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Fuzzy Logic as a Computational Tool for
Quantitative Modelling of Biological Systems

with Uncertain Kinetic Data
Jure Bordon, Miha Moškon, Nikolaj Zimic, Member, IEEE and Miha Mraz, Member, IEEE

Abstract—Quantitative modelling of biological systems has
become an indispensable computational approach in the
design of novel and analysis of existing biological systems.
However, kinetic data that describe the system’s dynamics
need to be known in order to obtain relevant results with the
conventional modelling techniques. These data are often hard
or even impossible to obtain. Here we present a quantitative
fuzzy logic modelling approach that is able to cope with
unknown kinetic data and thus produce relevant results even
though kinetic data are incomplete or only vaguely defined.
Moreover, the approach can be used in the combination with
the existing state-of-the-art quantitative modelling techniques
only in certain parts of the system, i.e. where kinetic data
are missing. The case study of the approach proposed here is
performed on the model of 3-gene repressilator.

Index Terms—Fuzzy Logic, Uncertain Kinetic Data, Or-
dinary Differential Equations, Computational Biology, Gene
Regulatory Networks, Modelling and Simulation, Synthetic
Biology.

I. INTRODUCTION

RECENT advances in systems and synthetic biology
have given detailed insight on the dynamics and

structure of several biological systems. This knowledge
has made the design and construction of novel biological
systems with predefined functionalities more straightfor-
ward [1]–[3]. Among others, several synthetic gene reg-
ulatory networks (GRNs), such as genetic toggle-switches
and oscillators, have caught the attention of the research
community due to their occurrence in nature as well as
their vast potential in different synthetic applications, e.g.
bi-stable switch for gene therapy, repressilator, metabolator
etc. [4]–[8]. However, experimental realization of these
systems still presents a time-consuming and costly trial and
error process.

Recently computational models present an indispensable
tool that can be used for the design, optimization and in
silico verification of a novel biological system before its
experimental realization [9], [10]. Choosing an appropriate
modelling technique depends on the complexity of the
observed GRN, desired accuracy of simulation results and
the availability of accurate kinetic data, which describe the
dynamical properties of the system. Existing quantitative
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methods are mostly based on the numerical simulations
of the system of ordinary differential equations (ODEs)
or chemical master equation (CME). While describing
systems’ dynamics accurately, these approaches require
accurate kinetic data in order to produce useful simulation
results [11]–[14].

The dynamics of an arbitrary GRN can be roughly
described with three different processes, i.e. transcription,
translation and degradation. Each of these processes can
be presented with at least one chemical reaction and its
belonging kinetic rate(s). Kinetic rates can be sometimes
(accurately) determined by using various parameter pre-
diction and estimation techniques. If experimental data for
a given biological system is available, these methods can
estimate missing kinetic data, which can then be used in
an ODE model [15]–[17]. However, experimental data are
often hard or even impossible to obtain. In those cases
parameter estimation techniques cannot be used and a
different approach is needed.

In recent years fuzzy logic has been established as an
alternative approach for the quantitative modelling of bio-
logical systems [18]. Fuzzy models consist of linguistic ex-
pressions (e.g. Concentration is High or Promoter activity
is Low) and are straightforward to construct as well as easy
to understand. When kinetic data are known the accuracy
of fuzzy modelling approaches is equal to the existing
deterministic approaches, such as ODE based models [19].
Moreover, existing fuzzy logic approaches can be used to
obtain a qualitative response of the system’s dynamics even
though the kinetic data are unknown [20]. Uncertain kinetic
data however still present a major obstacle for obtaining the
quantitative response using existing modelling approaches
[21].

Existing fuzzy logic approaches mostly consist of the
key events descriptions only (e.g. gene activated or re-
pressed, binding of a transcription factor probable or not
etc.) [22], [23], but are as such unable to cope with
the quantitative response of the system, such as protein
concentration changes. On the other hand, Fuzzy Cognitive
Maps can be constructed to describe a metabolic or gene
regulatory network, but are used as a qualitative overview
of the network (e.g. when are nodes actived/deactivated,
how species interact with eacho ther over time, etc.) [24],
[25]. Here we present a new approach that comprehen-
sively exploits the advantages of fuzzy logic to obtain
the quantitative simulation results. The approach is able to
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Fig. 1. Processing the data with fuzzy logic. Crisp variables are fuzzified to their corresponding fuzzy values on which fuzzy rules are applied. Fuzzy
rules produce output fuzzy variables, which are defuzzified to their corresponding crisp values.

quantitatively describe the behaviour of a certain biological
system even though the kinetic data are uncertain or known
only partially. In addition, the proposed method can be used
in a combination with existing state-of-the-art quantitative
modelling approaches only in the parts of the system, which
are vaguely defined, i.e. where kinetic data are missing. We
demonstrate the introduced approach on the establishment
and analysis of a fuzzy model of the 3-gene repressilator
[7].

Section II describes the application of fuzzy logic to
biological systems modelling. Establishment of a fuzzy
logic model of the 3-gene repressilator as an use-case
is presented in Section III. Simulation results and their
analysis are given in Section IV and concluding remarks
in Section V.

II. FUZZY LOGIC AS A COMPUTATIONAL APPROACH FOR
QUANTITATIVE MODELLING

Processing the data with the use of fuzzy logic can
be also referred to as computing with words. In order
to describe a process with fuzzy logic, input and output
fuzzy variables (e.g. ProteinConcentration and Concentra-
tionChange) and their fuzzy values (e.g. Low and High)
have to be defined. Calculation of the values of the output
fuzzy variables is performed with the evaluation of if-then
fuzzy rules on the input variables and their values (e.g. IF
ProteinConcentration IS Low THEN ConcentrationChange
IS High). Fuzzy logic can be used in the combination with
the ordinary, i.e. crisp logic. However, fuzzy values of input
fuzzy variables and crisp values of output fuzzy variables
need to be calculated in order to combine the fuzzy
computation with the crisp one (see Figure 1). We refer
to these two processes as fuzzification and defuzzification.
Fuzzification and defuzzification are defined on the basis of
membership functions which characterize each fuzzy value
regarding the value of its corresponding crisp variable [26].

Construction of a general fuzzy model therefore consists
of the following steps:

• identification of input and output fuzzy variables (e.g.
ProteinConcentration, ConcentrationChange, etc.),

• determination of fuzzy values that define each
fuzzy variable (e.g. ProteinConcentration =

Low,Medium,High),
• determination of fuzzy rules that describe the depen-

dence of the output fuzzy variables on the input fuzzy
variables,

• fuzzification - definition of transformation of a crisp
variable to a fuzzy variable,

• defuzzification - definition of transformation of a fuzzy
variable to a crisp variable.

Knowledge obtained from existing modelling approaches
can help us with the establishment of the fuzzy description
of the observed process. For example, even though some
kinetic data might be unknown, we can use an ODE based
model to determine input and output variables and to make
a rough estimation on the relations among the inputs and
outputs (e.g. linear, exponential, etc.).

A. Fuzzy description of a biological process

Current state of the biological system is usually described
with the vector of concentrations of observed chemical
species. Fuzzy description of the current state can be on
the other hand defined by linguistic terms, i.e. with the
fuzzy values that describe the fuzzy variables. The formal
description of a fuzzy value is determined with its mem-
bership function, which defines the membership value from
0 (completely not a member) to 1 (completely a member)
of a crisp value to a fuzzy one. Most common membership
functions have a triangular or trapezoidal shape (see Figure
2), but different shapes may also be used. However, those
are in rare cases required to achieve the correct description
[27].

The number of fuzzy values used for the description
of a fuzzy variable depends on the nature of the process
we are modelling. Some processes require more accurate
descriptions which can be achieved with a larger number
of fuzzy values. On the other hand other processes express
the activity only under certain conditions, e.g. when the
input variable is very low, and can be described accurately
with a relatively small number of fuzzy values.

If-then fuzzy rule base can be established once the fuzzy
variables and their possible values are defined. Fuzzy rules
present the linguistic expressions that define the relations
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Fig. 2. Fuzzy values that define the fuzzy variable Protein concentration
are formally defined by the membership functions with a triangular (a) or
trapezoidal shapes (b). Different shapes may also be used, but are in rare
cases required.

between the input and output fuzzy variables and can be
usually established intuitively with the linguistic description
of the system’s dynamics.

Our approach will be used to quantitatively describe
the system state changes caused by the reactions in ob-
served GRN. Each fuzzy value will be defined with the
concentrations in a certain interval and their corresponding
membership values (e.g. if concentration of a protein can
range from 0 to 1000nM , concentrations from 0 to 650nM
can be completely referred to as not High, i.e. membership
value is 0; concentrations from 900 to 1000nM can be
completely referred to as High, i.e. membership value is
1; and concentrations from 650 to 900nM as something
in between, i.e. membership values linearly increase from
0 to 1; see Figure 2b). Output fuzzy variables will be
defined as absolute changes of the concentrations caused
by the processes that describe observed chemical reactions.
Rule base will therefore have the form such as IF Protein-
Concentration IS High THEN ConcentrationDecrease IS
High.

Fuzzy logic can be as such used to quantitatively describe
a biological process with only partial knowledge of the
system’s dynamics and without the direct use of kinetic
data. In order to make the approach compatible with other
modelling techniques that only operate with crisp values
fuzzification and defuzzification processes are used in the
input and output segment of a fuzzy model. This allows
us to use the fuzzy logic only in the parts of the model
in which kinetic data are unknown and to use conventional
approaches elsewhere.

B. Combining fuzzy logic with the existing modelling ap-
proaches

It is evident that the inputs and outputs of the fuzzy
model will always be crisp values, i.e. current concentra-
tions as inputs and concentration changes as outputs. This
enables us to use our fuzzy model only as a replacement for
a certain part of the conventional model in which kinetic
data are unknown.

Current state in a biological system is usually described
with the vector of concentrations of observed chemical
species, i.e. x = (x1, x2, ..., xn). System change can be

described with the following set of differential equations:

d[xi]

dt
=

m∑
j=1

fi,j(x), for i = 1, . . . , n, (1)

where each function describes a different process (e.g.
transcription, translation, etc.) and has its own set of kinetic
parameters (e.g. transcription rate, translation rate, etc.).
Using our fuzzy logic approach, we can replace of the
any functions that are only partially known due to missing
kinetic parameters:

d[xi]

dt
= FLk(x) +

m∑
j=1

fi,j(x),

for i = 1, . . . , n and k 6= j,

(2)

where FLk(x) is the fuzzy logic model of the process
for which kinetic parameters are unknown. Inputs to our
fuzzy logic model are crisp values of the concentrations
of observed species, while the output is a crisp value of
change in concentration of xi. The output of our model is
combined with the output of other functions to obtain the
changes in concentrations of observed species for each time
step of the simulation.

III. CASE STUDY: 3-GENE REPRESSILATOR

Repressilator is a GRN that consists of an arbitrary num-
ber of genes, which are connected in a circular repression
scheme. It has been shown that only the topologies of
a repressilator with odd numbers of genes may exhibit
oscillations for certain parameter values (kinetic rates) [7].
We will demonstrate the establishment of a quantitative
fuzzy logic model on the 3-gene repressilator (see Figure
3). Even though the proposed approach could be used to
describe the whole system, we will presume that the only
process that is partially unknown due to the missing kinetic
rates is transcription. Here we present the quantitative
fuzzy description of transcription only. However, the fuzzy
presentation of translation and degradation could be made
in the same way straightforwardly.

1

23

Fig. 3. Circular repression scheme of the 3-gene repressilator.

Dynamics of the 3-gene repressilator is determined by
the production of three different mRNA species (i.e. tran-
scription), production of three different protein species
(i.e. translation) and degradation of all mRNA and protein
species. Transcription of mRNAi is dampened by the
presence of a protein Pj , where j represents the index of
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the protein that inhibits the production of mRNAi, i.e.
j = (i− 1) mod 3.

While we presume transcription rate to be unknown, it is
impossible to find a numerical solution for the conventional
deterministic model. However, we will demonstrate that
the introduced quantitative fuzzy model is able to produce
quantitatively relevant results, even though certain kinetic
rates are unknown.

A. Conventional deterministic model

Our reference model will be based on the system of
ODEs. We assume that all genes of the repressilator have
the same dynamical properties, i.e. equal kinetic rates [7].
The system of ODEs that defines the dynamics is as
follows:

d[Pi]

dt
= ktsl · [mRNAi]− kdegP · [Pi], (3)

d[mRNAi]

dt
=

ktsk
1 + [Pj ]n

− kdegmRNA
· [mRNAi], (4)

where Eqn. (3) presents the protein concentration change
(translation and degradation), in which Pi is the current pro-
tein concentration, mRNAi current mRNA concentration,
ktsl translation rate and kdegP protein degradation rate. Eqn.
(4) presents mRNA concentration change (transcription and
degradation), in which Pj is the current repressor protein
concentration, n Hill coefficient, ktsk transcription rate and
kdegmRNA

mRNA degradation rate. Table I shows the values
of all kinetic rates that will be used in our simulations and
are derived from [7].

TABLE I
KINETIC PARAMETERS THAT WILL BE USED IN THE REFERENCE

MODEL.

n. Process Parameter Value
(1) Transcription ktsk 1.6min−1

(2) Transcription n 2

(3) Translation ktsl 2.6min−1

(4) mRNA degradation kdegmRNA
0.12min−1

(5) Protein degradation kdegP 0.06min−1

B. Quantitative fuzzy transcription model

The mRNA concentration changes are described in Eqn.
(4). First part of the equation presents the changes in the
concentration caused by transcription. To demonstrate the
proposed fuzzy approach, we will assume that transcription
rate (ktsk) is unknown. Other parameter values will be
derived from Table I. Quantitative fuzzy transcription model
construction procedure can be described with the following
steps:

1) identification of known and unknown parameter val-
ues (in our case only the value of ktsk is unknown).

2) analysis of the correlation between the kinetic rates
and transcription dynamics,

3) establishment of the linguistic description of tran-
scription dynamics,

4) quantitative fuzzy model construction (fuzzification
and defuzzification, establishment of if-then rules,
membership functions and potential scaling).

1) Identification of known and unknown parameter val-
ues: The equation that describes transcription can be de-
rived from Eqn. (4) and has the following form:

d[mRNAi]

dt
=

ktsk
1 + [Pj ]n

, (5)

where
• [Pj ] is current concentration of repressor protein (j =

1, 2, 3) – an input variable to a quantitative fuzzy logic
model, which will be fuzzified to a fuzzy variable,

• d[mRNAi] presents an increase of mRNAi concen-
tration (i = 1, 2, 3) in time step dt – an output fuzzy
variable from a quantitative fuzzy logic model, which
will be transformed to a crisp variable as an absolute
concentration change for Eqn. (4),

• n is Hill coefficient - the correlation between transcrip-
tion and Hill coefficient will be analysed; its results
will be used in a combination with the values from
Table I to construct the quantitative fuzzy logic model,

• ktsk is transcription rate - transcription rate is assumed
to be unknown. Its effects on transcription, based on
the step 2 of a quantitative fuzzy transcription model
construction procedure, will be considered when con-
structing fuzzy model.

2) Analysis of the correlation between the kinetic rates
and transcription dynamics: To understand how parameters
n and ktsk affect the mRNA concentration increase due
to transcription, the correlation between their values and
system’s dynamics are analysed on the basis of Eqn. (5).
Figure 4 shows the dependence of the mRNA concentration
increase on transcription rate values from ktsk = 0.5 to
ktsk = 5, if n equals 1, 2, 3 or 4. Figure 5 shows the
dependence of the mRNA concentration increase on Hill
coefficient from n = 0 to n = 3, if ktsk equals 0.5, 1, 3 or
10.

3) Establishment of the linguistic description of tran-
scription dynamics: Figures 4 and 5 indicate that the
repressor proteins drastically affect transcription even when
their concentrations are relatively low, i.e. gene is com-
pletely silenced in most cases (e.g. when the repressor
concentrations reach the threshold of 15nM ). Transcription
may therefore increase the concentration of mRNA only
when the repressor protein concentrations are in the interval
[0, 15nM ]. The linguistic description can be constructed on
the basis of our observations:

• The represor concentrations can be divided in two
parts: a small interval of low concentrations, where
transcription is active (e.g. repressor concentration is
lower than 15nM at ktsk = 5; see Figure 4(d)) and
the rest of the interval, where transcription is silenced
(e.g. repressor concentration is higher than 15nM at
ktsk = 5; see Figure 4(d)).
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Fig. 4. Different colours indicate the mRNA concentration change.
Figures present how the mRNA concentration changes at different values
of ktsk , where n = 4 (a), n = 3 (b), n = 2 (c) and n = 1 (d).
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Fig. 5. Different colours indicate the mRNA concentration change.
Figures present how the mRNA concentration changes at different values
of n, where ktsk = 10 (a), ktsk = 3 (b), ktsk = 1 (c) and ktsk = 0.5
(d).

• Transcription is active when the repressor concentra-
tions are low (even though we only show the lower
part of protein concentration interval ([0, 30nM ]), it
is enough to demonstrate that transcription completely
stops when the concentrations are higher than the
threshold).

• Transcription rate increases when the repressor con-
centrations are relatively low. (e.g. mRNA concentra-

tion change increases when the repressor concentra-
tions decrease from 15nM to 0nM ; see Figure 4(d)
at ktsk = 5).

• By increasing the value of transcription rate ktsk the
mRNA concentrations change increase linearly (the
edge of the non-zero mRNA concentration change is
linearly proportional to ktsk in Figure 4).

• By decreasing the Hill coefficient n the repressor con-
centrations interval where transcription is still active
widens (e.g. interval [0, 5nM ] at n = 3 increases to
[0, 15nM ] if n = 1; see Figure 5(c)).

4) Quantitative fuzzy model construction: The quanti-
tative fuzzy logic model presented in Figure 6 can be
constructed on the basis of the linguistic description given
above.

Crisp input variable presents the repressor concentration
and will be transformed to a fuzzy variable Repressor-
Concentration with fuzzy values Low and High. While
Low describes the lower part of possible concentrations,
where transcription is active, High describes the rest of
the possible concentrations, where transcription is silenced.
Output fuzzy variable mRNAIncrease will also be described
with the fuzzy values denoted Low and High. However,
these values will have different membership functions than
the ones describing input fuzzy variable. Fuzzy variable
values should include all possible values of respective
crisp variables (e.g. we can presume that the repressor
concentrations always lie between 0 and 500nM ). While
we presume that transcription rate parameter is not exactly
known, it is impossible to presume the maximal repressor
concentration as well as the maximal mRNA concentration
increase. Therefore both input and output fuzzy variable
intervals are normalized to interval [0, 1], where values
close to 0 correspond to value Low, while values close to
1 correspond to value High (see Figure 7).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

Represor concentration

D
eg

re
e 

of
 m

em
be

rs
hi

p

Low High

Input membership functions for transcription

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

mRNA concentration increase

D
eg

re
e 

of
 m

em
be

rs
hi

p

Low High

Output membership functions for transcription

(b)

Fig. 7. Membership functions for fuzzy sets Low and High, which de-
scribe the concentration of repressor regulating the observed transcription
process (a) and mRNA concentration change (b). The concentrations are
normalized to interval [0,1] and are therefore unitless.

In the case of output fuzzy variable, value Low describes
small or almost negligible increase of the mRNA con-
centration and is active when the repressor concentrations
are High. Respectively, High presents a maximal increase
of the mRNA concentrations, and becomes active as the
repressor concentrations go towards 0. If-then rule set,
which describes the observed behaviour, can be established
once the fuzzy variable values are defined with their cor-
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Fig. 6. The quantitative fuzzy logic model of transcription will have a crisp input variable Pj , which will be fuzzified to fuzzy variable
RepressorConcentration and an output fuzzy variable mRNAIncrease, which will be defuzzified to a crisp variable defining mRNA increase due
to transcription.

responding membership functions. The number of fuzzy
rules is bounded by the number of values from the input
fuzzy variable. In our case we need two rules to describe
all possibilities:

1. IF RepressorConcentration IS Low
THEN mRNAIncrease IS High,

2. IF RepressorConcentration IS High
THEN mRNAIncrease IS Low .

It is convenient to use the proposed approach only for
the parts of the system that lack the exact kinetic data.
For this purpose input and output variable values need
to be scaled to the ranges of the concentrations observed
in other parts of the system in which conventional mod-
elling techniques are used. Scaling is performed with the
functions prescale (see Algorithm III.1), which maps the
repressor concentrations from a crisp value to an interval
[0, 1] and postscale (see Algorithm III.2), which maps the
mRNA concentration changes from the interval [0, 1] to a
crisp value. These two functions dynamically adjust the
maximal protein concentrations and the maximal mRNA
concentration changes according to the crisp values of the
concentrations in other segments of the model. Both pa-
rameters (prescalein, postscalein) that determine scaling
are initially set to 1 (no scaling). While prescaleout is
increased by input variable Pj (prescaleout is assingned to
prescalein in the next iteration), postscaleout is incremen-
tally increased by parameter multiplier until the maximal
concentration change is reached. The parameter is set to
1.01 in our simulation (1% increase for every iteration).
Increasing multiplier will cause faster convergence to the
final value of postscale, however, it might also introduce
bigger error due to larger changes of postscale in every
iteration. Introduced functions allow us to describe the
unknown processes quantitatively with the knowledge we
obtain from the known parts of the system.

Algorithm III.1 Function prescale that applies the quantitative
context to the process described with the fuzzy logic model.

prescalein = maximal protein concentration
prescaleout = adjusted maximal protein concentration
input = input protein concentration (crisp input of the fuzzy
model)
inputprescaled = scaled input protein concentration (mapped to
the interval [0,1])

function PRESCALE( prescalein, input )

prescaleout ← prescalein

if input > prescalein then
prescaleout ← input

end if

inputprescaled ← input/prescaleout
return [inputprescaled, prescaleout]

end function

Algorithm III.2 Function postscale that applies the quantitative
context to the process described with the fuzzy logic model.

postscalein = maximal mRNA concentration change
postscaleout = adjusted maximal mRNA concentration change
output = normalized mRNA concentration increase (output of
the fuzzy model)
outputpostscaled = scaled mRNA concentration increase
multiplier = multiplication factor for postscaleout

function POSTSCALE( postscalein, output,multiplier )

postscaleout ← postscalein

if output ·multiplier > postscaleout then
postscaleout ← output ·multiplier

end if

outputpostscaled ← output · postscaleout
return [outputpostscaled, postscaleout]

end function
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IV. RESULTS AND DISCUSSION

Conventional model (see Section III-A) and quantitative
fuzzy logic model (see Section III-B) were constructed in
MATLAB Simulink1. Fuzzy toolbox was used for the con-
struction of fuzzy logic model of transcription. Parameter
values used in both models were derived from Table I.
Simulations were performed with the ode4 Runge-Kutta
engine for numerical solving using a fixed time step of 0.1
minutes. The system’s dynamics was simulated for 2000
minutes. An example of a simulation run on both models
is presented in Figure 8.
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Fig. 8. Simulation results of the fuzzy logic (a) and the conventional
model (b) of the 3-gene repressilator using the parameter set from Table I.
Transcription rate is omitted from the fuzzy model. Both simulation runs
reveal stable oscillations with comparable frequencies and amplitudes.

We analysed the presence of oscillations for different
parameter values, i.e. protein degradation and translation
rates were varied. The quantitative accuracy of the fuzzy
approach was measured with the agreement of the fre-
quencies and amplitudes of oscillations between the con-
ventional and fuzzy model. Frequencies were determined
using Fast Fourier transform (FFT) analysis. We expected
some dissimilarities between the conventional and the fuzzy
model, while transcription rate was not used in the latter.
However, quantitative relevance should be retained in the
fuzzy model. The results presented in Figure 9 indicate
that the parameter range for which the system exhibits
oscillatory behaviour is wider when transcription is mod-
elled with fuzzy logic. However, the amplitude and the
frequency of oscillations are comparable to those obtained
with the conventional model. Even if we run the ODE
model with different values of transcription rate, frequency
of oscillations stays the same. On the other hand amplitude
changes proportionally to increase or decrease of transcrip-
tion rate. Nevertheless, for biologically relevant values of
transcription rate, changes to amplitude are not significant
and remain comparable to those obtained by our fuzzy
approach.

Dissimilarities between the conventional and the fuzzy
model arise especially in the bifurcation regions, i.e. in
the parameter space where the system transitions from
the convergence to a steady state to oscillatory behaviour.
However, frequency analysis confirms that the fuzzy logic

1The MATLAB and Simulink models are available at http://lrss.fri.uni-
lj.si/bio/material/tcbb Bordon.zip under the Creative Commons Attribu-
tion license.

1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5  
Frequency − Fuzzy model of transcription

k
tsl

 

k de
gP

ro
te

in

0

0.002

0.004

0.006

0.008

0.01

(a)

1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5  
Frequency − pure ODE model

k
tsl

 

k de
gP

ro
te

in

0

0.002

0.004

0.006

0.008

0.01

(b)

Fig. 9. Frequency analysis for different values of translation (ktsl) and
degradation rates (kdegProtein

) for both models. Figures demonstrate that
the frequencies of oscillations obtained by both models are comparable
and that the Fuzzy approach retains the quantitative relevance of the ODE
model.

model preserves the quantitative relevance of simulation
results despite the missing kinetic data.

V. CONCLUSION

Missing kinetic data present a major obstacle in the
quantitative modelling of biological systems. Even though
some data are missing, various parameter estimation tech-
niques may be used for their evaluation. These techniques
however often require large sets of experimental data,
which are sometimes very hard or even impossible to
obtain. Here we introduced an alternative approach that
exploits the properties of fuzzy logic and enables us to
obtain quantitatively relevant simulation results even though
the kinetic data are incomplete. While the accuracy of
simulations is partially lost, they can still be used to produce
results with biological relevance. Moreover, the approach
presented here is compatible with conventional state-of-the-
art modelling approaches. We successfully demonstrated
the establishment of proposed modelling methodology in
the combination with ODE based model on fuzzy tran-
scription in the reaction network of the 3-gene repressilator.
Translation or degradation could be modelled in the same
way straightforwardly. Since the proposed method relies
on the knowledge unrelated to kinetic data as well as on
the kinetic data that is known, dissimilarities between the
fuzzy and the conventional model would increase with the
number of processes modelled by fuzzy logic. However, the
approach would still be able to produce quantitative results
with biological relevance.
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