cameron R. Wolfe, Chen Dun, Yuxin Tang, Anastasios Kyrillidis, and Chris Jermaine. 2022. Distributed Learning of

Fully Connected Neural Networks using Independent Subnet Training. Proceedings of the VLDB Endowment (2022).

[104] Mikhail Yurochkin, Mayank Agarwal, Soumya Ghosh, Kristjan Greenewald, Nghia Hoang, and Yasaman Khazaeni. 2019. Bayesian

Nonparametric Federated Learning of Neural Networks. In ICML.

[105] Jie Zhang, Song Guo, Xiaosong Ma, Haozhao Wang, Wenchao Xu, and Feijie Wu. 2021. Parameterized Knowledge Transfer for

Personalized Federated Learning. In NeurIPS.

[106] Shiqiang Zhang, Zihang Zhao, Detian Liu, Yang Cao, Hengliang Tang, and Siqing You. 2025. Edge-assisted U-shaped split federated

learning with privacy-preserving for Internet of Things. Expert Systems with Applications (2025).

[107] Xiang Zhang, Junbo Jake Zhao, and Yann LeCun. 2015. Character-level Convolutional Networks for Text Classiication. In NeurIPS.

[108] Yue Zhao, Meng Li, Liangzhen Lai, Naveen Suda, Damon Civin, and Vikas Chandra. 2018. Federated Learning with Non-IID Data.

(2018). arXiv:1806.00582 [cs.DC]

A Experimental setup

In this section we detail the experimental setup used throughout the evaluation phase of the paper.
Software stack: We implemented all the FL algorithms using the Flower FL framework [8], with Pytorch as the
deep learning library. In order to be able to test the SL algorithms, we also developed an extension to Flower,
which is available on https://github.com/sands-lab/slower. For managing and automating the deployment of FL
algorithms to the physical devices, we developed a custom library, which uses Kubernetes for deploying clients
as containers on the devices.
Data partitioning: Throughout the paper we used the CIFAR10, CIFAR100, and CINIC10 dataset. For the CIFAR10
and CIFAR100 we use the 60000 images composing both the training and test set, i.e., we do not diferentiate
between the train and test partition in the original dataset. Conversely, in the CINIC10 dataset, we use the 90000
images in the train dataset. When constructing the client datasets, we irst divide the original dataset into �
partitions. Then, we reserve 15% of the so-obtained dataset partitions for validation and 15% for the test dataset.
For algorithms that require an additional public dataset, we use a random sample of 1000 images from the

CIFAR100 dataset as a public dataset.
The experiments in Section 5.3, Section 5.4, and Section 5.2 involved 21 clients grouped into three tiers: low-

capacity, medium-capacity, and high-capacity, with seven clients in each tier. In contrast, the experiments in
Section 5.5 were conducted with 20 clients.
Models: We use a slightly adapted version of the fully convolutional model referred to as łModel C” in [83],
which has been applied also in FL experiments, e.g. [13]. The exact model architecture is stated in Table 11. We
employed three diferent model architectures derived from the base model (Large) by reducing the number of
channels in convolutional layers. Each client was assigned to one of the three available classes of devices, i.e.
low-, medium-, and high-end, and depending on this membership, trained a Small (52823 parameters), Medium

(313786 parameters), or Large (1249642 parameters) model. Considering that all three models have the very same
structure, we can directly use them also for PT approaches.

ACM Trans. Model. Perform. Eval. Comput. Syst.

https://doi.org/10.1109/JIOT.2022.3176469
https://doi.org/10.1109/JIOT.2022.3176469
https://doi.org/10.1016/j.cosrev.2023.100595
https://doi.org/10.1016/j.cosrev.2023.100595
https://doi.org/10.1109/ACCESS.2021.3063291
https://doi.org/10.1109/ACCESS.2021.3063291
https://developer.apple.com/videos/play/wwdc2019/708
https://dl.acm.org/doi/10.1145/3581783.3611781
https://dl.acm.org/doi/10.1145/3581783.3611781
https://doi.org/10.48550/arXiv.2303.14604
https://arxiv.org/abs/2303.14604
https://www.vldb.org/pvldb/vol15/p1581-wolfe.pdf
https://www.vldb.org/pvldb/vol15/p1581-wolfe.pdf
https://proceedings.mlr.press/v97/yurochkin19a/yurochkin19a.pdf
https://proceedings.mlr.press/v97/yurochkin19a/yurochkin19a.pdf
https://proceedings.neurips.cc/paper/2021/hash/5383c7318a3158b9bc261d0b6996f7c2-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/5383c7318a3158b9bc261d0b6996f7c2-Abstract.html
https://doi.org/10.1016/j.eswa.2024.125494
https://doi.org/10.1016/j.eswa.2024.125494
https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html
http://arxiv.org/abs/1806.00582
https://arxiv.org/abs/1806.00582
https://github.com/sands-lab/slower

30 • B. Radovič et al.

Table 11. Employed model architectures. All convolutional layers are followed by a ReLU activation.

Layer Kernel size Stride Padding
Output channels

Small Medium Large

Conv2D 3 × 3 1 1 20 48 96

Conv2D 3 × 3 1 1 20 48 96

MaxPool2D 3 × 3 2

Conv2D 3 × 3 1 1 39 96 192

Conv2D 3 × 3 1 1 39 96 192

MaxPool2D 3 × 3 2 1

Conv2D 3 × 3 1 1 39 96 192

Conv2D 3 × 3 1 1 39 96 192

Conv2D 1 × 1 1 1 10 10 10

AvgPool2D 6 × 6 1 0

Table 12. Hyperparameters search space. We bold the values that yield the highest accuracy for two local training epochs.
All the algorithms also used weight decay 3e-4 and gradient norm clipping 4.0. � is the batch size, � the learning rate, and �
the FedProx [53] regularization strength.

Algorithm
Tuned

hyperparameters
Values

Constant
hyperparameters

FedAvg [58]
�

�

[0.02, 0.05, 0.1]
[8, 12, 16]

/

FD [45]
Temperature
KD strength

[0.5, 1.0, 2.0, 4.0]
[0.1, 0.2, 0.5]

�=8, �=0.05

FedMD [52]
Public dataset size

Temperature
[1000, 4000]
[0.5, 1.0, 2.0]

�=12, �=0.05

FedDF [56]
Server training epochs
Weight predictions

[1, 2]
[true, false]

�=8, �=0.05
�=0.001

Federated
Dropout [13]

�

�

[0.05, 0.1]
[8, 12, 16]

/

HeteroFL [23]
�

�

[0.05, 0.1]
[8, 12, 16]

/

LgFedAvg [54]
�

�

[0.05, 0.1]
[8, 12, 16]

/

Hyperparameter tuning: for all the algorithms we performed a grid search over possible values of hyper-
parameters to determine the coniguration, that achieves the highest accuracy. We spent approximately the
same amount of time in hyperparameter tuning for all the algorithms to provide a fair comparison (≈1 day for
each method using 42 CPUs and 2 GPUs). We report in Table 12 the exact hyperparameters we tested for every
algorithm. For optimization, in all the algorithms we used the plain SGD optimizer with no momentum. We used
SGD as it does not incur additional memory usage by the client such as optimizer state.

ACM Trans. Model. Perform. Eval. Comput. Syst.

Review and Comparative Evaluation of Resource-Adaptive Collaborative Training for Heterogeneous Edge Devices • 31

A.1 Additional comments about algorithm implementation

• FD: We were not able to reproduce the results stated in [45]. We contacted the authors to ask for clariication
but received no answer. Also, the algorithm stated in the paper does not consider cases in which some
clients are missing certain target labels and cases in which a client fails to upload its logits to the server.
We avoid both these issues by computing the global logits for a class as the average logits across all clients,
in place of the average across all clients excluding the target client. In the performed experiments, this
update does not degrade the performance of the model.
• FedKD: We ignore the adaptive hidden loss (Equation 5. in [96]), as it primarily targets transformer-like
architectures. Regarding the architecture of the globally shared model, we used a model with 10% of the
original ilters (that is, the convolutional layers in Table 11 have either 9 or 19 ilters). While the results
could be improved by using a larger model, this would conlict with the constraints of the low-capacity
clients. We did not implement the Dynamic Gradient Approximation extension as it is orthogonal to the
training task.
• LgFedAvg: We assume that the model can be divided into an encoder, which we set to comprise the irst
ive convolutional layers, and a classiication head, comprising the remaining two convolutional layers.
To be able to run the model across all clients, we set the parameters of the inal two layers to be equal to
the ones of the Small model. The irst four layers of the encoder are equal to the architectures stated in
Table 11, while the last encoder layer has in all cases 39 output ilters because its output needs to be passed
to the classiication head.
• FedMD: we did not include the pre-training stage performed on the public dataset. This step is orthogonal
to the remainder of the algorithm and might easily be integrated into other algorithms as well. During the
KD stage, we used the KL loss with temperature 1.0.
• SplitFed: We divide the model into a client-side (irst two convolutional layers) and a server-side segment,
comprising the remaining ive layers. We train a Large model as we assume that the server has no compu-
tational constraints. Also, we reduce the number of ilters in the irst convolutional layer to 64, so that the
irst two layers have approximately the same number of parameters of the Small model. We implemented
the SFLV1 algorithm as in the original paper [87] and an extension that uses the U-shaped architecture. In
this case, the clients contain, apart from the initial layers as in the plain version, also the uppermost layer,
and these layers are averaged across all devices after every server training round.
• Partial training: For PT approaches (HeteroFL and Federated Dropout) we found that gradient clipping
has a vital role, as without it small models (e.g. model obtained by dropping 80% of the channels) easily
diverge during local training. This conirms the statement made in [23], wherein authors state that łgradient
clipping stabilizes the optimization”. Therefore, in partial training approaches we decrease the gradient
norm clipping parameter to 1.0 whenever the model dropout rate is lower than 1.0.
• Server-side data aggregation: For algorithms that support heterogeneous models and involve some form
of averaging on the server (FedMD, FedDF), we tried weighting the data sent by the client with the weights
0.5 (Large model), 0.35 (Mediummode), and 0.15 (Small model). We did not optimize these values, but rather
made an educated guess and picked a reasonable choice in which more powerful models are given more
weight. This adoption consistently outperforms the non-weighted case, though the diference is typically
limited to 0.5 − 1.0%.

B Results on other vision datasets

We report the accuracy w.r.t. dataset size for the CIFAR100 dataset in Figure 8 and for the CINIC dataset in Figure 9.
The results for the CIFAR100 dataset are in line with the ones discussed in Section 5.3, with SL consistently
yielding the highest accuracy and a signiicant gap between model-sharing algorithms and algorithms, that do

ACM Trans. Model. Perform. Eval. Comput. Syst.

32 • B. Radovič et al.

400 800 1200 1600 2000
0.00

0.10

0.20

0.30

0.40

0.50

Large Model

400 800 1200 1600 2000

Medium Model

400 800 1200 1600 2000

Small Model
cFedAvg

FD

FedDF

FederatedDropout

FedKD

FedMD

HeteroFL

LgFedAvg

SplitFed v1

SplitFed v2

Size of client training dataset

A
cc
u
ra
cy

Fig. 8. Average client test accuracy w.r.t. the training dataset size and model size on the CIFAR100 dataset. The experiment is
equivalent to the one described in Figure 2.

not share model parameters. The FedDF algorithm never converges, as two local training epochs are not enough
for the training to produce good enough models. Note also, that the cFedAvg algorithm consistently outperforms
the HetefoFL algorithm for the Small model case, conirming the fact, that PT algorithms have diiculties training
very small models as observed in Section 5.5.

In contrast to the results obtained on the CIFAR10 and CIFAR100 datasets, in the case of the CINIC dataset
there no longer is a clear diference between stateful and stateless clients. However, the individual trends for the
algorithms are consistent with the ones discussed in Section 5.2:

• HeteroFL: the algorithm consistently yields the best accuracy for the Large and Medium models, however,
the eiciency of the algorithm decreases for large � in the low-capacity cluster training the Small model;
• cFedAvg: the baseline provides relatively high accuracy in all data settings, as it is always among the three
algorithms with the highest accuracy;
• FedKD: the algorithm yields unsatisfactory results when � is small, however, the performance of the
algorithm quickly improves as � increases. In the end, the accuracy of the FedKD algorithm in the low-
capacity cluster is the highest for any � ≥ 1500, while in the mid- and high-capacity cluster, the algorithm
is among the three algorithms with the highest accuracy for � ≥ 2000.
• FedDF: the algorithm does not converge for � = 500;
• FD: The accuracy of this algorithm is low for small dataset sizes, however, the performance improves so
that in the end, in the low-capacity cluster it is the third best option for � = 2500;
• FedMD: the accuracy of this algorithm is the best among the stateful clients for � = 500.

The reduced discrepancy in accuracy between stateful and stateless algorithms can be attributed to the unique
properties of the CINIC dataset. CINIC extends the CIFAR10 dataset by including images from ImageNet, resulting
in a noisier dataset with a mix of easily classiiable and challenging images. This leads to a lesser impact of
additional data on accuracy compared to other datasets. The observation is conirmed in Table 13, where we see
that training models on individual client datasets without collaboration yields similar test accuracy for CIFAR10
and CINIC. However, when centralizing the 20 datasets and hence centrally training a model on a dataset with size
20 · 1500 = 30000, the accuracy increases by only 12.36% for the CINIC dataset, while the accuracy improvement
is more than double (26.82%) in the case of the CIFAR10 dataset. Note, that these experiments were conducted
using a traditional centralized learning approach.

ACM Trans. Model. Perform. Eval. Comput. Syst.

Review and Comparative Evaluation of Resource-Adaptive Collaborative Training for Heterogeneous Edge Devices • 33

500 1000 1500 2000 2500
0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75
Large Model

500 1000 1500 2000 2500

Medium Model

500 1000 1500 2000 2500

Small Model

cFedAvg

FD

FedDF

FederatedDropout

FedKD

FedMD

HeteroFL

SplitFed v1

SplitFed v2

Size of client training dataset

A
cc
u
ra
cy

Fig. 9. Average client test accuracy w.r.t. the training dataset size and model size on the CINIC dataset. The experiment is
equivalent to the one described in Figure 2.

Table 13. Test accuracy (in %) obtained by training a model on each of the 20 client datasets with 1500 data points each and
on the combined dataset with 30000 data points.

CIFAR10 CIFAR100 CINIC10

Private training by clients 54.29 ± 0.02 9.94 ± 0.01 55.35 ± 0.04

Centralized training with aggregated dataset 81.11 ± 0.01 46.34 ± 0.01 67.71 ± 0.01

Table 14. Summary of models used for text classification.

Embedding dimension Intermediate size Parameter count

Small model 32 48 126724
Medium model 64 96 341508
Large model 160 256 1545060

C Results on text classification task

We here present the accuracy achieved by the considered algorithms on a text classiication task. In particular,
we use the Ag-News dataset [107], which involves classifying news descriptions into one of the four available
topics, i.e., łWorld”, łBusiness”, łSports”, and łSci/Tech”.

We employ a BERT-like architectures for this task. As shown in Table 14, we construct diferent model sizes by
varying the embedding dimension (also called łhidden size”) and the intermediate size, i.e., the dimensionality of
the łintermediate” feed-forward layer in the transformer encoder. All other model coniguration is kept constant:
the number of attention heads is set to 8, the vocabulary size is set to 2000, and the number of hidden layers is set
to 6. For training, we use the Adam optimizer with the learning rate set to 2� − 4 and batch size set to 32 for all
the algorithms.

We report in Figure 10 the results with respect to the dataset size. Notably, we observe that the main conclusions
made for the image classiication tasks transfer to the discussed text-classiication setting:

ACM Trans. Model. Perform. Eval. Comput. Syst.

34 • B. Radovič et al.

500 1000 1500 2000

0.60

0.65

0.70

0.75

0.80

0.85

0.90

Large Model

500 1000 1500 2000

Medium Model

500 1000 1500 2000

Small Model

cFedAvg

FD

FedDF

FederatedDropout

FedKD

FedMD

HeteroFL

SplitFed v1

SplitFed v2

Size of client training dataset

A
cc
u
ra
cy

Fig. 10. Average client test accuracy w.r.t. the training dataset size and model size on the Ag-News dataset. The experiment
is equivalent to the one described in Figure 2.

• The SplitFed algorithms outperform all other algorithms, with SplitFed v1 demonstrating better performance
than SplitFed v2.
• In the PT family of algorithms, HeteroFL achieves signiicantly higher accuracy than Federated Dropout
for all model sizes except the Large model. Moreover, Federated Dropout yields particularly low accuracy
when using small models.
• The FedDF algorithm fails to converge when the client’s training set is too small, as the KD stage on the
server becomes detrimental if the client models are undertrained. However, this issue could be mitigated to
some extent by increasing the number of local training epochs on the clients.
• Stateful algorithms (FD, FedMD, FedKD) exhibit a signiicant accuracy drop compared to stateless ones.
• For algorithms that require a dataset on the server (e.g., FedDF, FedMD), we observe a signiicant accuracy
drop when using a dataset with diferent characteristics from the client datasets (e.g., IMDB and Reuters
datasets). The accuracy loss can be as severe as 10%. Therefore, to obtain the accuracy shown in Figure 10,
we used a subset of the Ag-News dataset as the public dataset.
• FedKD achieves very high accuracy, especially with larger datasets, and in some cases matches the per-
formance of stateless algorithms. However, in our experiments, the collectively trained model was set to
the same size as the Small model. This implies that weak clients had to train twice as many parameters
compared to the other algorithms. We use such a model as the publicly shared model because we observed
that training extremely small BERT models (e.g., with an embedding dimension of 16) is unstable with FL ś
consider for instance the diference in accuracy between training a Large and Small model with cFedAvg.
Additionally, FedKD required a very high number of training rounds to converge. For example, with dataset
sizes of 1500, FedKD took 340 server rounds to converge, whereas HeteroFL converged in just 36 rounds.15

The main diference between the text classiication and image classiication results lies in the poorer perfor-
mance of the cFedAvg algorithm compared to other stateless algorithms. This diference is particularly pronounced
when dataset sizes are small, underscoring the importance of having a large number of clients and a substantial
amount of data when training BERT-like models.

Received 22 April 2024; revised 20 September 2024; accepted 30 November 2024

15Recall, that we consider an algorithm to have converged if the average validation accuracy does not improve for four consecutive evaluation

rounds. For the text classiication task, we evaluate the global model every four training rounds.

ACM Trans. Model. Perform. Eval. Comput. Syst.

	Abstract
	1 Introduction
	1.1 Paper Methodology, Structure, Contributions

	2 Model Customization via Federated Knowledge Distillation
	2.1 FKD without External Dataset
	2.2 FKD with External Dataset Dependency
	2.3 FKD Summary

	3 Model Customization via Partial Training
	3.1 Characterization of PT approaches
	3.2 PT with Static Decomposition
	3.3 PT with Dynamic Decomposition
	3.4 Partially Local Federated Training

	4 Split Learning
	4.1 Introduction to Split Learning
	4.2 Split Learning Summary

	5 Experimental Analysis in Simulation Environment
	5.1 Experimental setup
	5.2 Baseline accuracy comparison
	5.3 Accuracy with respect to dataset size
	5.4 Impact of data heterogeneity
	5.5 Impact of client capacity

	6 Deploying the Algorithms in a Real-World Testbed
	6.1 Convergence times
	6.2 Network consumption
	6.3 Local training resource consumption

	7 Discussion
	7.1 Limitations
	7.2 Impact and Future Work

	8 Conclusion
	References
	A Experimental setup
	A.1 Additional comments about algorithm implementation

	B Results on other vision datasets
	C Results on text classification task

