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Abstract

Mathematical modeling has become an integral part of synthesizing gene regulatory networks. One of the

common problems is the determination of parameters, which are a part of the model description. In the present

work, we propose a customized genetic algorithm as a method to determine the parameters such that the underlying

oscillatory system exhibits the target behavior. We propose a problem specific, adaptive fitness function evaluation

and a method to quantify the effect of a single parameter on the system response. The properties of the algorithm

are highlighted and confirmed on two test cases of synthetic biological oscillators.
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Introduction

In the recent years, notable improvement has been accomplished in understanding the component interactions

in various living organisms, leading to improved and more accurate modeling techniques available in the fields

of synthetic and systems biology (Alon, 2007).

A common biological subsystem is an oscillating regulatory network responsible for maintaining the circa-

dian rhythm which in turn affects the sleep-wake cycle, thermogenesis, feeding, glucose and lipid metabolism,

energy balance, regulation of peripheral body clocks, respiratory control, etc. Diseases such as diabetes,

This is an accepted version of a paper published in Natural Computing. The final publication is available 
at Springer via http://dx.doi.org/10.1007/s11047-013-9383-8.  

http://dx.doi.org/10.1007/s11047-013-9383-8


2

Alzheimer’s disease, sleeping disturbances and various metabolic diseases are known to be caused by disrup-

tion in the oscillatory mechanism (Turek et al, 2005; Morton et al, 2005; Wu et al, 2006). Understanding

the behavior of oscillatory systems is essential upon approaching such problems.

The dynamics of the oscillatory systems are well understood, as well as the conditions for the emergence

of the necessary unstable limit cycle (Novák and Tyson, 2008). Also, synthetic oscillators based on gene

regulatory networks (GRNs) have been successfully realized both in prokaryotes (Elowitz and Leibler, 2000)

as well as in mammalian cells (Tigges et al, 2009). A fundamental problem in modeling synthetic GRNs

is the uncertainty in the values of the model parameters (Lillacci and Khammash, 2012, 2010) and the

level of modeling complexity for a specific network. In ref. Scheper et al (1999) the authors show minimal

required conditions for a biological oscillator model by treating various post-transcriptional processes as a

single delay process. In order to achieve the targeted 24 hour period they partly explore the parameter space

while restricting the parameters within predefined boundaries.

In the present study we extend the concept of exploring the parameter space towards achieving a targeted

system response, which is characterized by the frequency and amplitude of the resulting oscillations. We

employ a customized, adaptive genetic algorithm which can be applied to an arbitrary oscillator model,

based on delayed differential equations (DDEs) and is able to find globally optimal parameters that cause

responses which can range over several orders of magnitude for both amplitude and frequency.

Various methods and tools aimed at optimizing and seeking the desired behavior of gene regulatory net-

works have been proposed. General methods rely on having a pre-established library of modular components

and searching for the optimal network topology that would produce the desired response. Implementations

(Rodrigo et al, 2007; Rodrigo and Jaramillo, 2012) may employ a truth table for the desired function as

an input and produce the optimal network topology as output using evolutionary techniques. Whether

the resulting components would perform in a linear manner when wired together remains an open question

due to observed non-modularity in living organisms (Hajimorad et al, 2011). (François and Hakim, 2004)

perform a more specific study, where they define the characteristics of the desired response more precisely.

Our approach is focused on a specific subgroup of networks in order to a) take advantage of the knowledge

about the expected system’s response and b) provide quantitative answers about network parameters such

that they can be used to aid the design decision while building such networks.

Genetic algorithms have long been used to tackle analytically intractable optimization problems in mul-

tidimensional parameter space (Chambers, 2000). Recent developments in the field tend towards adaptive

behavior of the algorithms. Examples include dynamic tuning of mutation rates, balancing the ratios between
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mutations and crossover or adapting the fitness function depending on the current state of the population.

In ref. Law and Szeto (2007), authors have demonstrated the advantages of mutation and crossover probabil-

ities, proportional the fitness of an individual. Also, they have shown the importance of a single parameter’s

influence on the overall fitness can be quantified by calculating it’s standard deviation. Summing up, less

important parameters in less fit individuals tend to be subject to mutation with higher probability, while

crossover is applied to fitter individuals more often. Using a similar method, the population of individuals

in our case is replicated with a bias towards the fitter solutions.

The influence of each parameter in the resulting system response is quantified using the entropy function,

an appropriate way to quantify determinism (Szendro et al, 2013). Repeatability is a measure of quantifying

the determinism regarding an instance of evolution. It is defined as a probability that two independent

evolutions will follow exactly the same path (Roy, 2009). By performing multiple runs of the developed

genetic algorithm, we derive the statistics for each parameter and quantify it’s influence on the resulting

system’s response.

Various choices of mutation probabilities are discussed in (Smith and Fogarty, 1996). Local maxima

in the fitness landscapes are an emphasized problem of genetic algorithms. To be able to perform giant

leaps in parameter space one should allow multiple alterations to be performed on candidate solutions.

This can be achieved by allowing multiple mutations of parameters and/or usage of crossover. That way, a

significantly larger number of possible evolution scenarios are available (Roy, 2009) and given enough time,

the globally optimal solution will always take over the population (Szendro et al, 2013; Chambers, 2000).

Allowing multiple mutations and crossover cause faster escape from the local maxima as well as opening the

possibility of beneficial joint mutations which are otherwise deleterious (Weinreich and Chao, 2005). As we

apply the algorithm to a specific family of problems, we assess the optimal choices for mutation probability

and crossover method.

Adaptive behavior is further explored, using an adaptive fitness function. The performance gains caused

by the usage of the population state dependent fitness evaluation are described in (Farmani and Wright,

2003). In addition, the authors introduce a concept of penalization of unfeasible solutions. We argue the per-

formance gains of a problem specific, adaptive fitness function which also penalizes the unfeasible solutions.

Evolutionary approaches towards tuning the response of biological circuits (Paladugu and Chickarmane,

2006; Szendro et al, 2013; Fang et al, 2009) tend to use generic fitness measures (e.g. non-linear least squares

error), limiting the solution space. The problem specificity of the fitness function gives us the advantage

of finding equivalently fit solutions in larger solution space, since it is not limited by absolute values of the
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resulting system response.

The resulting set of parameter values guarantees the desired system response for a given model of a

biological oscillator, offering a quantitative insight of the conditions that have to be met on the design level.

The manipulation of parameter values of a gene regulatory is to some degree already achievable in vivo.

Examples include engineering synthetic ribosome binding sites to influence translation efficiency (Salis et al,

2009), modifying the upstream promoter sequences to alter the transcription rate (Rhodius et al, 2012), using

transcription factor proteins with different degree of cooperativity (Dill et al, 1993) or degradation tags to

accelerate the protein degradation (Butz et al, 2011). Studies that rely on modifying the temporal behavior

of rhythmic systems ought to make use of the quantitative knowledge of parameter values to achieve the

desired effects (Mackey and Glass, 1977; Morton et al, 2005; Wu et al, 2006). A concept similar to our was

also performed in vivo (Yokobayashi et al, 2002) in which the authors deliberately induce mutations during

the gene cloning process to demonstrate the achievable change in protein-protein as well as protein-DNA

interactions, which confirms the practical applicability of our approach.

Section Framework introduces the computational framework used in the study. Section Results presents

results achieved on two different models of biological oscillators, which are discussed in Section Discussion.

Framework
Algorithm overview

A common way to model gene regulatory networks are ordinary differential equations (ODEs), which describe

the change of a given species concentration in an infinitesimal interval of time. In general terms, the form

of such description is

δSi

δt
= f(S1(t), S2(t), ..., Sn(t), p1, p2, ..., pm) (1)

where Si is the observed chemical species, S1(t), S2(t), ..., Sn(t) is the system state vector and p1, p2, ..., pm

is a vector of parameters, which determine the system behavior. As processes in the cell span over multiple

timescales (Scheper et al, 1999), the description can be altered to a system of delayed differential equations

(DDEs):

δSi

δt
= f(S1(t− τ1), S2(t− τ2), ..., Sn(t− τn), p1, p2, ..., pm) (2)

where the delays with which species affect the system are given by τ1, τ2, ..., τn. The vector of parameters

and the vector of time delays uniquely describe the response of a DDE system. A combination of their values
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represent a candidate solution.

Fitness Evaluation

Considering the system response as a discrete time signal, we used it’s standard deviation along the y-axis as

an approximation to the amplitude A. The frequency f was in turn detected using the discrete fast Fourier

transform (FFT). Furthermore, the unfeasible candidate solutions that reached a stable steady state could

be detected. By acquiring the two values, the fitness of an individual candidate solution Ci was determined

by computing the relative error ratio against targeted amplitude A and frequency f :

F (Ci) =

{
∆a ·∆f if Ci is feasible,
X + ∆a ·∆f else;

(3)

where ∆a = ‖(Ai − A)‖/A and ∆f = ‖(fi − f)‖/f present obtained candidate solution response errors

regarding the target amplitude and frequency values respectively. In case of an unfeasible solution an

empirically derived large value X (empirically defined 109) was added to the resulting fitness in order to

partition population on the feasibility of solutions. The approach agrees with the method proposed in

ref. (Farmani and Wright, 2003), where unfeasible solutions are still kept in the population for potential

adjustments. This turns out to be particularly important when feasible solutions are located in a very narrow

parameter range and eliminating unfeasible solutions would cause the population to effectively decease.

An efficient approach in exploring the parameter space is to make large leaps in the earlier phases and

afterwards performing local optimization. We further improved the algorithm by using an adaptive fitness

function. In the beginning, candidate fitness is evaluated such that:

F (Ci) =

{
∆f if Ci is feasible,
X + ∆f else;

(4)

After the evolution finds a candidate solution with sufficiently small frequency error (empirically defined

as 1 %), fitness evaluation method changes to Equation 3. Thus, by first adjusting the frequency and

then perfuming local optimization considering both frequency and amplitude, the population proved to

converge to the optimum value in a smaller number of steps. The approach mimics the simulated annealing

algorithm (Vecchi, 1987) in a sense of performing large steps in the beginning and stems from the fact that

some parameters mainly influence either amplitude or frequency while others influence both amplitude and

frequency (see Section Results).
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Figure 1: The proposed biased selection method. After the fitness of each individual candidate solution Ci

is evaluated, the candidates are sorted and the bottom half (gray) is discarded. The resulting empty slots
in the population array are then occupied by new candidates, which are derived by performing crossover of
candidates from the recombination pool. The former is dynamic, in a sense that new candidate solutions are
added for each slot in accordance with their fitness value. For example, the new candidate on index n/2 + 1
is a mutated best candidate, new candidate on index n/2+2 is a recombination from candidates C1 and C2,
while at the last index n the resulting candidate is derived from a random pair of candidates from the whole
upper half.

Selection and reproduction

The candidate solutions are afterwards sorted based on the ascending value of F (Ci). Only the top half

thus comprises the reproduction pool, while the lower half is discarded and slots are available for new

candidate solutions. Random pairs of candidates are selected from the reproduction pool and their parameter

vectors recombined into one with an equal probability for each component coming from either of parents

(n-point crossover). This ensures the ability to make large steps in parameter space and avoid local maxima

(Chambers, 2000).

To bias the selection towards fitter candidates, the reproduction pool grows dynamically during the

crossover step for each unoccupied candidate solution slot. As the algorithm iterates through slots in previ-

ously discarded bottom half of the population, a candidate is added to the current reproduction pool when

producing each new individual. In this way, fitter candidates will be in the reproduction pool sooner and

their components will have higher probability to appear in the resulting new population. This modification

appeared to produce better results and was based on the results obtained in (Law and Szeto, 2007) and is

explained in more detail on Figure 1.

Mutations are applied to the parameter vector pi,1, pi,2, ..., pi,l of each candidate solution Ci with the

probability proportional to the parameter vector length l (Back, 1992), such that

pi,j = pi,j +G(0, 1) (5)
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where G stands for a normally distributed random variable with mean 0 and standard deviation 1. To

ensure, that the quality of solutions monotonically increases, the current fittest candidate is never discarded

and remains unchanged (elitism) in the next evolution cycle (Chambers, 2000).

Results
Oscillator model

The proposed approach was evaluated using the oscillator model, based on a negative feedback loop proposed

in (Scheper et al, 1999) and schematically depicted in Figure 2a. It can be described with a DDE system:

δMi

δt
=

rm

1 + (P (t)
k )h

− qm ·Mi(t) (6)

δMi

δt
= rp ·M(t− τ)m + qp · P (t) (7)

where the system state is composed of M as the mRNA concentration and P as the concentration of

the repressor protein. System parameters that we have to determine are mRNA transcription rate rM ,

protein translation rate rP , mRNA degradation rate qM , protein degradation rate qP , scaling constant for

the repressor protein k, mRNA non-linearity coefficient m, repressor protein cooperativity coefficient h and

time delay between transcription and translation τ . To further exploit the a priori knowledge about the

system, constraints on parameter values are employed. This helps us narrow down the search space and

increase convergence speed. In ref. (Scheper et al, 1999), it is argued that described system can exhibit

oscillatory behavior if and only if τ > 0. On top of that, we constrained the degradation rates for both

protein and mRNA such that qM , qP < 1 and non-linearity coefficients m,h > 1.

After reaching the unstable steady state, the system exhibits an oscillatory response. We performed a

search for the target amplitude of 16 nM and target period of 24 h (frequency 0.042h−1) obtained in (Scheper

et al, 1999) and found another equivalent solution in the parameter space (Figure 2b). The observations and

conditions for oscillations observed in (Scheper et al, 1999; Novák and Tyson, 2008) apply to the resulting

parameter vector as well, indicating there is more than one point in the solution space producing equivalent

system response in terms of amplitude and frequency;

Running the evolutions for a range of amplitudes and frequencies spanning various orders of magnitude,

the search method returned results with error values of the order 10−5 on average. To achieve optimal results,

we adjusted and tested different properties of the proposed algorithm. Crossover of different parameter

values proves beneficial for some problems while not for the others (Chambers, 2000). As the system
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Figure 2: a) Schematic representation of a single repressor oscillator model; b) Simulation of optimal solution
of parameter space search for target amplitude A = 16 nM and frequencyf = 0.042h−1. Parameters:
τ = 12.906, rM = 8.025, rP = 15.884, qM = 0.045, qP = 0.067, m = 2.69, h = 2.083 and k = 9.88.
24 hour periods are marked with a cyan dashed line. c) Comparison of parameters space investigation for
amplitudes and frequencies of different orders of magnitude with (circles) and without crossover (squares); d)
Comparison of parameters space investigation for amplitudes and frequencies of different orders of magnitude
with (circles) and without adaptive fitness evaluation (squares).
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response qualitatively depends on the ratios among parameter vector components (Novák and Tyson, 2008),

conservation of fit subparts of parameter vectors proves beneficial. Figure 2c shows the comparison of

evolution runs with and without using crossover. The fitness function value after running evolution runs

with 150 population iterations was clearly lower by more than one order of magnitude for a large majority of

evolution runs when using crossover, confirming the feasibility of it’s use for our particular group of problems.

In a similar manner, we evaluated the use of the proposed adaptive fitness evaluation function explained

in Section Framework. By first evaluating only the frequency of the system response and after the population

exceeded a predetermined error threshold (in our case < 1%), we started with the fitness evaluation function

in Equation 4 until reaching the target frequency accuracy and only then proceeding with Equation 3. Thus

evolution runs were able to achieve faster convergence. Consequently, the global error value is lower for

evolutions using the adaptive error evaluation function, which is clearly seen on Figure 2d.

The hypothesis posed in Section Framework that some parameters influence either amplitude or frequency

while others influence both was directly tested. Running various single oscillator simulations with gradually

tuning two chosen parameters, we discover that both transcription rate rM and translation rate rP only affect

the amplitude (Figure 4c), while none of them affects the resulting frequency (Figure 4d). This fact explains

the advantage of the proposed adaptive fitness evaluation function, which offers the possibility to first find

a solution with a satisfying frequency accuracy and subsequently tuning the parameters which influence

amplitude without affecting the obtained frequency. This is an important result since it not only decreases

the search time and reduces the fitness function dimensionality, but also improves the overall quality of the

end solution.

To investigate whether the proposed algorithm is able to find a global optimum, we performed runs of

1000 independent evolutions with the same initial values (Figure 3). The resulting statistics for the final

value of each individual parameter are modal distributions with a clearly distinguishable peak, indicating

the algorithm ends the search near the global optimum with high probability.

As shown in ref. Law and Szeto (2007), the amount of information carried by an individual parameter is

directly proportional to it’s standard deviation across the population of candidate solutions. We calculate

the entropy of parameter value distribution, similarly as proposed in ref. François and Hakim (2004) as a

convenient way to quantify evolution determinism. For each individual parameter pj a histogram with b bins

is computed and it’s entropy is calculated
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H(pj) =

b∑
k=1

ck,j · log(ck,j) (8)

where ck,j presents the probability of parameter j having the value in the interval of the bin k.

As can be observed from the results obtained in Figure 3, the parameter that most notably influences the

overall solution fitness (bears least entropy in value distribution) is time delay τ (consistent with findings in

ref. (Scheper et al, 1999; Novák and Tyson, 2008)), while the influence of the scaling constant k is among the

least noticable. Running the simulations by adjusting these two parameters while keeping the rest constant

(at their calculated mean values) clearly shows the time delay τ influences both amplitude (Figure 4a) and

frequency (Figure 4b), while the influence of k on both is negligible. Thus, the entropy proves an effective

measure to quantify individual parameter importance for the measured response and the results can be

applied in the design process of synthetic in vivo biological circuits.

Repressilator model

Proposed approach was tested on the model with a larger number of interacting genes (Elowitz and Leibler,

2000) in order to investigate it’s scalability. The general repressilator model is composed of an odd number

of repressors (Figure 5a) such that

δMx

δt
= −γ ·Mx(t) +

α1

1 + (
Py(t)

k )h
+ α0 (9)

δPx

δt
= −η · Px(t) + β ·Mx(t− τ) (10)

where x, y ε 1, ..., N is the repressor protein index, Mx is the mRNA concentration of the corresponding

repressor Px. Parameters that have to be determined are mRNA degradation rate γ, maximal (unrepressed)

mRNA production rate α1, promoter leakage α0, repressor scaling constant k, cooperativity coefficient h,

protein degradation rate η, protein production rate β and transcription-translation time delay τ . In case of

the repressilator with three repressors, the model is composed of 6 equations and 9 parameters. An example

simulation run of the repressilator is shown on Figure 5b. The parameters found after 150 generations cause

oscillating behaviour with shifted phases among the three repressor proteins as anticipated.

As the amplitude and frequency of the oscillations are mainly dependent on the stability of the protein

(Elowitz and Leibler, 2000), we modified the model such that

δMx

δt
= −γ ·Mx(t) +

α1

1 + (
Py(t)
kx

)h
+ α0 (11)
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Figure 3: Distribution of individual parameter values for 1000 independent evolution runs with normalized
counts and calculated entropies using Equation 8.
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Figure 4: Effect on resulting amplitude and frequency of the single repressor oscillator model for tuning of
the two parameters for a range [µ − σ, µ + σ] where µ and σ are the mean and the standard deviations of
parameter values obtained from a run of 1000 parallel simulations (Figure 3). Other parameters are kept
constant at their mean values. a) Effect on amplitude by tuning parameters τ and k. b) Effect on frequency
by tuning parameters τ and k. c) Effect on amplitude for parameters rM and rP . d) Effect on frequency for
parameters rM and rP .
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δPx

δt
= −ηx · Px(t) + βx ·Mx(t− τ) (12)

Here the scaling constant kx, protein degradation rates ηx and translation rates βx unique for each protein

in the circuit, which increases the number of parameters to 15. Results in Figure 5c and Figure 5d present

relative error margins for end results of simulations for various orders of magnitude for targeted amplitudes

and frequencies. The errors are below 0.01 % in majority of cases, which underlines the feasibility and the

scalability of the approach. Also, by tuning separately a subgroup of parameters βx, ηx, kx while keeping

other parameters equal for each of the three components of the network, we show that the frequency and

amplitude response of the repressilator can be adjusted with the choice of interacting repressors’ properties

alone. This observation is constant with experimental studies (Elowitz and Leibler, 2000) while quantifying

the observed information as well.
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Figure 5: a) Schematic representation of the repressilator circuit b) Simulation of optimal solution of parame-
ter space search for target amplitude A = 100 and frequency f = 0.0001h−1. Parameters used: α0 = 2.288−7,
α1 = 1.94, β = 0.0002, n = 4.199, γ = 0.0005, η = 0.007, k = 45.313, τ = 0.09. c) Comparison of parameters
space investigation for amplitudes and frequencies of varying orders using Equations 9 and 10 (circles) or
Equations 11 and 12 (squares). The y axis shows the relative amplitude error regarding the target ampli-
tude. d) Comparison of parameters space investigation for amplitudes and frequencies of varying orders of
magnitude Equations 9 and 10 (circles) or Equations 11 and 12 (squares). The y-axis shows the relative
frequency error regarding the target frequency.
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Discussion

We have developed a method to explore the parameter space and performed a thorough parameter analysis

for biological oscillator circuit models with a predefined topology. By making use of a priori knowledge

of the observable system dynamics, we were able to further narrow the parameter values while retaining

the ability of finding the values that lead to the desired system response. The former is represented by a

combination of oscillating amplitude and frequency which can be adjusted over a wide range of orders of

magnitude. We efficiently applied digital signal processing methods to analyze the oscillating behavior to

evaluate the candidate solutions.

The proposed genetic algorithm proved effective for two different types of models and wide range of

input parameters which indirectly confirmed it’s scalability. Comparing the evolution with and without

using crossovers, we have concluded that it significantly improves the end result as a way of conserving fit

subparts of parameter vectors. It reinforces the fact that the systems response is mainly dependent on ratios

between different parameters. Hence the fitter combinations of a subgroup of parameters can be efficiently

spread over candidate solutions pool (population). We included state-of-the-art developments in genetic

algorithms by allowing multiple mutations, biased crossover towards fitter candidate solutions, partitioning

the solutions on their feasibility and proposed a new approach of a problem dependent adaptive fitness

evaluation, based on the effect of single parameters to the resulting system response.

Being able to perform giant leaps in parameter space by means of crossover and multiple mutations,

the system successfully converges towards the optimal solution and avoids local maxima. Due to the use of

elitism, convergence is always monotonic. By running various simulations with equal inputs, the simulations

converged towards a vector with a clear, modal statistical distribution for each component (parameter). As

the starting candidate solutions are purely random, we assert the vector of means is the global optimum

with high probability. Each parameter was assigned an entropy value, which allowed us to determine and

quantify the amount of information and the importance for a single parameter.

As we have shown the approach is applicable to oscillating systems with varying complexity, we turn to-

wards the applicability of it’s results. By assessing separately the tunable parameters used in the repressilator

model while keeping the remaining untunable parameters constant, we conclude amplitude and frequency

of oscillators can be adjusted only by altering the protein dependent parameters. Thus, the resulting vector

of parameter values can be used to aid the decisions during design and experimentation of in vivo synthesis

and analysis of biological circuits.
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