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Abstract

Petri nets (PNs) are a qualitative approach to model-
ing gene regulatory networks (GRNs) that are capable of
characterising the dynamical properties of complex sys-
tems while also describing their structure with PN graphs.
In this paper we show how to construct basic building
blocks for GRNs using PNs. We present a solution to a
few known weaknesses of using conventional PNs for de-
scription of GRNs by using Coloured Petri nets (CPNs),
an extension of the ordinary PNs. We show that by using
CPNs we can create building blocks which describe the
dynamical properties of GRNs more accurately. We also
consider solving the problem of undefined kinetic data
with the use of fuzzy logic methods.

1 Introduction

Synthetic biology is a rapidly evolving field that has shown
high potential in recent years. Its state of the art methods
allow us to construct almost arbitrary DNA sequence and
therefore define the behaviour of a target biological sys-
tem. Synthetic biology methods have also shown their
potential in information processing, i.e. in the construc-
tion of biological information processing systems, which
have found many application in various fields such as
agriculture, medicine and pharmacy [2].

First step in designing a biological information pro-
cessing system is similar to its electronic counterpart, the
construction of logical scheme that defines its function-
alities. Logical scheme is afterwards translated into a bi-
ological design. When we are dealing with gene expres-
sion based logic, biological design is based on the scheme
representing genes and influences among them, i.e. gene
regulatory network (GRN). Building blocks used are strictly
dependant on the target host of information processing
systems, which defines the potential interaction rules and
chemical species. Because in vivo implementation of such
systems is time-consuming and costly, we evaluate the
preliminary behaviour and dynamics in silico, with the
aid of various computer models.

This paper is organized as follows. In Section 2 we
present the most recent approaches to GRN modeling. In
Section 3 we give the prerequisites based on which our
further approach is based: the basics of gene expression,
brief theory of Petri Nets and known weaknesses of us-
ing ordinary PN for GRN modeling. We consider the
use of Coloured Petri Nets to solve these weaknesses and
present preliminary results in Section 4. We draw con-
clusions of our current research and present directions for
future work in Section 5.

2 Related work

While there are many approaches to GRN modeling [1,
4, 8], quantitative mathematical models based on system
of ordinary differential equations (ODEs) seem to be the
most common ones. With these models detailed analysis
of the systems’ dynamics can be performed on one hand.
On the other hand accurate kinetic data must be known
for their establishment. The problem lies in the fact that
most of these parameters are often hard or even impossi-
ble to determine [9]. Construction of exact ODE models
is therefore often under question. Recently, approaches
that describe the system dynamics qualitatively and are
capable to characterise the dynamical properties of com-
plex systems without relying on accurate knowledge of
kinetic data are being studied in the context of biological
systems modeling [3]. Petri Nets (PNs) present one of
the most promising modeling tools emerging in the field
of qualitative modeling [11]. We can describe the sys-
tem behaviour by using PN formalisms and its structure
with a PN graph. While basic principles of GRNs can
be described by using ordinary PNs, different extensions
of PNs give us even greater toolset for more complex de-
scription of system dynamics [3].

Extensions of PNs are customized for the problem
set they are trying to solve. Hybrid PNs have both con-
tinuous and discrete elements, which help in describing
continuous system processes [10]. For a more quantita-
tive approach Stochastic PNs (SPNs) are used [5]. We



propose using Coloured Petri Nets (CPNs) for biological
systems modeling [6, 7].

3 Basics of gene expression and its

description with Petri Nets

Organism behaviour is defined by its hereditary material
located within its genome. Genome is encoded with two
DNA molecules, intertwined into a double helix. Each
DNA molecule is a nucleobase sequence of arbitrary length.
It connects to its counterpart DNA molecule via hydro-
gen bonds between complementary nucleobases, called
base pairs, forming a double helix. Genome is therefore
a sequence of base pairs. It can be divided into smaller
subsequences (genes), which represent the basic unit of
heredity. Each gene has a coding sequence, a promoter
and regulatory sequence. Coding sequences define the
protein that certain gene produces, while the promoter
and regulatory sequences define the conditions for the ex-
pression of the protein.

Gene expression is only possible if RNA polymerase
is present and the conditions for expression, defined by
regulatory sequence, are met. Regulatory sequences can
contain binding sites for proteins (transcription factors),
which are divided into activators and repressors. Pres-
ence of an activator induces the expression of the gene,
while presence of a repressor inhibits it. Gene expres-
sion is divided into two phases, transcription and transla-
tion. Transcription starts with RNA polymerase binding
to the promotor, and is enhanced by presence of activators
and diminished by presence of repressors. The product
of transcription is mRNA molecule which is afterwards
translated to a protein by ribosomes.

Behaviour of a biological system can be described by
gene expression dynamics. Gene expression is not nec-
essarily independent and can be regulated by products of
other genes. One gene can regulate expression of many
others. On the other hand several genes can regulate ex-
pression of only one gene. Genes and their regulation
relations form a gene regulatory network (GRN). Gene
expression dynamic is described by chemical reactions
between different chemical species in the system. Ba-
sic reactions are binding and dissociation of transcription
factors, transcription, translation and degradation. Dy-
namics of the established models are based on observed
reactions. System state is defined by concentrations of
chemical species which are changed by the execution of
each reaction.

3.1 Petri nets

Petri Nets (PNs) present a tool for studying system dy-
namics. PNs enable us to model a system by using a
mathematical description, which can be shown as a PN
graph. We can evaluate systems behaviour by analysing
PNs that serve as a model of this system. They are defined
by a 4-tuple C = (P, T, I, O), where P = {p1, p2, . . . , pn},
n > 0 is a finite set of places and T = {t1, t2, . . . , tm},

m > 0 is a finite set of transitions (P \ T = ;). The
input function I is a mapping from transition tj to a col-
lection of places I(tj), known as the input places of the
transition. It is defined as I : T ! P1. The output func-
tion O maps a transition tj to a collection of places O(tj)
known as the output places of the transition. It is defined
as O : T ! P1. Places can present multiple input or
multiple output of a transition. The numbers of occur-
rences of the place in the input and output collections are
#(pi, I(tj)) and #(pi, O(tj)), respectively.

Tokens in places serve as a precondition for firing
the transition. The number of tokens in each place is
arbitrary. Marking of a PN gives us the current posi-
tion and number of the tokens in each place. Marking
can be defined as a function o(t) : P ! N , which re-
turns the number of tokens in each place (N � 0, N 2
N) at time t. Marked PN is defined by a 5-tuple M =
(P, T, I, O, o(t)). The execution of a PN is controlled by
the transition firing. A transition tj is enabled if for all
pi 2 P , opi(t) � #(pi, I(tj)) is true. By firing enabled
transitions, the tokens are removed from the input places
and added to the output places of tj . This means that for
every transition firing, marking changes. New marking is
calculated as

o0pi
(t+ 1) = opi(t)�#(pi, I(tj)) + #(pi, O(tj))

We can denote that in matrix form. Input function is
presented as a matrix D�[i][j] = #(pj , I(tj)) and output
function as D+[i][j] = #(pj , O(tj)). Transition tj is
enabled if o(t) � ej ·D� holds, where ej is unit vector
with 1 on location j. New marking as a result of firing tj
is calculated as

o(t+ 1) = o(t) + ej · (D+ �D�).

3.2 Modeling gene regulatory networks us-

ing Petri nets

In order to model biological systems with PNs the mean-
ing of basic PN elements have to be defined, i.e. places,
transitions and tokens. We presume that transitions repre-
sent chemical reactions. Each reactions has its inputs (re-
actant) and its outputs (products). Places in PNs represent
different chemical species and tokens represent the con-
centration of these species. The reaction can occur when
the concentration of its reactants is greater than zero. This
means that there has to be at least one token in the place
which represents this reactant. Figure 1 shows a sim-
ple chemical reaction, i.e. translation. Place p1 presents
the concentration of mRNA. In the reaction of translation,
presented by transition tj , mRNA is transformed into a
protein, presented by p2. The number of input arrows
defines the amount of reactants and the number of out-
put arrows the amount of products, which are created as
a result of firing transition tj . The token in p1 presents
the presence of mRNA. Transition t1 is enabled and upon
firing, the concentration of mRNA will decrease and the
concentration of protein will increase. The marking of
our PN will change, the token will move from p1 to p2.



Figure 1: Example of a simple PN that describes translation. Place p1

presents mRNA, place p2 expressed protein and transition t1

the reaction of translation.

In formal notation the marking of PN on Figure 1 in time
t0 is o(t0) = (1, 0). Transition t1 is enabled, meaning
that upon firing, the marking will change to o(t0+�t) =
(0, 1). Transition firings in ordinary PNs takes infinitesi-
mal little time. In addition, presenting the concentrations
with tokens is limited to integer values. We therefore can-
not fully describe the change of system state, caused by
a chemical reaction. The result of a chemical reaction is
not defined only by reactant presence but also by reactant
concentration. Figure 2 presents the system state change,
as a result of multiple firing of tj .

1 2 3 4 5 6 7 8 9 10 11 12
0

1

2

3

4

5

6

7

8

9

10

11

Number of firings of transition t1

C
o

n
ce

n
tr

a
tio

n
 [
N

u
m

. 
o
f 
to

ke
n
s]

 

 

Number of tokens in place 1

Number of tokens in place 2

Figure 2: System change as a result of multiple firings of tj . Initial PN
marking is o(t0) = (6, 0). After six successive firings of
transition tj the marking changes to o(t+ 6�t) = (0, 6).

Chemical reactions often reflect the dynamics that can be
presented with non-linear-functions. Figure 2 shows that
events in ordinary PNs are discrete and changes in con-
centration increase or decrease evenly with each firing of
tj . System behaviour over time is another important as-
pect of modeling biological systems. Because time steps
in ordinary PNs are infinitesimally small, we are unable
to observe the changes as a function of time. We will
therefore need to extend the basic PNs, in order to de-
scribe the system dynamics in more details.

4 Using Coloured Petri Nets for ac-

curate gene regulatory network de-

scription

We propose using CPNs, since they offer solutions to
problems presented in Subsection 3.2. Chemical species

concentrations in ordinary PNs were described with the
number of tokens in certain places. We would like to
present concentrations as real numbers. Instead of to-
kens, concentrations will be presented within the places,
as real number values. Data structures will be used as
carriers of information. Data structures can hold arbitrary
data and no longer serve as conditions for transition fir-
ing. Data structures and their summary which hold differ-
ent kinds of data can be interpreted as different colours.
For the purposes of biological system modeling we will
use two groups of data structures. Data structures in first
group will as a result of transition firings contain changes
in concentrations of both reactants and products. These
changes in concentration depend on concentrations of re-
actants at the time of firing. Transitions, representing
chemical reactions, are therefore more complex and can
be presented as functions of input places, which change
concentrations in both input and output places. Data struc-
tures in the second group will only transfer information
about current concentration. Transitions in this case will
only serve as buffers and will not present any chemical
reactions.

4.1 Redefining the transitions on an exam-

ple

The definition of transition changes in CPNs, no longer
depend on presence of tokens, but rather on state of input
places. This enables us to define more complex transi-
tions and set more complex conditions for transition fir-
ings. With this extension non-linear dependency can be
achieved, since transition can be defined as an arbitrary
function. Changes in concentrations are no longer dis-
crete, since data structures can carry data presented with
real numbers. By using CPNs we can rebuild the exam-
ple from Subsection 3.2 using extended transitions and
places (see Figure 3). Basic CPN example is built us-
ing places P1 and P2 which carry the information about
current concentrations ([c1],[c2]), transition t1, defined by
function f(c1) and data structures ”c1��” and ”c2++”,
which present the change of concentrations in P1 and P2

when t1 is fired.

Figure 3: Example of CPN, presenting translation. Places P1 and
P2 include data about mRNK and protein concentrations
([c1],[c2]), respectively. Transition t1 is a function, repre-
senting the chemical reaction of translation. Data structures
c1 �� and c2 ++ carry the changes of concentrations as a
result of transition firing.

Transition t1 presents the protein translation, which
can be described by the function:



f(c1) =
1

1 + c1
ktransl

, (1)

where c1 is the concentration in P1 and ktransl kintetic
parameter for translation reaction. While we are using
extended PNs it is possible to use this function within the
t1 transition. Result of a function in t1 are changes in
concentrations c1 � � and c2 + + in places P1 and P2.
In order to see how system behaves as a function of time,
we need to explain how time is interpreted in CPN.

4.2 Time in Coloured Petri Nets

The timings of transition firings can be controlled with
the introduction of time into CPNs. CPN dynamics are
therefore not described by transition firings, but by the
time values that define transition firing timings. Time be-
tween two firings is no longer infinitesimally small. This
functionality enables us to calculate the results of transi-
tions in time steps, which are now measurable. Actual
time evolution of certain species concentrations can be
obtained in these manners. Note that transitions in CPNs
can include certain functions. E.g., transition t1 in Fig-
ure 3 includes the function f(c1) which is defined by the
Equation 1. Changes in concentration in places for each
time step are therefore calculated according to these func-
tions. The results for our scenario are presented in Figure
4.
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Figure 4: Evolution of system state as a result of function t1. Ini-
tially, the concentration in P1 is high and the concentra-
tion in P2 zero. Concentration of mRNA, presented as c1 in
P1, decreases with time, while the concentration of protein,
presented as c2 in P2, increases until mRNA concentration
reaches zero.

5 Conclusion

Our current results of using CPNs for modeling GRNs
serve as starting points for future research. We described
a basic model of a simple biological system with only one
reaction. To describe the dynamics of a complete GRN,
we will have to extend existing CPNs in order to sup-
port the modeling of more complex biological reactions
with the possibility of vaguely defined kinetic rates. Our

example transition was presented by a function, that de-
scribes the reaction of translation. This function was de-
fined as an equation that used a kinetic parameter. As we
have mentioned, these kinetic parameters are often lack-
ing. In future research we intend to tackle the problem
of not knowing accurate kinetic data by using fuzzy logic
methods.
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