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Abstract

Promoters with multiple binding sites present a regulatory mechanism of

several natural biological systems. It has been shown that such systems reflect

a higher stability in comparison to the systems with small numbers of binding

sites. Regulatory mechanisms with multiple binding sites are therefore used

more frequently in artificially designed biological system in recent years.

While the number of possible promoter states increases exponentially with the

number of binding sites, it is extremely hard to model such systems accurately.

Here we present an adaptation of stochastic simulation algorithm for accurate

modelling of gene regulatory networks with multiple binding sites. Small

computational complexity of adapted algorithm allows us to model any

feasible number of binding sites per promoter. Introduced approach is

demonstrated on the model of switching mechanism in Epstein-Barr virus

where 20 binding sites are observed on one of the promoters. We show that

the presented approach is easy to adapt to any biological systems based on

the regulatory mechanisms with multiple binding sites in order to obtain and

analyse their behaviour.

Key words: multiscale stochastic simulation algorithm, multiple binding sites,

gene regulatory networks, computational modelling, systems biology.
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1. Introduction

Over the past decade impressive results have been achieved with synthetic

biology approaches in various scientific fields and also in first commercial prod-

ucts, e.g. in pharmacological, environmental and fuel production applications

(Weber and Fussenegger, 2012). An example of such systems are switch-operated

drugs, based on the gene switching mechanism. The gene switching mecha-

nism represents a foundation for the implementation of almost any information

processing applications in biological systems (Khalil and Collins, 2010). These

systems are mainly based on gene regulatory networks (GRNs) because of their

programmable nature (Moškon and Mraz, 2012). However, the process of their

design is rarely straightforward and often requires the trial and error strategy.

Computational modelling approaches help us to simplify the design of GRNs

and they also provide a basis for robustness evaluation of the system behaviour

(Moškon et al. , 2013).

The stochastic simulation algorithm (SSA) (Gillespie, 1976, 1977) has become

a very popular tool for modelling natural and engineered GRNs in the fields of

systems and synthetic biology (El Samad et al. , 2005). The SSA provides an easy

way to perform a precise molecular simulation for any chemical reaction-based

system with known chemical kinetics. However, its complexity is proportional

to the number of observed chemical reactions and can increase drastically with

the size of the analysed system. Certain simplifications sometimes allow us to

reduce the complexity of modelled systems while still capturing their precise

dynamics at the same time (Cao et al. , 2005b; E et al. , 2007). Many GRNs can thus

be modelled with a less than hundred reactions, which is a still manageable for

the SSA. However, in some cases these reductions cause qualitative changes in
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the observed system’s behaviour. Therefore an alternative modelling technique is

often required. A large family of such systems are GRNs regulated by promoters

with multiple transcriptional control sites on which multiple transcription factors

can bind competitively. In these systems the direct application of SSA requires an

exponential number of binding and unbinding reactions per promoter.

Several examples of GRNs driven by transcription factors which bind com-

petitively on multiple binding sites can be found in nature, e.g. in the switching

mechanism of the Epstein-Barr virus (EBV) (Werner et al. , 2007b). On the other

hand there has been an increasing number of synthetic GRNs comprised of a

particular high number of designed transcriptional control binding sites in recent

years (Boch et al. , 2009; Bogdanove and Voytas, 2011). A high number of binding

sites can enhanced the effectiveness of gene expression, allowing more stable

signals and therefore enhance the robustness of the system’s behaviour. Moreover,

with the advent of novel synthetic DNA binding domains, it is also possible to

design more complex gene circuit with information processing capabilities (Gaber

et al. , 2014). Modelling approaches for such systems have already been proposed

(Vucko et al. , 2013; Werner et al. , 2007b). However, these approaches lack the

inherent accuracy of the SSA approach and are unable to provide the detailed

insights in the modelled systems on a molecular level. Ergo there is a need to

provide a stochastic modelling technique for such complex system.

Here we explore the possibility to adapt the SSA to GRNs regulated by promot-

ers with multiple DNA binding sites, in order to pertain the accuracy of original

SSA and still achieve manageable computational complexity at the same time.

In Section 2 we describe the multiscale SSA and its adaptation to GRNs with

multiple binding sites. Section 3 demonstrates the application and verification of

the introduced approach on the switching mechanism in the Epstein-Barr virus,
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where 20 binding sites are observed on one of the promoters. Discussion and

overview of our contributions are given in Section 4.
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2. Materials and Methods

Any gene regulatory network can be represented with a chemical reaction

network. The entire dynamic of the system can be thus fully described at a

molecular level with a set of interacting chemical reactions and their kinetic rates.

These define the speed of change of the molecular concentration of each chemical

species that appear in the given reaction. The stochastic simulation algorithm

(SSA) can be used to generate the time evolution trajectories of each chemical

species by firing each reaction according to the Monte-Carlo algorithm (Gillespie,

1977). The problem of this approach is the computational complexity regarding

the high number of possible reactions that have to be simulated. This is the

case of many GRNs whether they are found in nature or artificially constructed.

Reactions in such networks often occur in different time scales which can differ in

orders of magnitude, e.g. the dissociation and association of transcription factors

to DNA bindings sites occur much faster than the expression of the regulated

genes. Thus the SSA may only fire the fast reactions for the most of the time

and may not substantially affect the slow reactions. The concentrations of slow

chemical species are thus mostly unaltered during the course of the simulation. A

simple intuition for improving the simulation strategy suggests to differentiate

the simulation in two parts i.e. the slow and the fast, rather than simulate the

entire system at once. This intuition is the base for the stochastic multi-time-scale

(or multiscale) modelling approach.

2.1. Multiscale stochastic simulation algorithm

A very effective approach called multiscale SSA reduces the computational

complexity and pertains the accuracy of original SSA approach with the division

6



of the simulation in two parts, i.e. the slow and the fast (Cao et al. , 2005b). The

set of reactions is divided into a fast and a slow reaction set or slot according to the

propensity function of each reaction, which is dependant on the concentrations

of reaction’s reactants and its kinetic rate. The simulation is performed with two

subroutines. The first one approximates the time evolution of the fast reactions

to their first average moments, i.e. until a steady state is reached. The second

subroutine includes the approximations of slow reactions (Cao et al. , 2005a,b)

(see algorithm 2.1). Mathematical correctness of the approach is ensured if the

sets of fast and slow chemical reactions meet certain conditions regarding their

types (E et al. , 2007). If a reactant that is a product of a fast reaction appears in a

slow reaction, then the minimal required time-scale of the multiscale SSA, used

to distinguish the two sets, has to be at least the time needed for this reactant to

reach the steady state in the fast reaction. The use of the multiscale SSA is thus

restricted to models with a high time scale reaction differentiation. An example

of clearly differentiated time scales are GRNs while the biochemical kinetics of

DNA binding proteins (e.g. enzymes, protease or kinase) are substantially faster

than the kinetics of protein transcription and translation. The multiscale SSA can

thus drastically reduce the computational complexity of the simulations of such

systems.
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Algorithm 2.1 Multiscale SSA algorithm
. if j = 1: Reaction set of transcription, translation and degradation reactions

. if j = 2: Reaction set of DNA binding proteins reactions

xj = chemical species in reaction set j
vj = stoichiometric matrix of reaction set j
θj = vector of parameters of reaction set j
k = chemical species that are affected by fast and slow reactions
r = index of species to log in x1
Y = reporter output vector
y0 = initial concentration of chemical species
T = time output vector

procedure [y,t] = MultiscaleSSA( x1, v1, θ1, x2, v2, θ2 )
i = 0
t1, t2 = 0
Y[0] = y0
while t1 < TMAX1 do

while t2 < TMAX2 do
% SSA step at 2. time scale
SSA( x2, v2, θ2 )
t2 = t2 + τ2

end while
x1[k] = x2[k]
% SSA step at 1. time scale
SSA( x1, v1, θ1 )
t1 = t1 + τ1
i = i + 1
Y[i] = x1[r]
T[i] = t1

end while
end procedure

2.2. Modelling the multiple promoter binding sites

Many GRNs with multiple promoter binding sites can be found in nature and

may also present a suitable platform to design novel biological systems (Boch et al.

, 2009; Bogdanove and Voytas, 2011). Reactions that change each binding site’s

states can be easily described as

8



BS + P
kon−−→ BS∗, (1)

BS∗
koff−−→ BS + P, (2)

where BS represents a binding site and P a binding protein, i.e. transcription

factor, which can either increase, i.e. activator, or decrease, i.e. repressor, the

promoter activity. While the number of possible binding sites does not affect

the number of reactions that describe degradation and transcription/translation

processes, the number of reactions of type 1 and 2 increase drastically with the

number of binding sites. The promoter state can be defined with the occupancy of

its binding sites with different transcription factors. Let’s presume that k different

types of DNA binding proteins can bind to n consecutive (equal) binding sites.

Number of possible promoter states is thus

N = (k + 1)n. (3)

The total number of binding and unbinding reactions that may occur with

k-binding proteins on n available binding sites on a DNA strand is:

2× n×
n

∑
i=1

ki. (4)

It is obvious that the number of binding reactions grows exponentially with

the number of available binding sites (Conzelmann et al. , 2008).

In order to make the system in question manageable for the multiscale SSA

algorithm we propose to present the binding sites of observed GRNs by a matrix

of dimensions [# of promoters in the cell] × [# of binding sites of each promoter],
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which presents the entire DNA binding space for all observed promoters inside

the cell. We can define the element of a binding site matrix M as

Mij =



0; if BSij is free

1; if activator is bound to BSij

2; if repressor is bound to BSij

(5)

where BSij denotes the j-th binding site on the promoter i. An example of the

binding site matrix for 10 binding sites per promoter is shown in figure 6.
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M =



0 2 0 0 1 0 2 0 2 0

1 1 0 1 1 1 1 0 0 2

0 2 1 0 0 1 1 1 1 1

1 0 0 0 0 2 0 2 0 1

0 1 0 2 0 2 2 2 2 2

0 0 0 0 0 0 0 0 0 0

...
...

2 0 1 1 0 0 0 0 0 0



(6)

We use the binding site matrix in the internal, i.e. fast subroutine of multiscale

SSA. When the SSA fires a binding reaction, a random free site is chosen and

a binding is performed (chosen matrix element is set to 1 for activator binding

and to 2 for repressor binding). Respectively, when the SSA fires an unbinding

reaction, a random occupied site is chosen and an unbinding is performed (chosen

matrix element is set to 0).

The actual activity of the promoters has to be determined by specific rules

that take into account the number of bound repressors and activators. The rules

that determine if a specific promoter, i.e. a specific row of the binding site matrix,
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is activated or inhibited, may be based on a simple majority rule, i.e. by simply

counting the number of bounded activators and repressors. For example, in the

third row of the binding site matrix of the equation (6), six repressors and one

activator are bound, which makes the promoter inactive. Contrary, the promoter

in the fifth row contains six activators and one repressor, so the promoter may be

considered to be activated. These rules can be constructed in accordance with the

experimental results, e.g. the experimental fact that the repressors proteins are

usually stronger than the activators, suggests that it may be more appropriate to

consider alternative rules rather than the majority one. Another realistic rule may

also consider the fact that the binding sites that are closer to the actual promoter

(i.e. their position is on the right side of the matrix) have stronger effect on the

promoter activity.
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2.3. Adaptation of multiscale SSA to GRNs with multiple binding

sites

Adaptation of the multiscale SSA (see Algortihm 2.1) to an arbitrary GRN with

multiple binding sites can be performed with the construction of binding matrix

M for each type of the promoter in the system according to the equation (5). The

pseudo-code of this adaptation can be described with the algorithm 2.2.

The algorithm 2.2 can manage the explosion of the number of promoters’ states

by simply covering it with the binding matrix (note that the binding matrix has

to be constructed for each promoter type with multiple binding sites). Moreover,

the algorithm 2.2 permits the exploitation of different rules for evaluation of the

promoters’ states directly. These can be inferred from the experimental data. We

refer to (Werner et al. , 2007a) for additional details about competitive binding

rules.



Algorithm 2.2 The adapted multiscale stochastic simulation algorithm

xi = chemical species in reaction set i
vi = stoichiometric matrix of reaction set i
θi = vector of parameters of reaction set i
k = chemical species that are affected by fast and slow reactions
p = promoters species used in fast reactions
s = promoters species used in slow reactions
r = index of species to log in x1
Y = reporter output vector
y0 = initial concentration of chemical species
T = time output vector
A = average number of plasmids in a cell
n = number of binding sites per promoter type
for each type of promoter in the system do

Mp(j) = empty matrix of size: A × n
end for

procedure [y,t] = MultiscaleSSA( x1, v1, θ1, x2, v2, θ2 )
i = 0
t1, t2 = 0
Y[0] = y0
while t1 < TMAX1 do

// Quantify the number of activated, repressed
// and free binding sites for each type of promoters
x2[p] = EvaluateBindingSites(Mp(j))
while t2 < TMAX2 do

// Perform an SSA step in for fast reactions without updating the state
//vector x2 and retrieve the next reaction c that will be fired
c = SSA( x2, v2, θ2 )
j = randomly choose a j promoter for which the reaction c can be fired
// Set the value of the chosen promoter binding site as in equation (5)
Mp(j) = c→ [0, 1, 2]
t2 = t2 + τ2

end while
for for each promoter j do

x1[s] = EvaluatePromotorState(Mp(j))
end for
// Update the outermost state vector with the remaining common species
x1[k] = x2[k]
SSA( x1, v1, θ1 ) // perform a SSA step for slow reactions
t1 = t1 + τ1
Y[i] = x1[r]
T[i] = t1

end while
end procedure
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3. A case study: the Epstein-Barr virus genetic switch

The Epstein-Barr virus (EBV) affects a very high percentage of the entire adult

population (Young and Rickinson, 2004). It is widely confirmed that the infection

of this virus can increase the risk of cancer development and recently a notable

effort in the way to prevent this infection has been achieved (Cohen et al. , 2011).

The EBV is one of the most studied viruses. Majority of the virus-related dis-

eases have already been discovered (Maeda et al. , 2009). The genome of the

virus comprises 172000 base pairs. Its location is usually the nucleus of the B-

lymphocytes. Like the majority of other viruses the EBV exhibits two different

states, a proliferating (active) and a latent (resting) state. Roughly speaking, when

the virus is in latent state, the cell – the B-lymphocyte – behaves normally and

the virus genome duplicates together with the cell in a lysogenic cycle. When

the virus is in the proliferating state (or lytic state), the cell membrane decays,

the virus spreads outside the cell, it begins to duplicate in a very high number

and it becomes highly infective for neighbour cells. The switch between these

two states depends on the promoter activity of two promoters (Qp and Cp) on the

virus genome. A high Cp promoter activity indicates a lytic state, while a high Qp

promoter activity indicates a resting state. These two promoters are believed to be

mutually exclusive, although they are responsible of a more complex gene regula-

tion (Robertson, 2010). A key component in this regulation is the Cp promoter

transcriptional regulator site, which is composed of 20 consecutive binding sites

known as Family of Repeats (FR). On these binding sites two different transcription

factors that may inhibit or activate the Cp promoter can simultaneously bind

competitively. A very simplified scheme of the regulatory network controlling the

Cp and Qp promoter activity is depicted in figure 1. We refer to (Robertson, 2010;
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Werner et al. , 2007b; Young and Rickinson, 2004) for the precise details about the

complex gene regulation in the Epstein-Barr virus.

[Figure 1 about here.]

The exact switching mechanism between the proliferating and resting state of

the virus is still not perfectly understood, but a reasonable simplified mechanism

can be explained as follows. Protein complex Oct2/Grg/TLE can bind to the 20

available binding sites in the FR region, which causes the repression of the Cp

promoter. The dimer of Epstein-Barr Antigen-1 (EBNA-1) can on the other hand

bind to FR region binding sites, which causes the activation of the Cp promoter.

Moreover, EBNA1 can also bind to two binding sites in the Qp promoter region,

which causes the repression of the Qp promoter. Active Cp promoter provides

a high gene expression of all the nuclear proteins EBNA-1-6 encoded in the

EBNA-1-6 gene. The transcription of the EBNA-1-6 proteins codes a long mRNA

molecule which provides a translation of the 619 amino acid long EBNA-1 protein

(Goldsmith et al. , 1993; Ohara et al. , 2000). While the EBNA-1 binding requires a

dimeric structure, the activation rate of the bound Cp promoter is highly increased.

This gene regulation results in a positive feedback, which drastically increases

the gene expression of the EBNA-1-6 gene during the lytic state. On the other

hand active Qp promoter provides a feeble gene expression of the the EBNA-1

gene, which keeps the EBNA-1 protein concentrations low, resulting in a weakly

negative feedback in the two binding sites in the Qp promoter downstream

region. The trigger to initiate the switch between Cp and Qp promoter activity is

represented by the external signal provided by the Oct-2 protein complex.

It is obvious that the ordinary SSA approach would fail on the described

system (only the FR region would give us 320 different promoter states which

have to be modelled individually). We have established an adapted multiscale
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SSA model with the reactions described in tables 1 (fast reactions) and 2 (slow

reactions). These reactions represent a minimum-reaction model of the EBV switch.

This model comprises DNA binding, transcription, translation and degradation

reactions, which are still sufficient to capture a relatively accurate behaviour of

the observed system.

[Table 1 about here.]

We performed several simulations with the adapted SSA algorithm (see algo-

rithm 2.2) varying initial conditions, i.e. number of promoters per cell and other

variable parameters given in table 3. We presented the FR region with the binding

matrix M with the reference size 2x20 (for 2 promoters with 20 binding sites).

The simulation time was set to 20 days, in order to perform a direct comparison

with the model proposed in (Werner et al. , 2007b). We inferred the reaction rates

of both fast and slow reactions from the selected literature 3. We adopted the

weak majority binding rule for the repressors, which states that the promoter is be

inhibited when at least one repressor is bound in the multiple binding site region.

Results of the reference simulations performed are presented in figure 2.

[Table 2 about here.]

[Table 3 about here.]

Once we established the reference model, which is defined with the reference

parameter values, we performed several simulations by changing these parameters

within the feasible intervals. In accordance with the previous modelling technique

presented in (Werner et al. , 2007b) we tested the Epstein-Barr genetic switch, by

altering the level of the external signal of the protein complex Oct-2/Grg/TLE. We

found out that the model depicted in figure 1, behaves as a poor genetic switch
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when altered with an insufficient amount of Oct-2/Grg/TLE. We discovered a

successful switch between the two viral states with an amount of Oct-2/Grg/TLE

of 500000 molecules inserted after a simulation time of 10 days (plot d in figure 2).

[Figure 2 about here.]

Results of stochastic simulations performed with the adapted SSA approach

were in accordance with the experimental results of previous works. Correctness

of the introduced approach was therefore successfully confirmed. Although there

are several different genetic model motifs with multiple binding sites to which

the algorithm 2.2 can be applied, the EBV genetic switch was chosen for the

demonstration because of its high importance in systems biology.
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4. Conclusion

The Epstein-Barr virus genetic switch is able to achieve remarkable resistance

to the external signals and robustness with its positive feedback structure. Our

stochastic simulations and analysis confirmed these statements. Although our

reaction model is quite simple for describing the complex dynamics that occur in

a complex environment such as the virus responsible cell lysate, where it might

also be important to consider additional diffusion properties and delays at the

molecular-reaction level, our simulations are still in accordance with previously

reported experimental work.

We applied the introduced adapted SSA approach to Epstein-Barr genetic

switch mechanism because of its importance in systems biology. However, the

application of our approach to any biological system that can be presented by

a GRN with multiple promoter binding sites would be straightforward. With

the recent advances in synthetic biology, which also justify the applications

of GRNs with very high numbers of promoter binding sites, the necessity of

stochastic modelling of such systems is even more important. We believe that the

adapted SSA approach presented here should find many interesting applications

by allowing manageable computational complexity of stochastic simulations of

these networks.
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Cp

Qp

EBNA-1

Oct-2/Grg/TLE

FR region

EBNA 1-6 gene

EBNA-1 gene

 . . .

Figure 1: A simple scheme of the gene regulatory network responsible for the regulation
of the switching mechanism in the Epstein-Barr virus infected B-lymphocytes.
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Figure 2: The Epstein-Barr virus genetic switch triggered by different Oct-2 concentrations
a) 50000 molecules, b) 100000 molecules, c) 200000 molecules and d) 500000
molecules.
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n. fast reactions type ki

(1) Cp + EBNA1
k1−−→ Cp∗ Cp promoter activation 9.2462 ∗ 10−12s−1

(2) Cp∗
k2−−→ Cp + EBNA1 Cp - EBNA1 dissociation 1.5 ∗ 10−11s−1

(3) Cp + Oct2
k3−−→ Cp

′
Cp promoter inhibition 9.2462 ∗ 10−12s−1

(4) Cp
′ k4−−→ Cp + Oct2 Cp - Oct2 dissociation 2.5 ∗ 10−9s−1

(5) Qp + EBNA1
k5−−→ Qp

′
Qp promoter inhibition 9.2462 ∗ 10−12s−1

(6) Qp
′ k6−−→ Qp + EBNA1 Qp - EBNA1 dissociation 2.1 ∗ 10−10s−1

Table 1: Fast reactions in the Epstein-Barr virus genetic switch model.
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n. slow reactions type ki

(1) Cp∗
ktrsc16−−−−→ Cp∗ + mRNA16 Cp transcription 0.002069 s−1

(2) Qp∗
ktrsc1−−−−→ Qp∗ + mRNA1 Qp transcription 0.006240 s−1

(3) mRNA16
ktrsl16−−−−→ mRNA16 + EBNA1 mRNA16 translation 0.005172 s−1

(4) mRNA1
ktrsl1−−−−→ mRNA1 + EBNA1 mRNA1 translation 0.0156 s−1

(5) EBNA1 + EBNA1
kdim−−−−→ dimEBNA1 EBNA-1 dimerization 1.8492 ∗ 10−10 s−1

(6) mRNA1
kdis−−−→ mRNA1 + EBNA1 EBNA-1 dimer dissociation 10−8 s−1

(7) mRNA16
kdegRNA−−−−−−→ ∅ mRNA16 decay 1.9254 ∗ 10−5 s−1

(8) mRNA1
kdegRNA−−−−−−→ ∅ mRNA1 decay 1.9254 ∗ 10−5 s−1

(9) EBNA1
kdegE−−−−→ ∅ EBNA-1 decay 9.627 ∗ 10−6 s−1

(10) dimEBNA1
kdegE−−−−→ ∅ EBNA-1 dimer decay 9.627 ∗ 10−6 s−1

(11) Oct2
kdegO−−−−→ ∅ Oct-2 decay 9.627 ∗ 10−6 s−1

Table 2: Fast reactions in the Epstein-Barr virus genetic switch model.
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parameter value reference

Nuclear volume V 1.796 ∗10−13 lt. (Werner et al. , 2007b)

mRNA half-life τ1
2 mRNA 10 hr (Yang et al. , 2003)

EBNA-1 amino acid length 619 - 641 (Ceccarelli and Frappier,
2000; Goldsmith et al. ,
1993; Ohara et al. , 2000)

EBNA-1 - FR binding dissoci-
ation constant (KdEFR)

15 ∗ 10−12M (Ambinder et al. , 1990;
Werner et al. , 2007b)

EBNA-1 transcription rate 12 b.p. s−1 (Tsurumi, 1991)

EBNA-1 half-life τ1
2 mRNA 20− 48 hr (Davenport and Pagano,

1999; Levitskaya et al. ,
1997)

Table 3: Parameters used in the Epstein-Barr virus genetic switch model.

31


	Introduction
	Materials and Methods
	Multiscale stochastic simulation algorithm
	Modelling the multiple promoter binding sites
	Adaptation of multiscale SSA to GRNs with multiple binding sites

	A case study: the Epstein-Barr virus genetic switch
	Conclusion

