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Systematic Approach to Computational Design of
Gene Regulatory Networks with Information

Processing Capabilities
Miha Moškon and Miha Mraz, Member, IEEE

Abstract—We present several measures that can be used
in de novo computational design of biological systems with
information processing capabilities. Their main purpose is to
objectively evaluate the behaviour and identify the biological
information processing structures with the best dynamical
properties. They can be used to define constraints that allow
one to simplify the design of more complex biological systems.
These measures can be applied to existent computational
design approaches in synthetic biology, i.e. rational and auto-
matic design approaches. We demonstrate their use on a) the
computational models of several basic information processing
structures implemented with gene regulatory networks and b)
on a modular design of a synchronous toggle switch.

Index Terms—Computational Biology, Computational De-
sign, Gene Regulatory Networks, Information Processing,
Modelling and Simulation, Modular Design, Synthetic Biology.

I. INTRODUCTION

DESIGN of novel biological systems strongly relies
on computational approaches. These are based on the

establishment of various computational models which are
used to simulate in-silico dynamics of the biological sys-
tem in question. Computational design approaches can be
classified to two groups, a) rational design in a combination
with computer aided design (CAD) and b) automatic design
[1]. Rational design techniques use engineering approaches,
such as modularization, rationalization and modelling, to
build novel biological systems [2]. In CAD approaches
circuits are designed rationally with the aid of computers.
The main problem of these approaches is that human inter-
vention is vital. They sometimes require intuitive solutions.
These depend on the designer’s experience and are as
such far from being straightforward. However, many of the
first successful implementations in the field of synthetic
biology, such as the toggle switch [3] and repressilator
[4], were executed this way. Several CAD tools for syn-
thetic biology have been developed in recent years. These
tools allow the designer to rapidly establish and analyse
the computational models of a certain biological system.
Typical representatives are e.g. TinkerCell [5], COPASI [6]
and SimBiology. While these tools may be very useful in
the design process, they only help the designer with the
establishment of computational models and offer different
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types of analysis of their behaviour. However, the design
process still derives from rational design techniques and
therefore faces exactly the same problems.

Automatic approaches on the other hand try to estab-
lish the design of a biological system with a predefined
behaviour, specified by e.g. a thruth table [7], in-silico,
without any human intervention. Several more or less
successful attempts were reported recently. All of them try
to automatize the construction of biogical systems from
basic modules. However, these approaches are still in many
ways limited. Huynh et al. [8] present an approach that
aims to find the best parts from a library of modules that
will perform a given function for a fixed topology. They
compare the obtained behaviour of a given configuration
with the desired behaviour based on its steady states or the
predefined temporal profile of the system. Their approach
does not consider noise effects. The requirement for an
accurate definition of the desired behaviour, which may not
be achieved at all, can also present a major problem. More-
over, the topology needs to be fixed. Marchisio and Stelling
[7] try to find compatible modules with the steady state
separation. They do not consider effects that may be caused
by noise. Their approach is applicable only to combinatorial
circuits. Rodrigo and Jaramillo [9] evaluate the network
configurations obtained by metaheuristic search algorithms
with behaviour based fitness functions [10]. This is very
similar to an approach of Huynh et al. [8] and does not solve
the problems of the evaluators used by them. Moreover,
in Rodrigo and Jaramillo’s case each intermediate design
has to be verified with the computationally expensive
chemical simulation. This makes their approach useful only
for biological networks of a very small complexity. The
most comprehensive approach was presented by Beal et
al. [11]. It considers the logic compatibility among the
modules used, but does not consider switching, i.e. temporal
compatibility. The approach can only be applied to the
circuits with a limited functional diversity, i.e. only to
combinatorial circuits. In addition like the other approaches
presented here, it does not consider the effects that the
receiving modules might have on the sending modules, i.e.
retroactivity [12], due to the large consumption of chemical
species used as a medium between interacting modules. The
approach does not consider the stability of the modules.

Here, we introduce a systematic approach that employs
a set of computational measures in de novo design of
biological systems with information processing capabili-
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ties (BSIPs). The introduced measures aim to solve the
problems of the existing approaches. They are used to
specify the criteria that have to be considered in modular
construction of BSIPs with larger functional complexity.
The criteria can be used to verify the compatibility between
the basic modules and thus provide support for modular
design of more complex circuits. No additional verification
of the target design is needed after the constraints are
satisfied. The introduced measures are thus able to lead
the design process from the evaluation of basic modules
to the modular construction of a more complex biological
system. They can be used in combination with CAD
tools to make rational design of novel biological systems
more straightforward. The measures can be applied to a)
objectively characterize the basic modules, b) identify the
modules which are the most suitable for a certain task
and c) determine and eliminate the potential shortcomings
from the established modular design networks. After the
desired in-silico behaviour is achieved the experimental
realization of the system can be performed. The measures
can also be used as a basis for the definition of objective
functions or as evaluators of the quality of both, individual
information processing modules and established design net-
works of BSIPs that were obtained with automatic design
approaches.

In Sec. II we establish the measures and propose a set of
constraints that can be used in order to make the modular
design of novel BSIPs systems more straightforward. The
measures were established regarding two aspects. First,
we apply the characteristics that are used to describe the
behaviour of digital electronic circuits to the observed
biological systems. Second, we describe the biological sys-
tems as nonlinear dynamical systems and investigate their
asymptotic behaviour, stability and bifurcations. In Sec. III
we present the application of the introduced measures on
the models of simple gene regulatory networks representing
BSIPs and demonstrate their usage on the modular design
of a more complex system, i.e. synchronous toggle switch.
Even though our methodology is demonstrated only on the
models of gene regulatory networks, it could be easily
applied to any other BSIPs model or even to the results
obtained from their experimental realisations.

II. METHODS

In our case modular de novo design of more complex
BSIPs is executed as follows:

1) establishment of basic information processing mod-
ules,

2) characterization of basic information processing mod-
ules,

3) modular design of a target system,
4) verification of the obtained design.

The strategy mimics the rational design approach in which
some steps may have to be repeated many times before the
final solution is obtained [13], namely step 4 may often
lead to the redesign of the BSIP (step 3) or even to the
redesign of basic information processing modules (step 1).

In order to establish such a modular methodology one needs
to define ways of assessment that can be used as objective
criteria and may eventually also lead to automatic design
including verification.

We propose a BSIP should be studied from two per-
spectives, a) from an information processing perspective
and b) from a qualitative perspective. In order to use a
biological system for information processing, information
has to be bound to a certain chemical species present in
the system. The presence of a chosen chemical species can
be interpreted as different logic values. In digital electronic
circuits logic values are encoded as voltage levels, therefore
the concentrations of the chosen chemical species could
be viewed as to play a similar role. In order to asses the
dynamical properties of digital electronic circuits from an
information processing perspective the process of digital
circuit design studies logic levels, regions of uncertainty,
etc. [14], [15], [16]. Therefore, we propose to use the
following quantities in the analysis of BSIPs:
• input and output logic levels,
• input and output regions of uncertainty,
• high level, low level and maximal noise,
• noise margins,
• switching times,
• validity duration and
• input consumption.
Insights into the biological system’s asymptotic be-

haviour can be obtained with the qualitative analysis of
the Ordinary Differential Equations (ODEs) that present
its deterministic model. The system’s qualitative analysis
can lead us to the evaluation of the system’s robustness
regarding:
• the size of a limit cycle in the case of oscillatory

systems,
• the distance between the stable steady states in the

case of multistable systems and
• the distance from the bifurcation points.

A. Analysis from an information processing perspective

1) Input output logic levels: Logic levels divide the
signal, the concentrations of chemical species, used to
encode information, into a number of logic values. In binary
logic, which is for reasons of its simplicity used in the
majority of modern computer systems, we are dealing with
two logic values, 0 and 1, i.e. a low and a high level
region. These two regions are typically separated by a
region of uncertainty in which the signal does not have a
valid interpretation. If the signal is in the region of the low
logic level it can be interpreted as logic value 0. Conversely
if the signal is in the region of the high logic level, it can
be interpreted as logic value 1. In BSIPs as a contrast to
typical electronic systems logic levels can be different for
an input and output signal.

When dealing with an input signal one needs to define
the input concentration levels that bring the system’s output
species to a concentration with a valid logic interpretation.
In this context we introduce two measures, i.e. minimal high
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level input concentration, CIH(min), and maximal low level
input concentration, CIL(max). Depending on the BSIP’s
behaviour the minimal high level input concentration rep-
resents the lowest high concentration that either still keeps
the concentration of the output species low enough or
barely achieves the output species’ concentration that is
high enough to be interpreted as a valid logic value. The
same applies to the maximal low level input concentration.

When dealing with an output signal one needs to define
a concentration of chemical species that must be achieved
after a logic switch is performed. We can thus introduce
high level output concentration, COH , and low level output
concentration, COL, which present the required concentra-
tions of the species, for the signal to be interpreted as logic
value 1 or 0 respectively.

When a signal travels through the system it can be
distorted by noise effects. These influence the concentration
of the chosen species. The concentration levels that still
present a signal with a valid interpretation, are introduced
for reasons of noise influence elimination. We shall de-
note these as minimal high level output concentration,
COH(min), and maximal low level output concentration,
COL(max). They define the concentrations, that are still
interpreted as valid inputs to other, receiving, modules in
the system.

With respect to the above the input and output region of
uncertainty can be defined as UI =

(
CIL(max), CIH(min)

)
and UO =

(
COL(max), COH(min)

)
, where UI presents the

input region of uncertainty and UO the output region of
uncertainty.

2) Noise: Deviations of the signal from its desired
values are called noise and can be caused by the fluctuations
within the system, i.e. intrinsic noise, or by external influ-
ences, i.e. extrinsic noise [16]. While the noise is always
present in reality its influence on the interpretation of the
signal can be mostly eliminated with the introduction of
noise margins. Regarding the maximal noise present in the
output signal we can define the high level noise margin
as NMH = [COH(min), COH ] and the low level noise
margin as NML = [COL, COL(max)]. The minimal high
level output concentration COH(min) and maximal low level
output concentration COL(max) can be evaluated regarding
the maximal value of expected noise as

COH(min) = COH −NH , (1)

COL(max) = COL +NL, (2)

where NH presents the maximal value of expected noise
present in a high level signal and NL the maximal value of
expected noise present in a low level signal. Based on this
we shall define the maximal noise as N = max(NL, NH).

3) Switching times: In binary logic there are two types
of switches, the signal can transit from either low to
high or from high to low. The time to perform a switch
from a low to a high logic level, i.e. the time needed to
increase the concentration of the output chemical species,
can vary considerably from the time to perform a switch
from a high to a low logic level, i.e. the time needed to

decrease the concentration of the output chemical species.
We therefore define two different measures, rise time, tr,
and fall time, tf . Each of these can be measured as the time
the concentration of the output chemical species remains
within the uncertainty region after the switch has been
initiated. We can further define the maximal time to perform
any kind of switch, i.e. switching time, as ts = max(tr, tf ).

4) Validity duration: This measure is relevant only when
the signal is valid for a limited amount of time, e.g. in
oscillatory circuits the signal changes due to the nature of
the circuit itself. Similar to switching times we can measure
the time the signal has a valid interpretation after the switch
has been performed. In this way we can determine the
validity duration of a high level signal, tvH , and the validity
duration of a low level signal, tvL . Validity duration can
then be determined as tv = min(tvH , tvL).

5) Input consumption: When designing more complex
BSIPs the input consumption, CI , of an observed biological
system has to be taken into account. The consideration
of input consumption is highly important especially when
using the same chemical species, i.e. the same output to
drive several receiving modules, i.e. when the fan-out of the
system is larger than 1. As a certain amount of chemical
species is sequestrated by e.g. the promoter of the receiving
module the concentration of the chemical species that is
used as an input to that module cannot be used as an
input to some other module at the same time. Moreover,
in certain cases the receiving module may also affect the
behaviour of the sending module, e.g. when using the
output of the sending module also as its feedback input.
This phenonenom, which is tightly correlated with the input
consumption, is known as retroactivity and needs to be
considered in the modular design of biological systems
[12].

B. Analysis from a qualitative perspective

Qualitative analysis of biological systems can be per-
formed regarding their asymptotic behaviour, i.e. behaviour
that is achieved gradually without the modification of exter-
nal inputs [17], [18]. In order to perform a qualitative anal-
ysis, it is preferable that the biological system is described
with a deterministic model that is established with a set of
ODEs. The qualitative analysis can be performed through
the stability and bifurcation analysis on the phase space
of ODEs that describe the concentration trajectories of the
observed chemical species. Stability analysis provides the
system’s steady states, limit cycles and their stabilities. Bi-
furcation analysis gives the locations of bifurcation points.

1) Stability analysis: Regarding the stability analysis
we can divide the BSIPs in three groups, i.e. a) systems
with an oscillatory behaviour, b) systems that implement
combinatorial circuits, and c) systems that implement se-
quential or memory circuits [19]. Oscillatory behaviour
of the analysed biological system is conditioned with the
existence of a stable limit cycle in the phase space of
its deterministic model. Systems with only one steady
state, which present the behaviour where concentrations of
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the observed chemical species gradually converge into a
fixed point in the phase space, can be used to implement
combinatorial circuits. Systems that have more than one
steady stable state reflect a behaviour where the current
state is preserved even when an external input is changed
until some predefined threshold. The current state of the
system is therefore retained, memorized. Such biological
systems can be used to implement sequential circuits. For
binary logic we need to have a system with two steady
stable states, i.e. a bistable system, in order to effectively
memorize the information. It is important that the system
does not change its state unless the external influence is
strong enough to trigger the transition, i.e to perturbate the
system from its current stable steady state to the other one.

Results of the stability analysis can be used to determine
the system’s qualitative behaviour. Combined with the
analysis from an information processing perspective they
can be used to evaluate also the robustness of the system’s
behaviour. Several robustness analysis approaches already
exist in the field of systems biology [20]. We here propose
two novel methods for robustness evaluation of bistable and
oscillatory systems, i.e. robustness regarding the size of a
limit cycle and robustness regarding the distance between
the stable steady states, respectively.

Size of a limit cycle, dc, is defined as the amplitude
of the oscillations in an oscillatory system. All biological
systems are subject to noise (see Sec. II-A2). Measuring
the maximal noise N in the biological system in question
we can asses robustness regarding the size of a limit cycle
as

Rc =
dc
N
, (3)

where dc presents the size of a limit cycle and N presents
the maximal value of expected noise within the biological
system. If Rc is close to or even smaller than 1, the system
will not exhibit regular oscillations or the oscillations will
gradually diminish in reality.

Distance between the stable steady states can be eval-
uated in systems that express two or more stable steady
states. A larger distance between the states results in larger
energy consumption when performing a switch. A smaller
distance between the states results in smaller robustness of
the system and therefore greater noise sensitivity. Similar to
the size of a limit cycle distance between the stable steady
states can be observed in relation to maximal noise

Rd = min
i 6=j

di,j
N

, (4)

where di,j presents the distance between the stable steady
states i and j and N presents the maximal value of expected
noise within the biological system. If Rd is close to or
even smaller than 1, the probability of unexpected switches
between different steady stable states is very large.

2) Bifurcation analysis: The qualitative behaviour of
a system is strictly dependant on the parameters that
describe the properties of the chosen chemical species in
a predefined environment. Playing with these parameters
transitions among different types of qualitative behaviour,

bifurcations, can be observed. In relation to our systems
of interest, systems that either reflect convergence to a
steady state or exhibit periodic oscillations, two types of
bifurcations can occur. In a bistable system a supercritical
pitchfork bifurcation occurs when a stable steady state
bifurcates into two stable steady states and an unstable one.
In a system with oscillatory behaviour a supercritical Hopf
bifurcation occurs when a stable steady state bifurcates
into an unstable steady state and a stable limit cycle. The
parameter values where the bifurcation occurs are called
bifurcation points. We can determine the location of a
bifurcation point with the bifurcation analysis of a given
system.

While there are many factors that define the parameter
values within a biological system, the parameter values can
vary drastically even within the same biological system.
With an actual set of parameter values the robustness of
the system can be evaluated with respect to the distance
from a bifurcation point. This value is tightly connected
to the probability that the system will reflect the desired
behaviour and can be used to compare different systems
with similar properties. Robustness regarding the distance
from the bifurcation points is evaluated as

Rb = min
i

di
bi
, (5)

where bi defines the location of a bifurcation point for
parameter i and di the distance between the bifurcation
point and the current value of parameter i. A value close
to 1 means we are very close to a bifurcation point.
Parameters that are more or less invariant to environmental
characteristics of the system (their values do not change)
can be omitted from the calculation of Rb.

C. Modular design of complex BSIPs

When approaching the modular design of complex BSIPs
several constraints have to be considered in order to obtain a
system with the desired behaviour. The elementary modules
that are used to construct the complex system should inter-
act between each other only on the desired segments. This
can be achieved with the use of orthogonal compounds of
different modules [21]. The elementary modules should also
be orthogonal to the biological mechanisms that are already
present within the host. In order for the complex BSIP to
reflect the correct behaviour the interacting modules need to
be compatible. To achieve the desired behaviour two types
of compatibility have to be satisfied, a) logic compatibility
and b) switching compatibility.

Logic compatibility exists if the output levels of the
sending modules are in accordance with the input levels
of the chosen receiving modules [22], i.e. if the following
conditions are satisfied

COL(max)(out) ≤ CIL(max)(in), (6)

COH(min)(out) ≥ CIH(min)(in), (7)

where COL(max)(out) and COH(min)(out) present the out-
put concentration levels of the sending biological module
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and CIL(max)(in) and CIH(min)(in) present the input con-
centration levels of the receiving biological module. When
these conditions are satisfied the outputs of the sending
modules are always able to induce a valid switch in the
chosen receiving modules.

We also have to consider the time characteristics in the
modules that simultaneously change the concentrations of
their output species significantly, e.g. oscillatory circuits. In
oscillatory circuits, the time during which an output signal
can be interpreted as a valid logic value needs to be at
least as long as the time needed to perform a switch in
all receiving modules, i.e. all modules directly or indirectly
connected to the output signal of the oscillator. Switching
compatibility can be defined with the following condition

tvO ≥ max tsI , (8)

where tvO presents the output signal’s validity duration of
the oscillatory circuit and tsI presents switching times of
all modules that follow the oscillatory circuit in the design,
i.e. all of the downstream modules.

In a modular design one need not forget about input
consumption and fan-out of the elementary modules. If an
output species is used on several different places as an
input signal, large input consumption caused by one of the
receiving modules could reflect in an undesired behaviour
of the modular system. When the output of a sending
module is used as a feedback input large input consumption
of a receiving module may cause undesired behaviour of
the sending module as well. In such cases insulator modules
that decrease the retroactivity effect between the receiving
and the sending module have to be used [23].

III. RESULTS

In order to demonstrate the introduced analysis pro-
cedure, different computational models of sample BSIP
modules were established, i.e. models of gene regulatory
networks that present biological inverter (NOT gate), driver
(YES gate), AND gate, NOR gate, toggle switch and
repressilator. The kinetic parameters used were derived
from the properties of protein CI , and OR2 and OR3
operators in a Bacteriophage λ system [24], [25]. The
models were simulated and the efficiency of the proposed
analysis procedure demonstrated by modular design of a
more complex BSIP, i.e. a synchronous toggle switch.

A. Elementary modules

A biological inverter, i.e. NOT gate, can be realized
with a gene regulatory network of two proteins, where
the input protein represses the expression of the output
protein (see Fig. 1 (a)). A complementary scenario, where
the input protein activates the expression of the output
protein presents a biological driver, i.e. YES gate (see Fig.
1 (b)). If we presume that the activation of the output
protein is additionally dependant on the presence of an
external inducer, which allows the activator to bind to the
promoter and thus activate the transcription, a behaviour
that is analogous to an AND gate is achieved (see Fig.

1 (c)). A biological inverter can be extended to NOR gate
with the introduction of an additional repressor protein (see
Fig. 1 (d)). If either of the two repressor proteins is present,
the expression of the output protein ceases. The output
protein is therefore expressed only in the case when both
repressors are absent. Directed graph representations of the
described systems are given in Fig. 1.

Elementary modules can be used to construct more
complex systems. In our examples we will use two systems,
i.e. the toggle switch and the repressilator. A toggle switch
presents a potential memory element and can be realized
with two biological NOR gates. On one hand these gates
are mutually repressing each other. On the other hand
two different external repressors repress each of the gates
separately (see Fig. 2 (a)). A repressilator presents an
oscillatory element, which can be used for synchronization.
It can be realized with a circular structure of an odd
number of NOT gates. Fig. 2 (b) presents the structure of a
repressilator with 3 elements and Fig. 2 (c) a repressilator
with 5 elements.

The described biological systems that present our el-
ementary modules were modelled with two different ap-
proaches. Deterministic models were established with a set
of ODEs, where Hill equations were used for the modelling
of transcription activation [26]. Stochastic models with the
Chemical Master Equation (CME) were established on the
basis of a system of chemical reactions. Here, we will
only present the description of the inverter and the toggle
switch models. The descriptions of the other models used
in Sec. III-C are available in the supplementary material
accompanying this manuscript.

1) Inverter: The parameters of operator OR3 and protein
CI as an input protein will be used in order to model the
biological inverter. The observed reactions are presented in
Table I, where the reaction rates are as follows [24], [27],
[28]:

• association of protein x with OR3:
ka3 = 0.000012s−1nM−2,

• dissociation of protein x from OR3: kd3 = 0.4791s−1,
• transcription of mRNA of protein y: ktrs =

0.0715s−1,
• translation of protein y: ktrl = 0.043s−1,
• degradation of mRNA of protein y: kdegm =

0.0039s−1,
• degradation of protein y: kdeg = 0.0007s−1.

TABLE I
REACTIONS IN THE MODEL OF BIOLOGICAL INVERTER (NOT GATE).

reaction description

2x+DNA
ka3−→ x2DNA association of protein x with OR3

x2DNA
kd3−→ 2x+DNA dissociation of protein x from OR3

DNA
ktrs−→mRNA+DNA transcription of mRNA of protein y

mRNA
ktrl−→ mRNA+y translation of protein y

mRNA
kdegm−→ ∅ degradation of mRNA of protein y

y
kdeg−→ ∅ degradation of protein y
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Fig. 1. Directed graph representation of basic logic gates, i.e. NOT gate (a), YES gate (b), AND gate (c) and NOR gate (d).
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Fig. 2. Directed graph representation of toggle switch (a), repressilator circuit with three elements (b) and repressilator circuit with five elements (c).

A stochastic model can be established with the CME
[29]. The trajectories of the observed chemical species were
calculated with the Stochastic Simulation Algorithm (SSA)
[30]. A deterministic model can be established with a set
of ODEs. In order to model the transcription the following
Hill equation [26] was used:

dm

dt
=

α

1 +
(

x
Kd3

)γ − δm ·m, (9)

Kd3 =

(
kd3
ka3

) 1
γ

, (10)

where dm presents a change of mRNA concentration, α
maximal transcription rate (α = ktrs), γ cooperativity,
i.e. Hill coefficient (γ = 2), x concentration of input
protein, Kd3 dissociation constant for operator OR3, δm
mRNA degradation rate (δm = kdegm ) and m the mRNA
concentration. Translation was modelled by the following
differential equation

dy

dt
= β ·m− δy · y, (11)

where dy presents a change of output protein concentration,
β translation rate (β = ktrl), δy output protein degradation
rate (δy = kdeg) and y the output protein concentration.
Time evolution of the output protein concentration as a
result of both models is presented in Fig. 3.
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Fig. 3. Time evolution of a deterministic (a) and a stochastic (b) model
of biological inverter.

2) Toggle switch: The earlier introduced inverter can
be extended with an additional operator OR2. The output
protein is expressed only when both operators, i.e. OR2 and
OR3 are not bound with their repressors. The described
structure represents a biological NOR, i.e. negative OR,
gate. A biological toggle switch represents a potential
memory element and can be realized with two biological
NOR gates mutually repressing each other over operator
OR2. Switches from one logic state to the other can be
performed with an introduction of external repressors which
bind to operator OR3.

The observed reactions present an extension of the reac-
tions used in a biological inverter (see supplementary mate-
rial). The main difference is the additional operator OR2 to
which an external repressor is bound. The association reac-
tion rate of the operator OR2 equals ka2 = 0.012s−1nM−2

and dissociation reaction rate equals kd2 = 0.4791s−1. A
stochastic model can be built with the CME and is solved
numerically with the SSA algorithm. A deterministic model
can be established with the following set of ODEs:

dmx

dt
=

α

1 +
(

y
Kd2

)γ
+
(

i
Kd3

)γ − δm ·mx, (12)

dmy

dt
=

α

1 +
(

x
Kd2

)γ
+
(

j
Kd3

)γ − δm ·my, (13)

dx

dt
= β ·mx − δ · x, (14)

dy

dt
= β ·my − δ · y, (15)

Kd2 =

(
kd2
ka2

) 1
γ

, (16)

Kd3 =

(
kd3
ka3

) 1
γ

, (17)

where dmx and dmy present the changes in mRNA con-
centration of protein x and y respectively, dx and dy the
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changes of protein concentrations, x and y the concen-
trations of output proteins, i and j the concentrations of
input proteins that can cause the transitions from one toggle
switch state, and mx and my the mRNA concentrations.
Constants Kd2 and Kd3 are dissociation constants for
operators OR2 and OR3 respectively. The time evolution
of the output protein in dependence of the input proteins
concentrations as a result of both models is presented in
Fig. 4.
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Fig. 4. Time evolution of toggle switch output proteins x and y
concentrations presented with solid lines in dependence on input protein
i concentrations presented with dotted line. Results are based on the
deterministic model (a) and stochastic model (b) of biological toggle
switch.

B. Analysis of the elementary modules

Here we will present the detailed analysis of the inverter
and toggle switch circuits only. Further details are provided
in the supplementary material.

1) Inverter: The dynamics of the concentration of the
output protein, i.e. protein y, reflects the inverter behaviour.
This same protein can serve as an input, i.e. transcription
factor, to some other gene regulatory network. The output
logic levels are thus evaluated regarding the concentrations
and noise values of protein y. We are measuring the average
signal values that are achieved when the output is in the
low logic state and when the output is in the high logic
state after some initial period of signal stabilisation (see
Fig. 5). Based on multiple simulation runs we can set
the high level output concentration as COH = 915nM
and low level output concentration as COL = 5nM . In
order to compute the minimal high and the maximal low
level output concentration, the maximal noise has to be
estimated. In our study we estimate the noise only on
the basis of chemical stochastics, but other sources of
variance could also be included. Different noise estimation
approaches could therefore be used straightforwardly in a
combination with our analysis procedure. Based on the
results of stochastic models, noise present in high level
signals equals NH = 290nM and noise present in low level
signals equals NL = 45nM . The minimal high level output
concentration is therefore COH(min) = 915nM−290nM =
625nM and the maximal low level output concentration
COL(max) = 5nM + 45nM = 50nM .

The input concentration levels are evaluated regarding the
concentrations of protein x that succeed to bring the output
protein y to a valid logic state. As we are dealing with
an inverter we can evaluate the minimal high level input
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Fig. 5. Evaluating the output logic levels for biological inverter on a
single simulation run. Shaded areas present the signal initialisation period
only after which the measurements start.

concentration as the minimal high concentration of protein
x that still brings protein y to a low logic state, CIH(min) =
330nM . Similarly we can evaluate the maximal low level
input concentration as CIL(max) = 50nM .

The input consumption is evaluated regarding the max-
imal concentration of the consumed input protein. The
inverter only consumes 2 molecules of protein x, which
equals approximately 2nM for the presumed reaction vol-
ume (for details see supplementary material).

The switching times are interpreted as the maximal time
the signal is located within the uncertainty region after the
switch is initiated. Based on results of multiple simulation
runs of the stochastic model the rise time of the biological
inverter is tr = 1500s and the fall time tf = 4500s (see
Fig. 6 (a) and Fig. 6 (b)).

(a) (b)

Fig. 6. Evaluation of the rise time (a) and the fall time (b) in a stochastic
model of the biological inverter.

Stability analysis indicates that the system has one steady
stable state per input condition only, the analysis from a
qualitative perspective is therefore omitted (Sec. II-B).

2) Toggle switch: The analysis from the information
processing perspective can be performed in the same man-
ner as in the case of the biological inverter. The main
difference is that in the case of the toggle switch we are
observing two output signals, i.e. protein x and protein y.
The logic levels and noise values are COH = 925nM ,
COL = 0, NH = 335nM , NL = 5nM , COH(min) =
590nM , COL(max) = 5nM , CIH(min) = 250nM and
CIL(max) = 40nM , for both proteins, x and y. Since the
same components are used as in the case of the biological
inverter input consumption is the same for both inputs, i
and j, CI = 2nM ≈ 2.

The toggle switch performs a logic switch when one of
the outputs transits from the high logic state to the low logic
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state and the other one from the low logic state to the high
logic state. Since the two outputs are mutually exclusive
there is only one switching time, ts = max(tr, tf ), which
equals 10000s in our example circuit (see Fig. 7).

Fig. 7. Evaluation of the time needed to perform a logic switch in
biological toggle switch.

Stability analysis indicates that the system has two stable
and one unstable steady state. Stable steady states present
the states that have a valid logic interpretation. In each state
one of the output proteins represents logic value 1 and the
other one logic value 0. We can thus estimate the robustness
of the system by assessing its robustness regarding the
distance between the steady states and robustness regarding
the distance from the bifurcation points.

We can determine the location of the system’s steady
states with the stability analysis:
• s1 : x = 3.556nM, y = 1122.634nM ,
• s2 : x = 1122.634nM, y = 3.556nM ,
• s3 : x = 157nM, y = 157nM .

A further analysis shows that the states s1 and s2 are stable
while the state s3 is unstable. Robustness regarding the
distance between the steady states is then

Rd =
d1,2
N

= 3.3405. (18)

Since Rd > 1 the probability of unexpected switches is
low.

The bifurcation points of the system, i.e. parameter
values that bring the system from its bistable to monostable
behaviour, can be determined with the bifurcation analysis.
The intervals for each parameter in which the system
reflects bistable behaviour are:
• transcription rate: α ∈ [0.029s−1, 0.416s−1],
• translation rate: β ∈ [0.0176s−1, 0.25s−1],
• dissociation constant for operator OR2:
Kd2 ∈ [10.855, 154.572] ,

• dissociation constant for operator OR3: Kd3 does not
affect the bistability,

• mRNA degradation rate:
δm ∈ [0.00067s−1, 0.00954s−1],

• protein degradation rate:
δ ∈ [0.000119s−1, 0.001713s−1].

Only the parameters that have a tendency to vary between
the systems of the same type are included in the analysis.
The cooperativity factor γ is therefore left out. Robustness
regarding the distance from the bifurcation point in then
Rb = 0.59124. Since Rb < 1 we are distant enough
from the bifurcation point to obtain the desired system’s
behaviour even in the presence of noise. The measures Rd
and Rb would gain a true value only when comparing our
system with some other realization of the circuit with the
same logic functionality. They will not be used directly in
our further demonstration of the modular design procedure.

C. Modular design of the synchronous toggle switch

We will demonstrate the modular design approach by
constructing a synchronous toggle switch circuit. A syn-
chronous toggle switch can be constructed with the syn-
chronization of the toggle switch inputs. This can be
achieved with repressilator circuits. In order to perform a
switch, a high repressilator signal and a high input signal
have to be present at the same time. The basic design of
a synchronous toggle switch circuit constructed with the
elementary structures described in Sec. III-A is presented
in Fig. 8.

R

repressilator3

toggle
switch

i

j

S

q

q

R

AND

AND
i

j

S

q

q

Fig. 8. Basic design of a synchronous toggle switch, where R presents
the reset and S the set input and q presents the current state of the
toggle switch. The circuit labelled as repressilator3 presents a 3-element
repressilator.

The suitability of the presented design can be verified
with the verification of constraints presented in Sec. II-C.
We will presume that the design is orthogonal to a degree
that there is no significant unwanted interference among the
basic modules. Reviewing the presented model from the
point of view of the aforementioned criteria we can find
several flaws in the design (see Table II and supplementary
material for details).

The first problem is the logic compatibility between the
AND gates and the 3-element repressilator, i.e. the high
level output signal of the repressilator is not able to induce
a switch in the AND gates (see Equation 7). Another
problem arises because of the large input consumption of
the AND gates. As the repressilator uses its output also
as a feedback input, this can cause incorrect behaviour.
We can solve both problems by using intermediate YES
gates. These act as a buffer between the repressilator
and the AND gates. As the output of the YES gates is
only used by the AND gates it can therefore be fully
consumed without causing additional problems. The YES
gates thus serve as an insulator module which decreases the
retroactivity between the AND gates and the repressilator.
With this approach we achieve logic compatibility among
the basic modules, but the modified system is still lacking
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TABLE II
VALUES OF THE MEASURES THAT AFFECT THE COMPATIBILITY BETWEEN THE BASIC MODULES IN THE DESIGN PRESENTED IN FIG. 8.

module COL(max) COH(min) CIL(max) CIH(min) ts CI tv

repressilator3 15nM 330nM 2500s
AND 5nM 505nM 100nM 500nM 5000s ∞ ∞

toggle switch 5nM 590nM 40nM 250nM 104s 2nM ∞

in switching compatibility. The validity duration of the 3-
element repressilator’s output is too short to perform a full
switch in the other modules. This problem can be solved
by using a repressilator with 5 elements. The 5-element
repressilator produces an output signal with more stable
logic levels, longer oscillation periods, i.e. tv = 10000s
and exhibits a higher robustness according to its qualitative
analysis (see supplementary material). The modified design
of the synchronous toggle switch circuit is presented in Fig.
9.

A further analysis shows that the extended design fulfils
all of the constraints given in Sec. II-C (see Table III)
and that the simulated behaviour is in accordance with our
expectations. The simulation results of a stochastic model
of the proposed design are presented in Fig. 10.
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Fig. 10. Simulation results of the designed synchronous toggle switch
obtained with the stochastic modelling approach; (a) shows the time
evolution of the input signals R and S, (b) the time evolution of the 5-
element repressilator’s output, (c) the time evolution of the toggle switch
input signals i and j, and (d) the time evolution of the output signals q
and q.

IV. CONCLUSIONS

This paper presents a new approach for the analysis and
design of BSIPs. The analysis procedure allows one to
objectively evaluate the information processing capabilities
of a given set of biological systems from the speed,
robustness and compatibility points of view. Modular de-
sign of more complex biological systems constructed from
basic components can thus be established faster and more
straightforwardly. The analysis can be performed using any
experimental data obtained from laboratory experiments,
however, if the analysis is performed on simulation results
obtained from the established models they have to be accu-
rate enough to reflect the actual dynamics in the observed
biological systems.

The analysis procedure is demonstrated through an initial
study of elementary modules and through modular design
of a synchronous toggle switch. Verification with the es-
tablished methods is able to identify the shortcomings of
the initially proposed design and guide its improvements
through which the problems are eliminated and an appro-
priate simulated behaviour achieved. As indicated by our
results, no additional verification of the target design is
needed after the necessary constraints are satisfied. Only
the elementary modules therefore need to be analysed and
the computational time needed to verify the final design
can thus be drastically reduced. In our specific case the
analysis and design procedures were performed manually,
however, both processes will be automatized in the near
future. A computational tool that is being developed will
be able to automatically evaluate a given set of biological
modules and automatize the modular design of functionally
more complex BSIPs.1
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1 Parameters and units

We presume a fixed reaction volume in all the models, i.e. V = 2 · 10−15L. We
used the following reaction rates [1, 2]:

• association of protein with operator OR2: ka2 = 0.012s−1nM−2,

• dissociation of protein from operator OR2: kd2 = 0.4791s−1,

• association of protein with operator OR3: ka3 = 0.00012s−1nM−2,

• dissociation of protein from operator OR3: kd3 = 0.4791s−1,

• binding of inducer to activator: kbi = 0.00012s−1nM−1,

• unbinding of inducer from activator: kui = 0.4791s−1,

• mRNA transcription: ktrs = 0.0715s−1,

• protein translation: ktrl = 0.043s−1,

• protein degradation: kdeg = 0.0007s−1,

• mRNA degradation: kdegm = 0.0039s−1.
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1.1 Deterministic models

Reaction parameters used in the determinstic models are as follows:

• maximal transcription rate: α = ktrs = 0.0715s−1,

• translation rate: β = ktrl = 0.043s−1,

• Hill coefficient for activator and repressor: γ = 2,

• Hill coefficient for inducer: γi = 1,

• OR2 dissociation constant : Kd = Kd2 =
(
kd2
ka2

) 1
γ

= 6.3168,

• OR3 dissociation constant: Kd = Kd3 =
(
kd3
ka3

) 1
γ

= 63.1862,

• inducer-activator dissociation constant: Kd = Kdi =
(
kui
kbi

) 1
γi

= 3992.5,

• protein degradation rate: δ = kdeg = 0.0007s−1,

• mRNA degradation rate: δm = kdegm = 0.0039s−1.

1.2 Stochastic models

The concentrations of chemical species are observed in different units in de-
terministic models, where molar concentration is used (M), than in stochastic
models, where numbers of molecules are used. In order to compare the results
of both modelling approaches, concentrations obtained with stochastic mod-
elling approaches were converted to units used in deterministic models using
the following equation:

xi(t) = 〈yi(t)〉 · Ω, (1)

where xi(t) defines the molar concentration of the chemical species i, 〈yi(t)〉
average number of molecules of the chemical species i at time t and Ω = V ·NA
(NA is Avogadro constant).

Conversion of reaction rates to reaction parameters used in stochastic models
is dependant on the number of reactants in an observing reaction [3]. Reaction
parameters used in the stochastic models can be obtained as follows:

• association of protein with operator OR2: ca2 = 2 · ka2Ω2 = 0.0165s−1,

• dissociation of protein from operator OR2: cd2 = kd2 = 0.4791s−1,

• association of protein with operator OR3: ca3 = 2 · ka3Ω2 = 1.6544 ·10−4s−1,

• dissociation of protein from operator OR3: cd3 = k2 = 0.4791s−1,
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• binding of inducer to activator: cbi =
kbi
Ω = 1.4453 · 10−4s−1,

• unbinding of inducer from activator: cui = kui = 0.4791s−1,

• mRNA transcription: ctrs = ktrs = 0.0715s−1,

• protein translation: ctrl = ktrl = 0.043s−1,

• protein degradation: cdeg = kdeg = 0.0007s−1,

• mRNA degradation: cdegm = kdegm = 0.0039s−1.

2 Models

2.1 YES gate

Observed reactions for the YES gate are presented in Table 1.

Table 1: Reactions that present the model of biological driver (YES gate).
reaction description

2x+DNA
ka3−→ x2DNA association of protein x with OR3

x2DNA
kd3−→ 2x+DNA dissociation of protein x from OR3

x2DNA
ktrs−→mRNA+DNA transcription of mRNA of protein y

mRNA
ktrl−→ mRNA+y translation of protein y

mRNA
kdegm−→ ∅ degradation of mRNA of protein y

y
kdeg−→ ∅ degradation of protein y

The deterministic model can be established with the following equations:

dm

dt
= α

xγ

Kγ
d3

+ xγ
− δm ·m, (2)

dy

dt
= β ·m− δy · y. (3)

2.2 NOR gate

Observed reactions for the NOR gate are presented in Table 2.

The deterministic model can be established with the following equations:

dm

dt
=

α

1 +
(

x
Kd3

)γ
+
(

y
Kd3

)γ − δm ·m, (4)
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Table 2: Reactions that present the model of biological NOR gate.
reaction description

2x+DNA
ka3−→ x2DNA association of protein x with operator OR3

x2DNA
kd3−→ 2x+DNA dissociation of protein x from OR3

2y+DNA
ka3−→ y2DNA association of protein y with operator OR3

y2DNA
kd3−→ 2y+DNA dissociation of protein y from OR3

DNA
ktrs−→mRNA+DNA transcription of mRNA of protein z

mRNA
ktrl−→ mRNA+z translation of protein z

mRNA
kdegm−→ ∅ degradation of mRNA of protein z

z
kdeg−→ ∅ degradation of protein z

dz

dt
= β ·m− δz · z. (5)

2.3 AND gate

Observed reactions for the AND gate are presented in Table 3.

Table 3: Reactions that present the model of biological AND gate.
reaction description

x+ y
kbi−→ x∗ binding of inducer y to activator x

x∗
kui−→ x+ y unbinding of inducer y from activator x

2x∗+DNA
ka3−→ x∗2DNA associaction of complex with OR3

x∗2DNA
kd3−→ 2x∗+DNA disociation of complex from OR3

x∗2DNA
ktrs−→mRNA+x∗2DNA transcription of mRNA of protein z

mRNA
ktrl−→ mRNA+z translation of protein z

mRNA
kdegm−→ ∅ degradation of mRNA of protein z

z
kdeg−→ ∅ degradation of protein z

The deterministic model can be established with the following equations:

x∗ = x · yγi

yγi +Kdi
γi , (6)

dm

dt
=

α · x∗γ

Kγ
d3

+ x∗γ
− δm ·m, (7)

dz

dt
= β ·m− δz · z. (8)
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2.4 Toggle switch

Observed reactions for the toggle switch are presented in Table 4.

Table 4: Reactions that present the model of toggle switch.
reaction description

2x+DNAy

ka2−→ x2 DNAy association of protein x with OR2 of gene y

2y+DNAx

ka2−→ y2 DNAx association of protein y with OR2 of gene x

x2 DNAy

kd2−→ 2x+DNAy dissociation of protein x from OR2 of gene y

y2 DNAx

kd2−→ 2y+DNAx dissociation of protein y from OR2 of gene x

2i+DNAx

ka3−→ i2 DNAx association of protein i with OR3 of gene x

2j+DNAy

ka3−→ j2 DNAy association of protein j with OR3 of gene y

i2 DNAx

kd3−→ 2i+DNAx dissociation of protein i from OR3 of gene x

j2 DNAy

kd3−→ 2j+DNAy dissociation of protein j from OR3 of gene y

DNAx
ktrs−→ DNAx+mRNAx transcription of mRNA of protein x

DNAy
ktrs−→ DNAy+mRNAy transcription of mRNA of protein y

mRNAx
ktrl−→ mRNAx + x translation of protein x

mRNAy
ktrl−→ mRNAy + y translation of protein y

x
kdeg−→ ∅ degradation of protein x

y
kdeg−→ ∅ degradation of protein y

mRNAx
kdegm−→ ∅ degradation of mRNA of protein x

mRNAy
kdegm−→ ∅ degradation of mRNA of protein y

2.5 Repressilator

Observed reactions for the repressilator with 3 elements are presented in Table
5.

The deterministic model of the repressilator with 3 elements can be estab-
lished with the following equation:

dmx

dt
=

αx

1 +
(

z
Kd2

)γ −mx · δmx , (9)

dmy

dt
=

αy

1 +
(

x
Kd2

)γ −my · δmy , (10)
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Table 5: Reactions that present the model of a repressilator with 3 elements.

2x+DNAy

ka2−→ x2 DNAy

2y+DNAz

ka2−→ y2 DNAz

2z+DNAx

ka2−→ z2 DNAx

x2 DNAy

kd2−→ 2x+DNAy

y2 DNAz

kd2−→ 2y+DNAz

z2 DNAx

kd2−→ 2z+DNAx

DNAx
ktrs−→ DNAx+mRNAx

DNAy
ktrs−→ DNAy+mRNAy

DNAz
ktrs−→ DNAz+mRNAz

mRNAx
ktrl−→ mRNAx + x

mRNAy
ktrl−→ mRNAy + y

mRNAz
ktrl−→ mRNAz + z

x
kdeg−→ ∅

y
kdeg−→ ∅

z
kdeg−→ ∅

mRNAx
kdegm−→ ∅

mRNAy
kdegm−→ ∅

mRNAz
kdegm−→ ∅

dmz

dt
=

αz

1 +
(

y
Kd2

)γ −mz · δmz , (11)

dx

dt
= βx ·mx − δx · x, (12)

dy

dt
= βy ·my − δy · y, (13)

dz

dt
= βz ·mz − δz · z. (14)

The model can be extended straightforwardly to a model of the repressilator
with 5 elements.
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3 Evaluation of the introduced measures

3.1 NOT gate

Measures evaluated on the NOT gate model:

• COL = 5nM ,

• COH = 915nM ,

• NL = 45nM ,

• NH = 290nM ,

• N = 290nM ,

• COL(max) = 5nM + 45nM = 50nM ,

• COH(min) = 915nM − 290nM = 625nM ,

• NMO = ]50nM, 625nM [,

• CIL(max) = 50nM ,

• CIH(min) = 330nM ,

• NMI = ]50nM, 330nM [,

• CI = 2nM ,

• tr = 1500s,

• tf = 4500s,

• ts = 4500s,

• tv =∞.

3.2 YES gate

Measures evaluated on the YES gate model:

• COL = 5nM ,

• COH = 915nM ,

• NL = 15nM ,

• NH = 335nM ,

• N = 335nM ,
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• COL(max) = 5nM + 15nM = 20nM ,

• COH(min) = 915nM − 335nM = 580nM ,

• NMO = ]20nM, 580nM [,

• CIL(max) = 15nM ,

• CIH(min) = 125nM ,

• NMI = ]15nM, 125nM [,

• CI = 2nM ,

• tr = 2500s,

• tf = 5000s,

• ts = 5000s,

• tv =∞.

3.3 NOR gate

Measures evaluated on the NOR gate model:

• COL = 5nM ,

• COH = 915nM ,

• NL = 45nM ,

• NH = 290nM ,

• N = 290nM ,

• COL(max) = 5nM + 45nM = 50nM ,

• COH(min) = 915nM − 290nM = 625nM ,

• NMO = ]50nM, 625nM [,

• CIL(max) = 35nM ,

• CIH(min) = 330nM ,

• NMI = ]35nM, 330nM [,

• CIx = CIy = 2nM ,

• tr = 1500s,

• tf = 4500s,

• ts = 4500s,

• tv =∞.
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3.4 AND gate

Measures evaluated on the AND gate model:

• COL = 0nM ,

• COH = 840nM ,

• NL = 5nM ,

• NH = 335nM ,

• N = 335nM ,

• COL(max) = 0nM + 5nM = 5nM ,

• COH(min) = 840nM − 335nM = 505nM ,

• NMO = ]5nM, 505nM [,

• CIL(max) = 100nM ,

• CIH(min) = 500nM ,

• NMI = ]100nM, 500nM [,

• CIx = CIy =∞nM ,

• tr = 1500s,

• tf = 5000s,

• ts = 5000s,

• tv =∞.

3.5 Toggle switch

Measures evaluated on the toggle switch model:

• COL = 0nM ,

• COH = 925nM ,

• NL = 5nM ,

• NH = 335nM ,

• N = 335nM ,

• COL(max) = 0nM + 5nM = 5nM ,
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• COH(min) = 925nM − 335nM = 590nM ,

• NMO = ]5nM, 590nM [,

• CIL(max) = 40nM ,

• CIH(min) = 250nM ,

• NMI = ]40nM, 250nM [,

• CIi = CIj = 2nM ,

• ts = 10000s,

• tv =∞,

• Rd ≈ d1,2
N = 3.3405,

• Rb ≈ 0.59124.

3.6 Repressilator with 3 elements

Measures evaluated on the 3-element repressilator model:

• COL = 5nM ,

• COH = 660nM ,

• NL = 10nM ,

• NH = 330nM ,

• N = 335nM ,

• COL(max) = 5nM + 10nM = 15nM ,

• COH(min) = 660nM − 330nM = 330nM ,

• NMO = ]15nM, 330nM [,

• tv = 2500s,

• Rc ≈ dc
N = 1.3,

• Rb ≈ 0.8.
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3.7 Repressilator with 5 elements

Measures evaluated on the 5-element repressilator model:

• COL = 5nM ,

• COH = 995nM ,

• NL = 10nM ,

• NH = 200nM ,

• N = 200nM ,

• COL(max) = 5nM + 10nM = 15nM ,

• COH(min) = 995nM − 200nM = 795nM ,

• NMO = ]15nM, 795nM [,

• tv = 10000s,

• Rc ≈ dc
N = 5.475,

• Rb ≈ 0.83.

4 Supplementary code

The code used in the paper is available at lrss.fri.uni-lj.si/bio/material/tcbb.zip
under the Creative Commons Attribution license. Help is provided for each file
and can be accessed with the command help filename. We only give a brief
description of the available files here.

• and det.m: deterministic model of and gate,

• and det fall.m: estimates the signal falling time of and gate on the basis
of deterministic model,

• and det rise.m: estimates the signal rising time of and gate on the basis
of deterministic model,

• and det steady.m: plots the steady states of the and gate depending on
the input,

• and driver ssa inputs.m: stochastic model of the and gate buffered by
the biological driver (inputs are forced by external values),

• and inputs.m: evalutes the input logic levels of and gate,

• and outputs.m: evaluates the output logic levels and noise of and gate,
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• and ssa.m: stochastic model of the AND gate,

• and ssa fall.m: estimates the falling time of and gate on the basis of
stochastic model,

• and ssa rise.m: estimates the rising time of and gate on the basis of
stochastic model,

• conc mol to num.m: converts number of molecules to moles,

• conc num to mol.m: converts moles to number of molecules,

• driver det.m: deterministic model of the biological driver,

• driver det fall.m: estimates the falling time of biological driver on the
basis of deterministic model,

• driver det multiple.m: multiple simulations of deterministic driver with
different inputs,

• driver det rise.m: estimates the rising time of biological driver on the
basis of deterministic model,

• driver det steady.m: plots the steady states of the biological driver de-
pending on the input,

• driver inputs.m: evaluates the input logic levels of biological driver,

• driver multiple.m: multiple stochastic runs of biological driver,

• driver outputs.m: evaluates the output logic levels and noise of biologi-
cal driver,

• driver ssa.m: stochastic model of the biological driver,

• driver ssa inputs.m: stochastic model of the biological driver (inputs
are forced by external values),

• driver ssa rise.m: estimates the rising time of biological driver on the
basis of stochastic model,

• inverter det.m: deterministic model of the biological inverter,

• inverter det fall.m: estimate the falling time of biological inverter on
the basis of deterministic model,

• inverter det multiple.m: multiple simulations of deterministic driver
with different inputs,

• inverter det rise.m: estimates the rising time of biological inverter on
the basis of deterministic model,
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• inverter det steady.m: plots the steady states of the biological driver
depending on the given input,

• inverter inputs.m: evaluates the input logic levels of biological inverter,

• inverter multiple.m: multiple stochastic runs of biological inverter,

• inverter outputs.m: evaluates the output logic levels and noise of bio-
logical inverter,

• inverter ssa.m: stochastic model of the biological inverter,

• inverter ssa fall.m: estimates the falling time of biological inverter on
the basis of stochastic model,

• inverter ssa inputs.m: stochastic model of the biological inverter (in-
puts are forced by external values),

• inverter ssa rise.m: estimates the rising time of biological inverter on
the basis of stochastic model,

• nor det.m: deterministic model of the nor gate,

• nor det fall.m: estimates the falling time of nor gate on the basis of
deterministic model,

• nor det rise.m: estimates the rising time of nor gate on the basis of
deterministic model,

• nor det steady.m: plots the steady states of the nor gate depending on
the given input,

• nor inputs.m: evaluates the input logic levels of nor gate,

• nor outputs.m: evaluates the output logic levels and noise of nor gate,

• nor ssa.m: stochastic model of the NOR gate,

• nor ssa fall.m: estimates the falling time of nor gate on the basis of
stochastic model,

• nor ssa rise.m: estimates the rising time of nor gate on the basis of
stochastic model,

• repressilator bifurcation.m: searches for the location of the bifurca-
tion point in the repressilator model,

• repressilator det.m: deterministic model of the repressilator with 3
elements,

• repressilator extended bifurcation.m: searches for the location of
the bifurcation point in the extended repressilator model,
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• repressilator extended det.m: deterministic model of the repressilator
with 5 elements,

• repressilator extended limit cycle.m: determines the limit cycle of
the extended repressilator,

• repressilator extended outputs.m: evaluates the output logic levels
and noise of extended repressilator,

• repressilator extended ssa.m: stochastic model of the repressilator
with 5 elements,

• repressilator extended validity.m: evaluates the validity duration of
extended repressilator,

• repressilator limit cycle.m: determines the limit cycle of the repres-
silator,

• repressilator outputs.m: evaluates the output logic levels and noise of
repressilator,

• repressilator ssa.m: stochastic model of the repressilator with 3 ele-
ments,

• repressilator validity.m: evaluates the validity duration of repressi-
lator,

• ssa.m: SSA implementation,

• ssa input.m: SSA implementation with forced inputs,

• toggle bifurcation.m: searches for the location of the bifurcation point
in the toggle switch model,

• toggle det.m: deterministic model of the toggle switch,

• toggle det steady.m: determines the steady states of the toggle switch,

• toggle det switch.m: estimates the switching time of toggle switch on
the basis of deterministic model,

• toggle inputs.m: evaluates the input logic levels of toggle switch,

• toggle outputs.m: evaluates the output logic levels and noise of toggle
switch,

• toggle ssa.m: stochastic model of the toggle switch ,

• toggle ssa inputs.m: stochastic model of toggle switch (inputs are forced
by external values),

• toggle ssa switch.m: estimates the switching time of toggle switch on
the basis of stochastic model,

• toggle sync.m: simulates the behaviour of synchronous toggle switch on
the basis of stochastic models.
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