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1 Introduction 
Sensitivity analysis methods are widely applied to systems as 
well as to synthetic biology since they are able to provide the 
system’s robustness, can guide parameter estimation, 
experimental design and model simplification, and last but 
not least, can serve as a model validation tool [1]. These 
methods can be roughly divided in two groups, i.e. local and 
global methods [2, 3]. While local methods are easy to apply, 
they yield system’s sensitivity to perturbations of single 
parameter at a time in the neighbourhood of the nominal 
parameter values. Local sensitivity analysis methods prove to 
be inefficient when the parameter values describing the 
dynamics of the system exhibit large variations or when 
parameter values are missing or only partially known, which 
are usually the cases when dealing with biological systems 
[4]. Global sensitivity analysis methods on the other hand 
tend to investigate the whole space of possible parameter 
values applying different sampling techniques in a 
combination with computer simulations [3, 4].  In some cases, 
however, the subset of parameter values, so called viable 
parameter space, for which a biological system maintains 
desired qualitative behaviour, e.g., sustained oscillations, is 
very limited [5]. Quantitative sensitivity analysis assessment, 
which describes for example fluctuations of oscillation 
amplitudes and periods, is in such cases focused to viable 
parameter regions only. Global methods prove to be 
inefficient when viable solution space is small in comparison 
to the whole solutions space and especially when dealing with 
high dimensional models [5]. Glocal methods, which combine 
global approaches to identify viable parameter regions and 
local approaches to inspect the viable regions, have already 
been reported on the field of robustness analysis [5, 6]. These 
methods, however, still reflect certain limitations. While 
method described in [5] is unable to identify viable regions 
that are not connected and reside far from each other, method 
described in [6] is limited to only convex parameter regions. 
Moreover, its complexity scales exponentially with the 
number of model dimensions. As an alternative, sensitivity 
analysis based on sparse polynomial approximations of high 
dimensional models was introduced in [7]. However, the 
method proves to be efficient only for relatively small 
feasible parameter ranges. 

Herein, we introduce a computational framework that is able 
to perform the global sensitivity analysis of high-dimensional 
and poorly connected viable parameter regions. Each of the 
steps comprising the framework is described in Section 2, 
while Section 3 discusses the results of the framework and 
concludes the manuscript. 

2 Computational framework 

2.1 Generating viable solutions 

Viable parameter spaces are composed of viable solutions, for 
which desired simulation response of observed model is 
obtained. While brute force investigation of parameter space 
exhibits exponential dependence on the number of 
dimensions [5] we identify viable solutions using 
optimisation metaheuristics. More precisely we apply genetic 
algorithms (GAs), which mimic natural evolution in order to 
exhaustively examine the landscape of possible solution (see 
Figure 1). 

 
Figure 1: Generating viable solutions with genetic algorithms. 

2.2 Clustering the solutions 

Clustering is performed to identify different, potentially 
distant and poorly connected regions within the viable 
parameter space (see Figure 2). We perform the clustering 
using k-means method, which generates k parameter regions 
on the basis of distance between the parameter values 
describing each of the solutions. 

2.3 Sampling 

While the solutions obtained with GAs are biased and may 
have different numbers of representatives within different 
parameter regions, resampling is performed on each of the 
clusters. We apply orthogonal sampling [9] to generate the 
same number of samples in each cluster (see Figure 3). 
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Figure 2: Identifying viable parameter regions in two-

dimensional parameter space using clustering. 
 

 
Figure 3: Resampling the viable parameter regions with 

orthogonal sampling. 
 

2.4 Sensitivity analysis 

Each of the generated samples presents a single nominal 
value around which the Morris sensitivity analysis [1, 3, 10] 
is performed (see Figure 4). Sensitivity analysis yields the 
average mean and standard deviation of partial effects for 
each parameter and for each cluster. The sensitivity is 
assessed in qualitative as well as in quantitative aspects. 
While qualitative aspect evaluates the sensitivity of solution 
viability (e.g., sensitivity of oscillatory behaviour), 
quantitative aspect approximates the variability of viable 
solutions (e.g., sensitivity of oscillation amplitudes and 
periods).  

2.5 Combining results 

In the last step of the framework average means and standard 
deviations of partial effects are combined for all clusters. We 
also observe the standard deviations of partial effects between 
clusters, which can be used to evaluate the effects different 
regions might have on the sensitivity values.  

3 Results and conclusion 
Described computational framework can be efficiently 
applied to the sensitivity assessment even when dealing with 
poorly connected, non-convex and high dimensional 
parameter spaces. We successfully applied the framework to 
the design and analysis of genetic master-slave D flip-flop, for 
which several unconnected viable parameter regions were  

 
Figure 4: Graphical representation of Morris sensitivity 

assessment in two-dimensional parameter space, where 
circles represent samples generated in preceding step and 
∆ describes the parameter perturbation step. 

 
identified. Results obtained with the framework complied 
with other analyses, such as evaluation of entropies of optimal 
kinetic parameter values. We were able to use the framework 
to distinguish the most robust topologies and identify the 
parameter regions with the best dynamical properties. 
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