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Abstract

Gene regulatory networks present a complex logic con-
trol of the cellular metabolism in all living organisms.
Over the last decade, study of their synthetic implemen-
tation has made an intensive use of accurate modeling
and simulation approaches. These are essentially based
on the models of cellular activity as dynamical systems
defined by complex biochemical processes and reactions,
which are described by various numerical parameters.
Unfortunately, most of these parameters are usually un-
known. In this paper we present a parameter estimation
method using extended Kalman filtering and x? statisti-
cal test for model validation. The extended Kalman fil-
tering approach is suitable for many improvements in the
meaning of computational complexity and model verifi-
cation in the contrast to other state of the art methods.
As a reference model, we propose a synthetic gene reg-
ulatory network, which exhibits an oscillatory behavior
for a different range of parameters.

1 Introduction

In the last decade, synthetic biology has reached impres-
sive achievements, due to the increasing interest in using
its techniques in applied clinical sciences and embedded
therapy such as clinical immunology, gene therapy and
many other applications from various scientific areas. A
central point in synthetic biology is the engineering ap-
proach of the system’s objectives by an accurate mathe-
matical modeling of gene expression processes and gene
regulatory networks (GRNs). The goal of modeling is to
design a biological system by imitating its functionality
in a formal mathematical way. An impressive develop-
ment in this modeling stage came up from control theory,
which is based on the presentation of GRNs as complex
control systems. Many mathematical constructs can be
used for modeling and simulating the reaction networks
and gene expression in this context. Typical examples
are deterministic and stochastic approaches, which were
studied vastly in the literature [15, 16].

Deterministic models are commonly used by biolo-
gists, where the biochemical reactions, which define the
quantitative aspects of the underlying system, are pre-
cisely described with deterministic (non)linear ordinary
differential equations (ODE). With this approach the prob-
lem of values of the reaction-kinetic rates may arise, be-
cause parameters that define ODE models are often un-
known. Hence parameter fitting is required for a success-
ful model definition. A correct estimation of these values
can result in a more complete model for the validation of
several biological applicable systems such as molecular
drug delivery. Furthermore, a precise model affinity is
crucial, if we want to develop future computational plat-
form inside the cellular environment [15, 16].

In this paper we present the basic approach of ex-
tended Kalman filtering and x? test for estimation and
evaluation of unknown parameters in biological systems
models. Section 2 presents the related work of parameter
estimation techniques. Section 3 describes the extended
Kalman filtering approach and the x? statistical test for
models validation. An example of synthetic gene net-
work with some unknown parameters values is then pre-
sented in section 4 as a possible model for investigation
of described method. Finally, possible improvements and
suggestions for further work are introduced in section 5.

2 Related Work

The extended Kalman filter has become a de-facto stan-
dard for parameter estimation in control theory and in
this paper we propose its application for estimating reac-
tion rates and kinetic constants in synthetically designed
GRNs. The main disadvantage of the state-of-the-art meth-
ods is their computational complexity, when applied to
models with high number of unknown parameters. Typ-
ically, a model representation of DNA based logic gates,
implemented with GRNS, could hide hundred of unknown
kinetic constants. An approach with extended Kalman fil-
tering seems to decrease computational complexity, but a



model validation is still necessary [10]. An additional
improvement of the computational complexity of param-
eter estimation may come from modeling synthetic GRNs
with synthetic DNA binding proteins such as zinc-fingers
or TAL effectors, which own high similarity in kinetics
and therefore could drastically reduce the unknown pa-
rameter space.

In the last decade many parameter estimation appro-
aches were proposed, but no standard has been actually
defined, because of the intrinsic uncertainty of the un-
derlying biological systems. All presented methods have
to face with nonlinear constraints implicit in the ODE
models. In [2], some known parameters are used for
the first approximation, based on assumption of correct-
ness of the underlying model. Some parameter estima-
tions come out with several order of magnitude of differ-
ence, but the fitting evaluation is still acceptable. This
”sloppiness” is a common result in many techniques and
some authors believe that this is the reason for the diffi-
culties in the nonlinear parameter estimation [9, 10]. In
[2, 14] the Levenberg-Marquardt method is used to es-
timate the parameters’ values and a statistical verifica-
tion is performed to check the model congruence with
the experimental measures. In addition, the promoter sta-
bility behavior is considered. A novel approach using a
Bayesian inference technique with an a posteriori anal-
ysis of parameter contribution to the model, is shown in
[3, 20]. An interesting statistical inference of parameters,
that uses noisy microarray data is presented in [4]. An
adapted Prediction Error Method for kinetic parameter
identification is used in [5]. But the main contributions
from control theory in this matter comes from the state
estimation techniques by state observers methods and ex-
tended Kalman filtering approach [6, 10, 11, 17]. Re-
cently, a comparison of the performance of the extended
Kalman filter and the nonlinear least squares fit is stud-
ied in [7]. A novel approach with particle filter in con-
trast with Kalman is described in [12]. A comparison be-
tween Gauss-Newton iteration method and the weighted
linear least squares, considering rational reaction rates,
is performed in [21]. At last a comprehensive review
of metaheuristics approaches such as simulated anneal-
ing and evolutionary genetic algorithms is described in
[19].

3 Extended Kalman Filtering

Our problem domain can be generally formulated in a
system of differential equations of the form:
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where x is the state vector, commonly of chemical spe-
cies, u is the input signal vector that may represent envi-
ronmental constraints, 6 is an unknown vector of param-
eters’ constants, f is the derivate function of state varia-
tion, w is the process noise, y;:) is a vector of experimen-
tal measurements performed for p different quantities at
discrete time ¢ (k = 1,2, ..., s), h is the output function
and v represents the measurements’ noise. 6y and x( are
referred to the initial estimation of parameters and states
at time tg. Both w and v are assumed to be Gaussian
random variables with zero mean and covariance matrix
() and R respectively. Unknown parameters 6 are com-
monly the protein degradation rates, kinetic rates of tran-
scription factors and the association (k,,) and dissocia-
tion (k.g) rates of enzymatic compounds.

The extended Kalman filter is a recursive method for
estimating the state of a nonlinear system. According to
[10, 18]!, we need to define the initial conditions of the
system, precisely the initial estimate of x( and error co-
variance P

)A(OJr = E{X()},
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where the exponent sign + is referred to the evaluation
a posteriori. Now we can start to evaluate the equations
of the extended Kalman filter throughout discrete time in-
tervals {t1,t2, ..., ts }
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where Fj_, and Hy are Jacobians of f and h respec-
tively, evaluated in previous a posteriori estimations f(ﬁ_l.
To prevent the output of the filter )22' in being used out-
side its values’ range, some constraint must be assumed
during filtering evaluations [10]. This is a typical instance
when we are dealing with concentrations of certain pro-
teins inside the cell. A physical limit is defined and must
be considered [1]. In [10], this consideration is presented
as an optimization problem. We omit the formulas deriva-
tion and we just present the final result, which we will use
further in this paper:

= argmin(xp1 — % )7
(PH) " H(xpg1 — &2‘+1)7

X1
)
subject to Dxy41 < dg41.

At this point an algorithm can be written by following the
stages from equations 2 to 3e repeatedly for every time

'We refer to [10, 18] for the complete equations’ descriptions and
derivations of the extended Kalman filter.



step tx, k = 1,2,...,s. If the estimation fcz suddenly
does not satisfy the required constraints, the equation 4
may be used instead of 3d.

Unfortunately the extended Kalman filter can some-
times diverge or divert results estimations. Therefore an
empirical test must be performed to check the correctness
and reliability of estimated values. The most simple ap-
proach is suggested in [10]. Let x4 (¢x) be the solution
of the system described in equation 1. Then a statistical
test 2 can be constructed from the following rearrange-
ment:

Vi =yr — hy (x(tk)), (5)
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If the real variance o2, which is equal to the diagonal
value of the covariance matrix R, belongs to the same
interval as its constructed estimation &1-2 in equation 7,
then we have a high probability that the result estimation
X4, (tx) also presents a legitimate solution for unknown

parameter set 6.

4 Results

As a reference model we propose a synthetic gene regu-
latory network, which results in an oscillatory behavior,
similarly as implemented in [8]. A brief scheme of the
network is shown in Fig. 1.
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Figure 1: A repressilator circuit implemented with a regulatory repres-
sor chain of three synthetic DNA binding proteins (repres-
sors) i.e. zinc fingers, and a reporter protein i.e. green flu-
orescent protein - GFP. Its main advantage compared to the
model presented in [8], is its scalability potential, i.e. num-
ber of repressors can be increased straightforwardly. A suc-
cessful oscillatory response is though achieved only with odd
number of repressors binding sites.
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A model of the gene network presented in Fig. 1, can
be fully described by a system of reaction network

pZnf, + RNAP 2
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where pZnf, presents free, pZnf} activated and pan; re-
pressed promoter state of the i-th zinc finger gene, nRNA;
presents the messenger RNA, ZnfR; the synthesized zinc
finger protein, which behaves as a repressor and RNAP
RNA polymerase initiator. Operation ¢ — 1 is performed
modulo n, where n is the number of stages (Fig. 1 presents
a scenario where n equals 3).

In order to present the model in the form of equation
1, a system of differential equations must be derived from
chemical reactions. An example of simple equation of a
zinc finger protein could be

d[ZnfR;]

S = K [mRNAG + a [pZaf ]

— ki [paniH] [anRi] — kap [anRi].

15)

Parameters that need to be evaluated are clearly seen
in the ODE presentation. The association and dissoci-
ation kinetic constants of zinc fingers and RNA poly-
merase (RNAP) can be experimentally measured with sur-
face plasmon resonance (SPR) technique (results are sh-
own in Table 1). The transcription and translation rate
constants (k;, and k;;) of gene expression are on the other
hand, as many other factors such as dimerization and phos-
phorilation rates, very difficult or even impossible to eval-
uate experimentally. Estimation of such parameters can
be performed with the procedure described in equations
3a-3e.

parameter | measured | reference
Kon 56 uM~ts71 [13]
Ko 0251 [13]
k, 0.031 pM st [22]
kq 0.0002 s~ 1 [22]

Table 1: Experimentally measured parameter values of association and
dissociation constants for T7 RNA polymerase and several
zinc-finger DNA binding proteins in E. coli.

5 Conclusion

We opted for extended Kalman filtering estimation tech-
nique mostly because of its advantages in computational
complexity and robustness of value estimation. A sta-
tistical test appears to be necessary when performing a
reliability validation. Approach presented in Extended
Kalman Filtering Section is used for the evaluation of un-
known parameters. According to [10], it could also be



used to validate the acceptability of the entire model.

A complete analysis and comparison of implemented
method by consideration of real experimental results from
SPR, will be a part of further studies, but successful pa-
rameter estimations are on the other hand expected shortly.
Nevertheless, a stability analysis of the established model
should also be performed to avoid the value inconsisten-
cies. Such analysis should help to define the limits of
parameters acceptance, for which the model exhibits the
expected behavior [16]. Computational complexity of
extended Kalman filtering will also be investigated with
model of repressilator, consisting of hundred or even more
repressors. Complex models with hundreds of parameters
may be in the future required for developing more com-
plex logic structures for implementation of computational
platforms based on biological systems [15].

Recent works presented many problems, which have
to be solved in order to perform x? test on the systems
with high number of parameters [10, 11]. In order to
overcome these problems, we expect to use novel ap-
proaches for parameter estimation, such as soft comput-
ing techniques, which are capable of dealing with high
dimensional spaces and high number of variables.
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