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Abstract

Recent studies have shown that regulation of many important genes is
achieved with multiple transcription factor binding sites with low or no
cooperativity. Additionally, non-cooperative binding sites are gaining more
and more importance in the field of synthetic biology. Herein we introduce a
computational framework that can be applied to dynamical modelling and
analysis of gene regulatory networks with multiple non-cooperative tran-
scription factor binding sites. We propose two computational methods to
be used within the framework, i.e. average promoter state approximation
and expression profiles based modelling. We demonstrate the application
of the proposed framework on the analysis of NF-κB oscillatory response
analysis. We show that different promoter expression hypotheses in a com-
bination with the number of transcription factor binding sites drastically
affect the dynamics of the observed system and should not be ignored in the
process of quantitative dynamical modelling, as is usually the case in existent
state-of-the-art computational analyses.
Key words: gene regulatory networks, non-cooperative transcription factor
binding, quantitative modelling, computational analysis, transcription factor
NF-κB.
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1. Introduction

Interactions between transcription factors (TFs) at the level of promoter binding
sites divide regulatory circuits into two groups with respect to their transcriptional
responses. The first group converts concentrations of regulating TFs merely
to on/off promoter activity. This behaviour is usually achieved with positive
cooperative TF binding, which results in a highly non-linear response.

On the contrary, the second group of regulatory circuits produces more ana-
logue transcriptional response. In this case, promoters without or with very
low cooperative regulation between the TF binding sites are involved (Giorgetti
et al., 2010). Low cooperativity causes TFs to bind to the promoters gradually, i.e.
linearly proportional to their concentrations. Furthermore, promoter activity in
this case depends on the exact state of its binding sites (Spitz & Furlong, 2012).
Therefore, TFs do not only define the activity of promoters, but may also define
the rate of their expression in different manners (Giorgetti et al., 2010; Spitz &
Furlong, 2012).

Gradual promoter response on the first hand reflects high regulatory capacity
compared to promoters with simple on/off dynamics. Larger clusters of TF
binding sites can on the other hand be used to decrease the effects of intrinsic
noise (Giorgetti et al., 2010), reduce the crosstalk among different operators and
enhance the efficiency of repression (Lebar et al., 2014). Large clusters of TF
binding sites can be used when graded, i.e. analogue, transcriptional response
is desired (Lorberbaum & Barolo, 2013). However, non-cooperative TF binding
sites are not limited to linear behaviour only. Non-linear response can be achieved
with the use of different enhancer activity models (Spitz & Furlong, 2012), positive
feedback loops and competition for the same DNA operator binding sites between
activators and repressors (Lebar et al., 2014). Large numbers of non-cooperarive
monomeric TF binding sites thus allow us to design tunable biological systems,
which reflect robust behaviour, and can provide higher regulatory capacity with
respect to cooperative binding, which typically results in a digital (non-linear)
on/off response.

The development of different artificially engineered monomeric TFs such
as Zinc fingers (Gommans et al., 2005), TAL effectors (Garg et al., 2012) or
CRIPSR/Cas-based repressors (Cong et al., 2013; Qi et al., 2013) has recently
enabled us to design biological networks with scalable number of non-cooperative
TF binding sites. These platforms have already been applied to the design of
boolean logic gates (Gaber et al., 2014) and a toggle switch (Lebar et al., 2014). In
these examples multiple non-cooperative TF binding sites are used in order to
decrease the intrinsic noise and thus increase the robustness of designed circuits
and achieve the desired response with the use of monomeric TFs only. While the
analysis of promoters with multiple non-cooperative TF binding sites is important
from the perspective of synthetic biology, it may also shed light on the analysis
of similar regulatory mechanisms observed in natural systems. For example,
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the Epstein-Barr Virus latency switch is regulated by a promoter with 20 non-
cooperative TF binding sites (Werner et al., 2007). Moreover, TF NF-κB, controlling
inflammation and immunity processes in different eukaryotes (Giorgetti et al.,
2010), and TF Msn2, regulating general stress response in yeast (Stewart-Ornstein
et al., 2013) also follow similar behaviour.

In this text we present a computational framework that can be used to effi-
ciently model the dynamics of gene regulatory networks (GRNs) with multiple
non-cooperative TF binding sites. The framework consists of three levels, i.e.
(1) promoter state evaluation, (2) evaluation of transcriptional activity and (3)
updating the concentrations. We introduce a methodology that can be used on
the first level, namely average promoter state approximation (APSA). APSA reduces
computational complexity of existing approaches that are commonly used to
evaluate the promoter state. We additionally propose a compact way of presenting
different promoter states’ transcriptional activity, namely expression profiles based
modelling (EPBM), which can be used on the second level of the modelling frame-
work. We then demonstrate the application of the framework on a case study of
NF-κB oscillatory response analysis, where we observe how different numbers of
observed binding sites affect the oscillatory dynamics of the system together with
different promoter expression hypotheses and other parameters describing the
system under study.

The remainder of this text is organized as follows: Section 2 introduces the
modelling framework. Its application on the analysis of the NF-κB oscillatory
response is described in Section 3. Section 4 discusses the generality of the
described approaches, their potentials in practical applications, and provides
some guidelines for future work.
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2. Computational modelling framework

Quantitative models describing the dynamics of GRNs are usually composed
of a set of ordinary differential equations (ODEs) or of a stoichiometric matrix
presentation (Le Novere, 2015). Both presentations are derived from a set of
chemical reactions describing the changes in the observed system. The size of this
set is proportional to the number of observed chemical species, which presents
a major obstacle when dealing with more complex systems. For example, let’s
assume a GRN where promoters have n non-cooperative TF binding sites with
m different types of competing TFs. In this case, the number of species that
derive from only one promoter equals (m + 1)n. Since each promoter state is
represented as a separate chemical species, the number of differential equations
in a conventional ODE model coincides with the number of different promoter
states.

When we are dealing with cooperative binding, these numbers can be drasti-
cally reduced with Hill equations (Alon, 2007). These presume that the promoter
state is either unbound or fully occupied. While restriction to only two possible
promoter states seems reasonable and also significantly lowers the computational
load, there are several drawbacks of these models (Weiss, 1997). Moreover, they
cannot be applied to non-cooperative binding.

Consequently, accurate quantitative modelling of multiple non-cooperative
binding sites is without further presumptions only possible for very small systems,
e.g., for a single promoter with only a few binding sites (Murphy et al., 2007).
We can usually simplify the model by ignoring the arrangements of bound TFs,
which means we only consider their quantities (Bintu et al., 2005a,b; Giorgetti et al.,
2010; Sauro, 2012; Werner et al., 2007). This results in (n+m

m ) different promoter
states, which still becomes infeasible for numerical simulations of non-trivial
scenarios. Further simplifications can be made with the separation of observed
reactions into two time scales according to their kinetic rates, i.e. slow reactions,
that describe the processes of degradation, transcription and translation, and
fast reactions that describe the binding processes (Hasty et al., 2001). Since fast
reactions occur several magnitudes of order faster than slow reactions, we can
presume that promoters always reach a quasi-equilibrium state before the changes
due to the slow reactions occur (Rao & Arkin, 2003). We can therefore simulate the
behaviour of the observed system with the iteration of the following three steps,
which are represented as three seperate levels of our computational framework:

1. Promoter state evaluation: evaluate current promoter states or their probabili-
ties on the basis of TF concentrations and binding affinities.

2. Evaluation of transcriptional activity: evaluate the transcriptional activity of
promoters based on their states and their expression profiles.

3. Updating concentrations: update concentrations of observed chemical species
according to slow reactions, i.e. degradation, transcription and translation.
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2.1. Promoter state evaluation

Promoter states are evaluated in dependence on corresponding TF concen-
trations and their binding/dissociation constants. Two approaches that have
already been applied to the modelling of GRNs with multiple TF binding sites are
fractional occupancy (FO) (Sauro, 2012) and thermodynamic modelling (TDM) (Bintu
et al., 2005a,b; Giorgetti et al., 2010; Werner et al., 2007).

2.1.1 Fractional occupancy and thermodynamic modelling

Both FO and TDM are based on the estimation of probabilities of different
promoter states and can be integrated into proposed computational framework in
a straightforward manner. Probabilities of promoter state sx can be calculated as

P(sx) =
W(sx)

∑
i

W(si)
, (1)

where W(sj) describes the weight of promoter state j. FO defines the weights as

W(sx) = Nx · KA1,n1 · [A1]
n1 · KA2,n2 · [A2]

n2 · · ·KAm,nm · [Am]
nm , (2)

where [Ai] is concentration of TF i, ni number of binding sites occupied by TF i in
state sx and KAi,ni the binding constant of ni TFs Ai to the promoter region. Nx is
the number of arrangements that define the observed state and can be expressed
as

Nx =
n!

n1!n2! · · · nm!(n− n1 − n2 − · · · − nm)!
. (3)

TDM is essentially the same method as FO, but uses different data, i.e. binding
free energies of each promoter state (Bintu et al., 2005a,b), to evaluate promoter
state weights. These are evaluated as

W(sx) = Nx · e−∆Gn1 /RT · [A1]
n1 · e−∆Gn2 /RT · [A2]

n2 · · · e−∆Gnm /RT · [Am]
nm , (4)

where ∆Gni is the free energy change between the ni bound TFs of type i and the
reference promoter state (i.e. fully unbound promoter), T is the absolute system
temperature, and R is gas constant. Free energy change of the reference state
equals 0 (∆G0 = 0). Note that the weight of unbound promoter s0 equals 1 in both
FO and TDM approach.

Described equations presume that no cooperativity among different TFs exists.
If there is also no cooperativity among TFs of the same type, it follows that
KAi,ni = Kni

Ai
in FO and ∆Gni = ni · ∆Gi in TDM, where KAi is binding constant of

a single TF Ai to the promoter, and ∆Gi presents the free energy change between
the reference state and the state in which one binding site is occupied by TF
Ai. Both approaches presume monomeric TF binding, but can be adjusted to fit

6



multimeric binding by raising Hill coefficients. Another presumption they make
is that all TF binding sites have the same binding affinity for the same TF type on
the same promoter. If the latter does not hold, one needs to regard each binding
site independently, which again leads to exponential growth of the number of
observed chemical species. However, biological plausibility of this presumption
has been justified thoroughly in the literature (e.g. see (Bintu et al., 2005a; Giorgetti
et al., 2010; Lebar et al., 2014; Werner et al., 2007; Zeiser et al., 2007)).

2.1.2 Average promoter state approximation

Although FO and TDM significantly decrease the computational effort, both
still perform a significant number of calculations that are necessary to determine
the weights of promoter states in each time step of the simulation. We propose
a simplified approach, i.e. average promoter state approximation (APSA), which is
able to accurately simulate the dynamics of more complex GRNs. APSA reduces
the time complexity of promoter state approximation from O

(
N · (n+m

m )
)

of FO
and TDM to O (N ·m) per promoter type, where N is the number of simulation
iterations, n the number of binding sites, and m the number of different TF types
that bind to these sites (see Supplementary text for time complexity evaluation).
Proposed approach evaluates an average promoter state instead of probabilities
of each possible state, and can be derived from the FO (see Supplementary text
for derivation). When m TF types competitively bind to n binding sites, average
number of bound TF Ai can be expressed as

nAi = n
KAi [Ai]

1 +
m
∑

j=1
KAj [Aj]

. (5)

Note that TF binding sites can be regarded independently when there is no
competition between the TFs. Finally, we can describe the average promoter state
as a set of average numbers of bound TFs of each type, i.e. s =

{
nA1 , nA2 , . . . , nAm

}
.

2.2. Evaluation of transcriptional activity

Once the promoter states or their probabilities are evaluated, we can use
them to determine the transcriptional activity of the observed promoter. We
propose a compact way of presenting different promoter states’ transcriptional
activity, namely expression profiles based modelling (EPBM), which derives from
the matrix presentation. The dimensionality of the EPBM matrix is defined by
the number of different TF types that bind to their corresponding binding sites.
If m is the number of different TFs, the promoter with n binding sites would
require a m-dimensional matrix with n + 1 being the size of each dimension. For
example, a promoter with n binding sites regulated by both activator and repressor
yields an expression profiles matrix M ∈ R(n+1)×(n+1), in which each element

7



corresponds to expression profile of a certain promoter state. Continuing the
previous example, Mij represents the expression profile of the promoter state sij
with i bound activators and j bound repressors, which we denote as ρ(si,j). Note
that elements that lay bellow the matrix anti-diagonal are not valid in the case of
competitive binding, since the sum of bound TFs i + j produces a number larger
than the number of available TF binding sites n. When using FO or TDM we can
evaluate the transcriptional activity of observed promoter as ρ = ∑

x
ρ(sx) · P(sx),

where ρ(sx) presents the transcriptional activity of promoter state sx.
Alternatively, we can describe expression profiles with the m-dimensional

interpolation function corresponding to EPBM matrix presentation. It is necessary
to have such presentation when using APSA, since it generally yields non-integer
numbers corresponding to the average numbers of bound TFs. To determine
the promoter activity in this case we have to interpolate values between differ-
ent promoter states’ expression profiles. This can be achieved, e.g., with the
weighted sum of all valid nearest promoter states. Another option is to define
an m-dimensional interpolation function, i.e. ρ(·), that presents the promoter
expression profiles and substitutes the matrix presentation. In both cases we
evaluate promoter activity as ρ = ρ(s).

2.3. Updating concentrations

After promoter activity has been evaluated it can be used to update concen-
trations of the observed species with respect to slow reactions, i.e. transcription,
translation and degradation. This can be achieved with the application of ODE
solvers or variations of stochastic simulation algorithm (SSA) (Gillespie, 1977).
E.g., when using ODE solvers, the selected mRNA dynamics can be described as

dm
dt

=
k

∑
i=1

Piρi − γm, (6)

where P1, ..., Pk and ρ1, ..., ρk denote concentrations and evaluated transcriptional
activity of promoters expressing mRNA species m, and γ denotes degradation
rate of m. Equations governing the dynamics of mRNA species can be integrated
into the system of ODEs together with the description of other slow reactions to
obtain a functional model of the observed GRN.
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3. Case study: analysis of NF-κB oscillatory response

We demonstrate the application of the proposed computational framework
on the analysis of NF-κB oscillatory response. In the light of recent progress,
indicating the non-cooperative nature of the NFKBIA gene TF binding sites
(Giorgetti et al., 2010), we were interested in how different number of the observed
TF binding sites in a combination with different expression hypotheses affect the
dynamics of the analysed system.

3.1. Model description

NF-κB is a TF crucial for induction of genes in response to inflammatory stimuli
thus regulating inflammation and immune response in mammalian cells (Cheong
et al., 2008). NF-κB may in certain conditions exhibit oscillatory behaviour in
response to sufficient concentrations of a stimulant TNF-α, tumour necrosis factor
alpha. However, it has only recently been shown that many of NF-κB’s target genes
contain clustered DNA binding sites with negligible cooperativity, resulting in
analogue inflammatory response, where graded increase in TNF-α concentration
results in a graded increase of nuclear NF-κB concentration (Giorgetti et al.,
2010). The inhibitor of NF-κB activity, IκBα, is encoded by NFKBIA gene, one
of the most common NF-κB’s target genes. NF-κB and IκBα are thus connected
via negative feedback loop, a necessary prerequisite for oscillatory response.
Production of IκBα is triggered by the presence of IκB kinase (IKK) induced by
TNF-α, which phosphorylates IκBα, resulting in its saturated degradation (Basak
et al., 2012). Saturated degradation of IκBα induced at a constant level of IKK
concentration introduces a time delay, which is a necessary requirement that can
lead to sustained oscillations in combination with the core negative feedback loop
(Mengel et al., 2010). Note, however, that our model ignores the presence of two
other IκB isoforms, namely IκBβ and IκBε, otherwise responsible for dampening
the oscillations on larger time-scales (Cheong et al., 2008).

We adopted a three-dimensional model presented in Krishna et al. (Krishna
et al., 2006) to account for different numbers of TF biding sites. We observed the
time course of nuclear NF-κB concentrations, cytoplasmic concentrations of IκBα
and its transcript using the following model:

dx
dτ

= A(1− x)
ε

ε + z
− Bz

x
δ + x

, (7)

dy
dτ

= ρ− y,

dz
dτ

= y− C(1− x)
zε

ε + z
,

where x, y and z are proportional to NF-κB, IκBα transcript and IκBα concentra-
tions, respectively. Parameters A, B, C, δ and ε are derived from basic kinetic rates
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(for exact model derivation and parameter values see Supplementary text), and ρ
defines promoter activity in dependence on the promoter state using three equally
plausible hypotheses, i.e. additive, all-or-none and singular (Giorgetti et al., 2010).

With the additive hypothesis the transcriptional response is proportional to
the number of occupied binding sites. With the all-or-none hypothesis promoter
is active if all of the n binding sites are occupied. Finally, with the singular
hypothesis transcriptional response is triggered by the binding of an arbitrary
(>0) number of TFs. Because we are dealing with a single TF, the dimensionality
of the EPBM matrix is (n + 1)× 1 and has the following forms

M =



[
0, 1

n , 2
n , . . . , n−1

n , 1
]

; if additive,

[0, 0, 0, . . . , 0, 1] ; if all-or-none,

[0, 1, 1, . . . , 1, 1] ; if singular.

(8)

As described in Section 2.2, it is necessary to interpolate these matrices in order to
use them when modelling with the APSA method.

3.2. Analysis

We analysed the features of oscillations in terms of their periods, amplitudes
and spikiness, a common phenomenon caused by the saturated degradation of a
regulator (Mengel et al., 2010). Spikiness was evaluated according to the measure
(max(x)−min(x)) /mean(x), where x is the concentration of the observed chem-
ical species (Krishna et al., 2006). For further information regarding the analysis
see Section Performing computational analyses in Supplementary text.

First, we compared the results of different promoter state evaluation methods,
namely FO (which outputs identical results as TDM) and APSA, on our case
study with different expression hypotheses on promoters with five TF binding
sites (see Figure 1). Note that for one binding site all hypotheses yield equal
results. As there is no difference in the results obtained with the additive and
all-or-none expression hypotheses and no significant difference in the results
obtained with the singular hypothesis, our further analyses were based only on
APSA method, due to its computing speed. The reader can refer to additional
results in Supplementary text that justify the suitability of APSA with respect to
FO.

Next, we analysed the effects of IKK concentrations on the oscillatory dynamics
in dependence on the number of modelled TF binding sites (see Figure 2), with
the tuning of model parameter C (see Section Model derivation in Supplementary
text). Results indicate that the number of TF binding sites does not affect the
dynamics of the system with the additive hypothesis. However, with the all-or-
none and singular hypotheses, the increase in the number of TF binding sites has
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Figure 1: Comparison of results obtained with FO (a) and APSA (b) method. Simulations
were performed on a model with nominal parameter values, five TF binding
sites and additive, all-or-none and singular expression profile hypotheses.

an opposing effect. While it increases the oscillatory region with the all-or-none
hypothesis, it decreases the region with the singular hypothesis. Moreover, all-or-
none hypothesis increases the maximal amplitudes of oscillations in the middle
of oscillatory region and drastically increases periods of oscillations in the close
proximity of the bifurcation point. The values remain more or less pertained in
other regions and with the singular hypothesis. All-or-none hypothesis, however,
decreases the spikiness of obtained oscillations with at least four binding TF sites
and larger IKK concentrations, i.e. far from the bifurcation point. Spikiness is
pertained within the remaining oscillatory region with the singular expression
hypothesis.

At last, we analysed the oscillatory dynamics around the nominal values of
kinetic parameters describing the model with perturbations of two parameters
at the same time and again with the variations of the number of TF binding
sites. We presumed that IKK concentration is constant during the course of each
simulation since we only observed the system response for a limited amount
of time. According to IKK degradation rates used in (S. Zambrano, 2014), IKK
concentrations do not change significantly within the observed time interval.
We perturbed other parameter values by multiplying them with logarithmically
spaced values from an interval [10−2, 102]. Results of our analysis are presented
in Figures 3, 4 and 5 with the additive, all-or-none and singular expression
hypothesis, respectively, and for perturbations of parameters A and B (additional
results obtained with FO and results for variations of different parameters are
presented in Supplementary text).

Oscillatory regions follow the same trends as when changing the IKK con-
centrations. Similar dynamics is observed for amplitudes of oscillations with the
all-or-none expression hypothesis, which are increased in the middle of oscillatory
region. On the other hand, other two hypotheses more or less pertain the max-
imal oscillation amplitudes with different numbers of TF binding sites. Similar
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Figure 2: Effects of IKK concentrations (linear range from 0 to 1 µM) in a combination
with number of TF binding sites (linear range from 1 to 10) on nuclear NF-κB
oscillation amplitudes (top row), periods (middle row) and spikiness (bottom row)
with the additive (left column), all-or-none (middle column) and singular (right
column) expression hypothesis. Amplitude values are measured in µM, period
values in hours. Black colour represents stationary behaviour (no oscillations).

behaviour is reflected by periods of oscillations. Their values are relatively low
near the bifurcation point and increase with the distance from it. Higher numbers
of TF binding sites increase this distance with the all-or-none hypothesis and
decrease it with the singular hypothesis (especially near bifurcations caused by
increasing parameter A). While spikiness of oscillations is pertained with the
additive and singular hypotheses, it is decreased near bifurcation points with the
all-or-none hypothesis.
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Figure 3: Effects of A (y axis) and B (x axis) parameter perturbations on nuclear NF-κB
oscillation amplitudes (top row), periods (middle row) and spikiness (bottom row)
for different numbers of TF binding sites ranging from 1 (first column) to 5
(last column) with the additive expression hypothesis. Amplitude values are
measured in µM, period values in hours. Perturbations were performed by
multiplying the parameters with logarithmically spaced values from an interval
[10−2, 102]. Black colour represents stationary behaviour (no oscillations).

4. Conclusion

Even though the majority of state-of-the-art computational analyses omit ex-
plicit modelling of individual TF binding sites within the cluster, we demonstrated
that variations in dynamics caused by different promoter expression hypotheses
and different numbers of observed TF binding sites should not be ignored in the
exact quantitative modelling of biological systems. We described a computational
framework that can be applied to address this problem. We additionally proposed
two novel methods within the framework, i.e. APSA to efficiently evaluate pro-
moter states, and EPBM to describe the transcriptional activity of the observed
promoters. Introduced framework allows us to evaluate the dynamics of the
observed system in dependence on different promoter expression hypotheses,
different numbers of observed TF binding sites and different variations of other
parameters describing the system in a straightforward manner.

We demonstrated the application of the proposed framework on a case study
of NF-κB oscillatory response analysis. Our results indicate that variation of the
number of TF binding sites in a combination with different promoter expression
hypotheses, i.e. additive, singular and all-or-none, yield substantially different
results in essentially the same system. We showed that the number of TF binding
sites may indeed play a key role in determining the overall system response. On
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Figure 4: Same as Figure 3 except with the all-or-none expression hypothesis.

one hand the number of TF binding sites does not change the dynamics of the
system in any way using additive hypothesis. On the other hand, the number
of observed TF binding sites considerably changes system’s response with the
remaining two hypotheses. While the oscillatory ranges decrease with respect
to the number of observed TF binding sites with the singular hypothesis, they
increase with the all-or-none hypothesis. We reason that in order to perform
complete, detailed analyses of regulatory networks or their smaller sub-networks,
presence and effects of multiple TF binding sites on the system dynamics should
not be omitted.

All of the approaches for evaluating promoter states presented within our
computational framework presume that concentrations of regulating TFs are
much higher than binding sites concentrations. This presumption is commonly
applied to the modelling of GRNs and metabolic networks together with different
acknowledged mathematical formalisms, such as Hill equations (Alon, 2007) or
Michaelis-Menten kinetics, in which we presume that the substrate concentration
is much higher than the enzyme concentration. However, this presumption is not
always valid, especially when we are dealing with large clusters of TF binding
sites and/or several copies of each promoter regulated by these sites. FO and
TDM models are unable to retain the quantitative accuracy in such cases. APSA
however, can be extended to cope with such scenarios, but only for small numbers
of different TFs, which bind to the same binding site type (see derivation in
Supplementary text for one TF per type and (Wang, 1995) for two TFs per type).
The cost of this accuracy is additional complexity of equations behind the model.
However, these do not considerably increase the computational complexity of
simulations.

Finally, we end this discussion with suggestions of further potential applica-
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Figure 5: Same as Figure 3 except with the singular expression hypothesis.

tions of the presented approaches. Research and analysis of GRNs goes hand
in hand with computational modelling, which is sometimes accompanied by
easy-to-use computational tools. Such tools (e.g. Copasi (Mendes et al., 2009),
TinkerCell (Chandran et al., 2009) or CellDesigner (Funahashi et al., 2006)) already
provide a variety of functionality regarding the construction and analysis of GRNs
behind intuitive graphical user interfaces with the purpose to speed up and
simplify the process of computational analyses end user would like to perform.
However, to our knowledge, none of the existing tools provide accurate modelling
of the multiple TF binding sites at the present day. Following the recent trends
in synthetic biology, which demonstrate progress in the engineering of several
different types of monomeric non-cooperative TFs, we anticipate the need for
integration of such modelling techniques. Although it is sometimes possible to
work around these limitations with additional assumptions about the model itself,
this would not be necessary if computational frameworks as the one presented in
this text were included as one of the many embedded features.
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1 From fractional occupancy to average promoter
state approximation

Average promoter state approximation (APSA) evaluates promoter’s state in
dependence on the concentrations of TFs, TF binding sites and their corre-
sponding binding constants. In each simulation step the average promoter state
is defined with the average number of each TF type bound to its binding sites.
We can describe this state with the use of fractional occupancy (FO) as

nA =

n∑
i=0

i · P (nA = i), (1)

where nA represents the average number of binding sites occupied by TF A, n
number of observed TF binding sites and P (nA = i) probability that i binding
sites are occupied by TF A. The probability can be expressed as

P (nA = i) =
W (nA = i)

n∑
j=0

W (nA = j)
, (2)

where W (·) represents the weight of each promoter state. Extending Equation 1,
we obtain

nA =

n∑
i=0

i ·W (nA = i)

n∑
i=0

W (nA = i)
. (3)
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When we are dealing with only one TF type, weights can be expressed as

W (nA = i) =

(
n

i

)
Ki

A[A]i, (4)

where KA is binding constant between TF A and its binding sites and [A] is TF
concentration. Note again that we presume there is no cooperativity among TFs
of the same type. For the sake of convenience we rename the product KA[A] to
α. We can now rewrite the Equation 3 as

nA =

(
n
1

)
α+ 2

(
n
2

)
α2 + · · ·+ (n− 1)

(
n

n−1

)
αn−1 + n

(
n
n

)
αn

1 +
(
n
1

)
α+

(
n
2

)
α2 + · · ·+

(
n

n−1

)
αn−1 +

(
n
n

)
αn

(5)

=
nα+ 2n(n−1)

2 α2 + · · ·+ (n− 1)nαn−1 + nαn

1 + nα+ n(n−1)
2 α2 + · · ·+ nαn−1 + αn

= nα
1 + 2 (n−1)

2 α+ · · ·+ (n− 1)αn−2 + αn−1

1 + nα+ n(n−1)
2 α2 + · · ·+ nαn−1 + αn

1 + α

1 + α

= nα
1 + nα+ n(n−1)

2 α2 + · · ·+ nαn−1 + αn

1 + nα+ n(n−1)
2 α2 + · · ·+ nαn−1 + αn

1

1 + α

=
nα

1 + α

= n
KA[A]

1 +KA[A]
.

A similar, but drastically more complex derivation can be performed for sce-
narios with competition of different TF types for the same binding sites, which
we do not describe here. Instead, we provide a Mathematica script that con-
ducts the derivation 1. In general, the average number of bound TFs Ai among
m types of TFs that competitively bind to n binding sites can be expressed as

nAi
= n

KAi
[Ai]

1 +
m∑
j=1

KAj
[Aj ]

. (6)

At last, we can define the average promoter state as a set of average numbers
of bound TFs of each type:

s = {nA1
, nA2

, . . . , nAm
} . (7)

2 Evaluating the time complexity

We will evaluate and compare the time complexity of FO and APSA approach
in terms of the big O notation. Note that thermodynamic modelling (TDM)

1The code used in this paper is available at http://lrss.fri.uni-lj.si/bio/material/mbs.zip
under the Creative Commons Attribution license.
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has the same time complexity as fractional occupancy approach and is therefore
omitted in the following evaluation.

With FO we must evaluate probabilities of each among
(
n+m
m

)
promoter

states in each iteration of the simulation, where n denotes the number of tran-
scription factor (TF) binding sites to which m TFs bind competitively. After
evaluation of

(
n+m
m

)
weights, probabilities of promoter states are calculated.

In each iteration these probabilities are used in a weighted sum over
(
n+m
m

)
elements to obtain gene expression rate in dependence on the input TFs’ con-
centrations. If we presume that numerical integration of ODEs describing our
system is constant (for example, if we use Euler’s method), and that the number
of simulation steps is fixed, then time complexity of FO is expressed as

T (m,n,N) = O

(
N ·

(
n+m

m

))
= O

(
N · (n+m)!

m! · n!

)
, (8)

where N is the number of simulation iterations.
APSA on the other hand only evaluates the average number of promoter

bound species for each TF type. If we again presume that numerical integration
of ODEs describing our system is constant, then time complexity of APSA is

T (m,N) = O (N ·m) . (9)

In this case, time complexity is drastically reduced compared to FO or TDM
approach (see Figure 1 for time complexity of a single iteration).

Figure 1: Time complexity of a single simulation iteration. Figures show the
time complexity of FO approach (left) and APSA (right) in dependence on the
number of observed binding sites (n) and number of different TFs that bind
competitively to these sites (m).

On the other hand, we are often presented with a biological system in which
parameters m and n are known and usually relatively small constants (case
study introduced in the main text presumes m = 2 and n between 1 and 10).
While it is obvious from Equations 8 and 9 that m and n greatly influence
the time complexity (especially in the FO approach), we must not forget that
for accurate results, the number of simulation iterations N is usually a much
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larger number, which ultimately becomes a limiting factor when running sim-
ulations. Figure 2 presents the time complexity of described approaches for a
larger number of simulation iterations.

Figure 2: Time complexity for a larger number of simulation iterations. Figures
show time complexity of FO approach and APSA in dependence on the number
of observed binding sites (n) with two competitive TFs (m = 2) in N = 105

simulation iterations (left), and time complexity of FO approach and APSA in
dependence on the number of iterations (N) with two competitive TFs (m = 2)
for ten binding sites (n = 10).

3 NF-κB model derivation

We describe time-course of nuclear concentrations of NF-κB (Nn) and cytoplas-
mic concentrations of IκBα (I) and its transcript (Im) with the following system
of ordinary differential equations (ODEs):

dNn

dt
= kNin(Ntot −Nn)

KI

KI + I
− kIin

INn

KN +Nn
, (10)

dIm

dt
= Ptotktρ− γmIm,

dI

dt
= ktlIm − α(Ntot −Nn)

I

KI + I
,

where Ptot is the total number of the NFKBIA gene copies, ρ is predicted tran-
scriptional activity of a promoter, kt is transcription rate, ktl is translation rate,
γm is transcript degradation rate, α is degradation rate of IκBα in the IκBα:NF-
κB complex caused by IKK (α = 1.05 · IKKmin−1, where IKK denotes IKK
concentration), kNin and kIin are transfer rates of NF-κB and IκBα from cyto-
plasm to nucleus, respectively, and Ntot is the total (nuclear and cytoplasmic)
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parameter value

kt 1.03µM−1min−1

ktl 0.24min−1

γm 0.017min−1

kf 30µM−1min−1

kfn 0.03min−1

kb 0.03min−1

kbn 30µM−1min−1

kNin 0.08min−1

kIin 0.018min−1

kNIout 0.83min−1

kIout 0.012min−1

Ntot 1µM
Ptot 1
IKK 0.5µM
Kd 0.2µM

Table 1: Parameter values used in the basic model derived from [1] and [2].

concentration of NF-κB. Parameters KI and KN denote the dissociation con-
stants of cytoplasmic and nuclear IκBα:NF-κB complex, respectively, and can
be expressed as KI = (kb + α)/kf and KN = (kbn + kNIout)/kfn. Here kb and
kf denote cytoplasmic IκBα:NF-κB complex on and off rates, respectively, and
kbn and kfn nuclear IκBα:NF-κB complex on and off rates, respectively, and
kNIout transfer rate of IκBα:NF-κB complex from nucleus to cytoplasm. For
parameter values used in our analyses see Table 1. Note that parameter Kd

represents TF dissociation constant and is not used directly in the ODEs, but
is used to determine promoter activity ρ in each simulation step.

In order to decrease the number of free parameters, we rescale the observed
variables and introduce dimensionless time variable τ :

τ = γmt, (11)

x =
Nn

Ntot
,

y =
γmIm
ktPtot

,

z =
γ2mI

ktktlPtot
.
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The above transformations give us the following system of differential equations:

dx

dτ
= A(1− x)

ε

ε+ z
−Bz x

δ + x
, (12)

dy

dτ
= ρ− y,

dz

dτ
= y − C(1− x)

zε

ε+ z
,

where parameters A,B,C, δ and ε are defined as:

A =
kNin

γm
, (13)

B =
kIinktktlPtot

γ3mNtot
,

C =
αNtot

γmKI
,

δ =
KN

Ntot
,

ε =
KIγ

2
m

ktktlPtot
.

According to Table 1, nominal parameter values are as follows: A ≈ 45.4,
B ≈ 905.7, C ≈ 1670, δ ≈ 0.029 and ε ≈ 2.16 · 10−5. We can analyse how
dynamics change with respect to the parameter A indirectly, via parameter
kNin. Similarly, we indirectly vary parameters B, C, δ and ε via parameters
kIin, kf , KN and KI , respectively.

4 Performing computational analyses

We ran our computational analyses in Matlab. A single simulation was run for
every pair of parameter values with numerical integration of ODEs describing
the model (see Equations 12). Before numerical integration, promoter state
and its activity ρ were determined in each iteration of the ODE solver either
with fractional occupancy or with the average promoter state approximation
approach.

Simulation results presenting time-course of nuclear NF-κB concentrations
were analysed for potential oscillations. In case of sustained oscillations we mea-
sured their periods, amplitudes and spikiness. First part of the analyses was
identification of peaks in the analysed signal (time-course of species concentra-
tions). We calculated amplitudes as differences between maximal and minimal
signal values within one period of a signal. The behaviour was estimated to
be oscillatory if amplitudes of the last period in the observed signal were larger
than a predefined threshold (note that the treshold value was determined throuh
a trial and error process). Spikiness was evaluated using the measure proposed
in [1], i.e. (max(x)−min(x)) /mean(x), where x is the concentration of the
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observed chemical species. Spikiness is displayed when calculated value equals
at least 2. We performed simulations for longer time periods, but the signal
was analysed only after the stable state was achieved for one oscillation period,
which never exceeds 10 hours. Note that our model is able to produce either
steady stable state or stable oscillations after initial transient dynamics die out.

5 Additional results

The main text presents the results obtained with variations of the numbers of
TF binding sites and parameters A and B on the basis of average promoter
state approximation. Here we additionally present the results of variations of
the same parameters, but obtained with fractional occupancy in order to observe
the differences between the approaches on a wider scale (see Figures 3, 4 and 5).
However, we ran simulations for smaller resolution of varied parameter values
(25x25 instead of 50x50) due to larger computational complexity of fractional
occupancy.
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Figure 3: Effects of A (y axis) and B (x axis) parameter perturbations on nuclear
NF-κB oscillation amplitudes (top row), periods (middle row) and spikiness
(bottom row) for different numbers of TF binding sites ranging from 1 (first
column) to 5 (last column) for additive expression scenario. Amplitude values
are measured in µM , period values in hours. Perturbations were performed by
multiplying the parameters with logarithmically spaced values from an interval
[10−2, 102]. Results were obtained with fractional occupancy approach.

We additionally analysed effects of variations of parameters B and C on the
oscillatory dynamics of observed system obtained with the average promoter
state approximation approach (see Figures 6, 7 and 8).
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Figure 4: Same as Figure 3, except for all-or-none expression scenario.

6 Derivation of exact expression for describing
binding of transcription factor to its binding
site

Let’s presume that [A] denotes TF concentration and [B] its binding site con-
centration, i.e. the number of TF binding sites per each promoter multiplied by
promoter concentration. We can describe binding processes with the reversible
chemical reaction:

A+B
Kd↔ AB,

whereKd = koff/kon is the dissociation constant. Conservation of mass requires
that

[A] + [AB] = [A]0,

[B] + [AB] = [B]0.

Steady state concentrations can be expressed with

[AB] =
[A][B]

Kd
.

The following equations are derived when no further presumptions are made:

[AB] =
([A]0 − [AB]) ([B]0 − [AB])

Kd

[AB] =
[A]0[B]0 − [AB][B]0 − [AB][A]0 + [AB]2

Kd

0 =
[A]0[B]0 − [AB]([B]0 + [A]0 +Kd) + [AB]2

Kd

8
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Figure 5: Same as Figure 3, except for singular expression scenario.

We can eliminate the scenario in which Kd equals zero and obtain a quadratic
equation with solutions

[AB]1,2 =
[A]0 + [B]0 +Kd ±

√
([B]0 + [A]0 +Kd)

2 − 4[A]0[B]0

2
,

which define concentrations of occupied TF binding sites and among which only
the solution that satisfies conditions [AB] > 0, [AB] < [A]0 and [AB] < [B]0 is
valid.

Let [AB] denote the valid concentration. The average number of TFs bound
to each promoter can be expressed as n = [AB]/[P ], where [P] presents the
promoter concentration.

7 Description of Matlab and Mathematica code

The code used in this paper is available at http://lrss.fri.uni-lj.si/bio/material/mbs.zip
under the Creative Commons Attribution license. Below is its brief documen-
tation.

• ’params.m’: saves parameter values to a file ’params.mat’, which is used
by other files (Matlab).

• ’measureOsc.m’: determines if the input signal exhibits oscillatory be-
haviour and evaluates the features of potential oscillations (frequency, pe-
riod, amplitude and spikiness) (Matlab).

• ’modelFO.m’: fractional occupancy model of NF-κB - IKBα interactions
used for basic tests (Matlab).

9
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Figure 6: Effects of B (y axis) and C (x axis) parameters perturbations on nu-
clear NF-κB oscillation amplitudes (top row), periods (middle row) and spikiness
(bottom row) for numbers of TF binding sites ranging from 1 (first column) to 5
(last column) for additive expression scenario. Amplitude values in µM , period
values in hours. Perturbations were performed by multiplying the parameters
with logarithmically spaced values from an interval [10−2, 102].

• ’modelAvgBasic.m’: average promoter state approximation model of NF-
κB - IKBα interactions used for basic tests (Matlab).

• ’modelAvg.m’: average promoter state approximation model of NF-κB -
IKBα interactions used by other Matlab files in more complex analyses
(Matlab).

• ’simulateForBSRangeIKK.m’: analysis of different IKK concentrations
given the promoter expression scenario, number of interpolation points for
IKK concentrations and number of the observed TF binding sites (Mat-
lab).

• ’simulateForBSRangeParams.m’: analysis of different parameter ranges
given the promoter expression scenario, number of interpolation points for
IKK concentrations and number of the observed TF binding sites (Mat-
lab).

• ’derive avg.nb’: derivation of average state approximation with fractional
occupancy approach for one type of TF (Mathematica).

• ’derive avg 2.nb’: derivation of average state approximation with frac-
tional occupancy approach for two types of TF that compete for the same
binding sites (Mathematica).

• ’derive avg 3.nb’: derivation of average state approximation with frac-
tional occupancy approach for three types of TF that compete for the
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Figure 7: Same as Figure 6, except for all-or-none expression scenario.

same binding sites (Mathematica).
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