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Abstract

Genome-scale metabolic models (GEMs) have become increasingly impor-
tant in recent years. Currently, GEMs are the most accurate in silico repre-
sentation of the genotype-phenotype link. They allow us to study complex
networks from the systems perspective. Their application may drastically re-
duce the amount of experimental and clinical work, improve diagnostic tools
and increase our understanding of complex biological phenomena. GEMs
have also demonstrated high potential for the optimisation of bio-based pro-
duction of recombinant proteins.

Herein, we review the basic concepts, methods, resources and software
tools used for the reconstruction and application of GEMs. We overview the
evolution of the modelling efforts devoted to the metabolism of Chinese Ham-
ster Ovary (CHO) cells. We present a case study on CHO cell metabolism
under different amino acid depletions. This leads us to the identification of
the most influential as well as essential amino acids in selected CHO cell
lines.
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1. Introduction

Ongoing development of systems biology in recent years derives mainly
from the successful integration of many computational approaches into the
experimental work. One of the most successful applications of computer sci-
ence in biology is in the annotation of genomes from the vast data generated
by DNA sequencing experiments. Here, the computational approaches have
been essential for the analysis of large amounts of sequenced data as well as
for their presentation and applications. The success stories of the annotation
of genomes of different simple organisms [1] as well as of the human genome
[2] were followed by the establishment of the first genome-scale metabolic
models (GEM) [3].

GEMs are the most accurate in silico representation of the genotype-
phenotype link [4]. These models are continously improved with the accu-
racy of their descriptions as well as the strength of the predictions they make.
For example, Recon, the GEM describing human metabolism, was first pub-
lished in 2007 but it has now gone through six iterations of improvements
[5, 6]. These improvements are a consequence of the evolution of experimen-
tal and computational approaches used in systems biology. They result from
the publicly available large scale data through the literature and through
different general as well as specific web databases, such as KEGG (Kyoto
Encyclopaedia of Genes and Genomes)[7], BRENDA (BRaunschweig EN-
zyme DAtabase)[8] and BioCyc [9]. Publicly available computational models
through databases such as BioModels [10] and BiGG Models [11] present an
additional driving force for exchangeability of knowledge and computational
tools. The main motivation towards the continuous development of GEMs is
a vast scope of their applications. These range from (1) the design and opti-
misation of environmentally friendly bio-based production of fine chemicals
with simple organisms [12], and so called genome-scale synthetic biology [13]
to (2) the optimisation of biopharmaceutical manufacturing cell lines and
processes in non-mammalian cells, such as Pichia pastoris [14], as well as in
mammalian cells [15], such as Chinese Hamster Ovary (CHO) cells [16], and
finally to (3) the identification and analysis of possible biomarkers of complex
diseases, such as non-alcoholic fatty liver disease (NAFLD) [17, 18, 19] and
cancer [20, 21].
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Computational models can be used to identify the segments that need to
be explained more accurately to obtain a valid representation of the system’s
response. This allows us to systematically increase the knowledge describ-
ing biological mechanisms governing complex networks. Integration of data
obtained from experiments, literature and databases into metabolic computa-
tional models can be described with a circular iteration scheme of knowledge
acquisition and model improvements as shown in Fig. 1. It consists of (1)
data acquisition and refinement through experimental work, literature and
publicly available databases; (2) establishment and optimisation of compu-
tational models using the acquired data; and (3) analysis and validation of
computational models and their potential refinement through another iter-
ation of the cycle. The computational approaches are essential in all three
steps described in the scheme. Novel computational approaches, which can be
used in the reconstruction, analysis, refinement and visualisation of metabolic
models, are therefore vital for the continuous progress of systems biology.

Numerous computational methods are available in the field of metabolic
modelling and analysis. Majority of these are derived from the constraint-
based analysis. The development and application of these methods is driven
by the publicly available toolboxes, such as Pathway Tools [22], RAVEN
(Reconstruction, Analysis, and Visualisation of mEtabolic Networks)[23] and
probably the most popular COBRA (COnstraint-Based Reconstruction and
Analysis) toolbox [24, 25]. These toolboxes implement the majority of the
available computational methods. They follow open source concepts and are
easy to update with novel methods. Computational methods applied to the
analysis of metabolic networks include basic analyses, which can predict the
reaction fluxes that bring the network to its optimal state (for example flux
balance analysis - FBA)[26]. Implemented methods can be used to tailor the
metabolic model with a specific context (see for example [27, 28]), and auto-
matic identification of reactions, which need to be blocked in order to achieve
the optimal state of the metabolic network, for example the state in which
the production of selected metabolite is optimal [29, 30]. Large attention has
also been devoted to the development of different visualisation approaches
(see for example Escher [31]). Visualisation is, however, still mostly per-
formed manually (see for example ReconMap [32] for the visualisation of
human metabolism model).

In the following chapters the review of the state-of-the-art methods for the
analysis, reconstruction and visualisation of metabolic networks is described.
We begin with the description of some general approaches for the modelling
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Figure 1: Circular iteration scheme describing the integration of experimental work with
computational models. Data acquisition through the execution of new experiments, appli-
cation of publicly available databases and literature is followed by the establishment and
optimisation of computational models. These have to be sufficiently validated before their
practical application. Validation is usually successful only after several iterations of model
refinements and extensions. These usually require additional experiments and acquisition
of supplementary data.
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and analysis of biological systems with the emphasis on the GEMs (see Sec-
tion 2). Furthermore, we describe the most comprehensive publicly available
databases containing large experimental datasets and computational models
(see Section 3). We comment on the approaches that can be used in the pro-
cess of the reconstruction and visualisation of GEMs (see Sections 4 and 5).
We overview the progress in the development of CHO GEMs in recent years
(see Section 6). We demonstrate the application of selected computational
methods on the analysis of the most recent and most complete CHO GEM,
i.e. iCHO1766 [33] (see Section 7).

2. Constraint-based methods for the analysis of metabolic net-
works

Numerous computational methods have been developed for the compu-
tational reconstruction and analysis of metabolic networks in recent years.
Most of these approaches have been integrated within different publicly avail-
able computational toolboxes, such as COBRA [24, 25] and RAVEN [23].

Computational analysis of molecular networks is usually performed on the
basis of their stoichiometric description [34]. Here, each reaction is described
with its stoichiometric coefficients [35]. Stoichiometric description can be
used to establish a set of ordinary differential equations (ODEs), which are
solved numerically to compute the changes in metabolite concentration over
time. Dynamical approaches, such as numerical integration of ODEs, can
be applied only when reaction kinetics and parameters are known for the
whole system. This is usually not the case for the large-scale metabolic
networks. Steady-state assumption can be applied to the analysis of the
organisms living in a constant environment that are in exponential or log
phase of growth [26, 36]. This assumption transforms the systems of ODEs
to a system of linear equations with infinite solutions. The solution space
can be reduced to a single solution with the flux balance analysis (FBA) [26].

FBA defines the optimal flux through the observed reactions with addi-
tional constraints. These constraints define the lower and the upper bound of
the reaction fluxes. They are derived from different properties of the system,
such as the availability of enzymes catalysing observed metabolic reactions
and the reversibility of reactions. Additional information can be encoded
within the flux boundaries. These include cell line specific parameters and
properties of its environment, compartmentalisation of the metabolic reac-
tions and their regulation by signalling or gene regulatory networks [37, 38].
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The optimal flux is evaluated on the basis of the optimisation criterion.
The optimization criterion defines a biological objective that is relevant to
the problem being studied [26]. It is modelled as a linear function, which de-
scribes the reactions’ contributions to the specific phenotype of the observed
system. Examples of optimisation criteria are maximal cell growth or maxi-
mal production of a recombinant protein [26]. The optimal flux distribution
within the reconstructed metabolic network can be acquired with the max-
imization (sometimes also minimization) of this criterion. The constraints
and the objective criterion constitute the general form of a linear program.
This can be solved as linear programming problem [37]. An example of an
FBA application to the analysis of a metabolic network can be found in
section 7.

Several extensions of FBA have been developed in recent years. These
include dynamic flux balance analysis (dFBA) [39] and miniFBA [40], which
incorporate rate of change of flux constraints. Regulatory flux balance anal-
ysis (rFBA) [41] incorporates regulatory constraint in the analysis. Another
example is parsimonious or parsimonious enzyme usage FBA (pFBA), which
classifies genes according to their contribution to the optimal solution [42].
The repertoire of constraint-based methods currently includes more than 100
methods. Further information regarding other extensions of the FBA method
can be found in references [30], [43] and [44].

3. Biological databases

Large experimental datasets together with different computational mod-
els have been made available in the form of publicly available databases in
recent years. Some of these cover metabolic pathways for different organisms
(e.g. KEGG [7] and MetaCyc [9]), while others focus on experimental data
or computational implementations of different metabolic models (e.g. BiGG
Models [45] and BioModels [10]). Table 1 lists some of the commonly used
databases in the field of GEMs reconstruction and analysis, and describes
their intended purpose. Databases have a significant impact on the analysis
of biological systems. They provide data for the reconstruction, improve-
ment and validation of metabolic networks, and serve as a repository for the
storage of knowledge that has been obtained with different experimental and
computational approaches. Data that are deposited in the form of database
entries need to fulfil several formal and informal standards. This contributes
to both human and computer readability. Most of the databases listed in
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Database Purpose Comments

BiGG models [45] genome-scale metabolic models
collaboration with other databases

(KEGG, PubChem, etc.)

KEGG [7] general purpose
support for KGML (KEGG Markup Langage), which

enables model visualisation

BioCyc [9] general purpose
set of specific databases (e.g. HumanCyc
database for human metabolic pathways)

MetaCyc [9] metabolic pathways
part of BioCyc database focused on metabolic networks

BioModels [10] models of biological processes
comprehensive database, which includes models of metabolic

and non-metabolic pathways and networks

Table 1: Publicly available databases that are commonly used for the genome-scale
metabolic models reconstruction and analysis. General purpose databases include a vast
scope of different categories, such as metabolic pathways, reactions, enzymes and drugs.

Table 1 also provide an Application Programming Interface (API), which
allows a straightforward access to provided data to different computational
tools developed globally by the scientific community.

4. Reconstruction of genome-scale metabolic models

GEMs systematically incorporate multi-omic data into an unified repre-
sentation [46, 47, 48]. These data are often referred to as BiGG (Biochemical,
Genetic and Genomic) data and represent the metabolic network of a spe-
cific organism [38]. GEM reconstruction has to describe every enzyme and
its corresponding metabolic reactions within the metabolic network. The
reconstruction must contain information about (1) substrates and products
of each enzymatic reaction, (2) stoichiometric coefficients, (3) reaction direc-
tionalities, and (4) their compartmentalisation [49]. GEMs must also include
additional reactions that are not present in the observed metabolic network
per se, but describe the transfer of metabolites between different compart-
ments in the model as well as transfer of metabolites between the cell and
its external media (so called exchange reactions) [38].

Before the availability of genome annotations, reconstructions were per-
formed solely with experimental data, research literature and biochemical
characterization of enzymes. These data, however, rarely describe the en-
zymatic behaviour in a living organism accurately. Modern reconstruction
protocols on the other hand include four main steps: (1) genome annotation,
(2) automated metabolic network reconstruction, (3) metabolic network re-

7



finement and, (4) evaluation and validation of metabolic reconstruction with
additional experimental data [38, 46, 47, 49].

4.1. Genome annotation

Annotation defines biological functions of certain parts of genome se-
quences and classifies them into standardized gene ontology classes [38, 47].
Automated gene search algorithms are used to annotate a specific genome
sequence. These algorithms often search for sequence homology to other,
already defined and characterized genes, and consequently proteins [50]. An-
notations are later verified manually with the goal to define unknown genes
and their functions. This is achieved with different sequence alignment tools
such as BLAST and other phylogenetic grouping tools [47]. Annotations with
low confidence values can be verified by performing additional experiments
[38]. Many annotated genomes are publicly available in the web databases,
such as CHOGenome [51].

4.2. Automated metabolic network reconstruction

Using annotated genome as an input, tools like Pathway tools [22] and
metaSHARK [52] can automatically generate GEMs [38], which can be repre-
sented by a list of genes, reactions and enzymes [47]. Furthermore, cell-line-
and tissue-specific metabolic models can be obtained from GEMs using model
extraction methods, such as GIMME [27]. Two recent surveys of reconstruc-
tion and model extraction methods together with their systematic evaluation
are available in [53] and [28]. Even though these algorithms are able to dras-
tically enhance the reconstruction process, the reconstructed networks may
still contain numerous errors. They may include genes that do not partici-
pate in a given metabolic pathway, while omit genes that present important
connections between metabolic pathways.

4.3. Metabolic network refinements

Manual refinements of the reconstructed network need to be performed
additionally to obtain a valid in silico representation of metabolic networks.
Automatically generated GEMs have to be refined with the potential cor-
rections of reaction stoichiometries, thermodynamics and energy constraints
[38, 49, 50]. Refinements are performed in a systematic order. A confidence
value is assigned to every gene in the network [47]. This is followed by the
reaction analysis, which is the most time consuming and critical process. Its
main goal is to verify the occurrence and the parameters describing specific
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reactions within the cell. In order to obtain a high quality metabolic re-
construction, organism compartmentalisation and exchange reactions, gene
processing, and thermodynamic and biomass accuracy are being emphasised
[38, 47, 48].

4.4. Evaluation and validation of metabolic reconstruction

Validation methods compare the experimental results with the data ob-
tained from the metabolic reconstruction. Metabolic reconstructions can be
to some extent validated with additional in vivo and in vitro experiments.
Here, we are often limited to the observation of phenotype and cell growth.
Phenotype of cells can be observed in different conditions. The observations
are performed together with additional measurements of, e.g. energy sources
uptake and secretion, and excretion of metabolic products into the media
[47]. Modern approaches are able to asses the distribution of metabolites
and estimate the reaction fluxes in vivo using methods, such as fluorescent
or 13C labelling [36, 47]. There are many studies that try to validate the
metabolic reconstruction making comparison among in silico predictions and
in vivo results of specific gene knock-outs [38, 50]. GEMs can also be val-
idated by observing if they correctly predict known auxotrophic features of
the cell as well. In this case the organic compounds that the organism is
able to synthetize by its own are observed. For example, a known feature
of CHO cell lines is that they are unable to synthetize cysteine and arginine
on their own, thus making these two amino acids essential [33]. Another
example of computational approaches that can be applied during the pro-
cess of validation are gap filling algorithms. Missing metabolic functions are
usually caused by blocked metabolic reactions, which are caused by miss-
ing metabolic reactions, i.e. gaps. These gaps may be to some extent filled
in automatically with algorithms, such as fastGapFill [54], Meneco [55] and
GAUGE [56].

5. Model visualisation

Visualisation of metabolic networks is important for the interpretation
and understanding of their composition and comparison with similar net-
works. Visualisation is included within the majority of the existing pathway
databases such as KEGG [7]. Visualised metabolic pathways and networks
are however mostly manually drawn and stored in a static form [57]. During
data updates, these images have to be modified manually. Moreover, manual
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Figure 2: Different visualisation approaches for reactions r1: a+b → c + d and r2: a +
c → e. Fig. (a) illustrates the approach where the metabolites are visualised as vertices
and reactions as directed hyperedges. In Fig. (b) hyperedges are transformed to regular
edges. Here, each reaction is represented with a set of edges. Every substrate in a reaction
has a directed edge to each of the products. Fig. (c) illustrates the approach where each
vertex represents one reaction, and the vertices are linked when two reactions share an
intermediate. Fig. (d) illustrates the bipartite approach where the first type of vertices
represents the reactions and the second type the metabolites. Blue vertices represent the
metabolites and green vertices the reactions.

visualisation of new metabolic pathways is extremely time consuming. Sev-
eral efforts to automate or at least aid the visualisation of metabolic networks
emerged in the last twenty years. Some of the most commonly used tools
that support the (semi-)automatic visualisation are presented in Table 2.

Computer aided visualisation mostly relies on a directed graph (digraph)
representation of metabolic networks. Here, the vertices correspond to me-
tabolites and the edges to reactions. When reactions have more than one
reactants and/or products these have to be visualised as hyperedges (see
Fig. 2(a)) [57]. Alternative approaches transform all hyperedges to regular
edges. Reactions may be decomposed into multiple edges, i.e. one for each
reactant (see Fig. 2(b)). Another approach depicts reactions as vertices and
metabolites as edges. The vertices are linked when two reactions share an
intermediate (see Fig. 2(c)). Algorithms, such as path-finding algorithms,
are hard to be used on such graphs. A more complex but effective approach
is to use a bipartite graph representation, where reactions are represented
with different types of vertices than metabolites (see Fig. 2(d)) [58].

Different tools for automatic visualisation of GEMs have been developed
recently (see Table 2). These include Cytoscape [59] in a combination with
different plugins, such as CySBML [60], and MetDraw [61]. Certain aesthetic
criteria are expected from the automatic visualisation of metabolic pathways.
Some criteria are common in graphical representation of graphs, such as
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Tool name
Automated
visualisation

Supported formats Comments

Cytoscape and CySBML [59, 60] Yes
SIF, NNF, GML,

XGMNL, SBML, BioPAX

general purpose tool for biomolecular networks,
many algorithms, wide array of settings

Escher [31] No COBRA JSON
manual adding of vertices and edges,
dynamic analysis in the background

MetDraw [61] Yes SBML
simple visualisation of SBML models,

use of vector images

Paint4Net [63] Yes COBRA JSON
immediate COBRA file visualisation,

semi-automatic removal of redundant elements

Table 2: Computational tools for the visualisation of genome-scale metabolic models.

minimization of intersecting edges [62], maximum symmetry and minimum
drawing surface [57]. Other criteria are specific to metabolic pathways and
arise from the conventions used in biochemistry textbooks, e.g. directionality
of hierarchic components [62]. These render most of the graph visualisation
algorithms unsuitable for the purpose.

Manual and semi-automatic visualisation tools are therefore still used
and developed nowadays. For example, Escher [31] does not support full
automatic visualisation, but aids the user in the manual construction of the
network visualisation. The tool also supports the interaction with constraint-
based methods that run in the background. This allows the users to perform
perturbations on the network graphically and interactively observe their con-
sequences.

6. Computational modelling of CHO metabolism

CHO cells have become prevalent in the production of recombinant pro-
teins for clinical applications [64]. These proteins should be therapeutically
active, human-compatible, and target-specific [65]. In contrast to bacterial
or yeast cells, mammalian cells are able to provide the proper protein folding,
assembly and post-translational modifications, which are necessary in order
to achieve high quality products [16]. In the last decades CHO cells have
been widely applied to the production of biopharmaceuticals such as mono-
clonal antibodies, hormones, cytokines, and blood coagulation factors. Large
attention has been devoted to the development of computational models of
different CHO cell lines to improve the quality of biopharmaceuticals (ther-
apeutics efficiency, specific targeting and immunogenicity), and to increase
the product yield.
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Figure 3: The evolution of CHO metabolic models. The complexity and accuracy of
metabolic models has been increasing ever since the publication of the first CHO metabolic
model in 1999. Colours of the nodes represent the models’ types: constrained based
approaches are coloured green and dynamical approaches red. Sizes of the nodes represent
the complexity of metabolic models that range from approximately ten to a few thousand
of metabolic reactions.

6.1. Overview of CHO models

The focus of the first computational model of CHO metabolism was the
analysis of central carbon metabolism [66]. This model was introduced in
1999. The progress of CHO metabolic models in the context of their biological
relevance and accuracy has been continuing ever since. We illustrate the
evolution of CHO metabolic models in Fig. 3.

The majority of the models were developed for the optimisation of a
specific segment of bioproduction. Different models were introduced to anal-
yse the influence of media composition, e.g., to determine key metabolites
linked to the accumulation of adverse products [67] or to analyse the ef-
fects of amino acid composition of media on the growth and productivity
of CHO cells [68, 69]. Models were used to analyse the metabolic switch
from lactate production to lactate uptake [70], to study the differences in
the metabolism at growth and non-growth phases [71, 72], and to quantify
intracellular metabolic fluxes of producing CHO cells supplemented with dif-
ferent lots of wheat hydrolysates [73]. The spatial localisation of metabolic
reactions was also taken into account to predict the medium composition on
CHO cells growth more accurately [74, 75].

Most of the reported computational approaches, simplify the whole me-
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tabolism to specific metabolic pathways, such as central carbon metabolism
[66, 76, 77], or lump the pathways to a small set of reactions which prove to
significantly affect the analysed segment of the system [78]. Constraint-based
approaches based on FBA and its derivations have enabled us to reconstruct
large-scale metabolic models even in the case of missing quantitative data
[64]. These approaches still require genome annotation data to perform the
GEM reconstruction. The CHO cells genome was not annotated until 2011
[79]. The first GEM model of CHO cells was reconstructed in 2012 by using
the mouse GEM as template [67]. Recently, several research groups combined
efforts to construct the first consensus GEM of CHO cell metabolism, namely
iCHO1766 [33]. We describe this model in more details in section 6.2.

CHO GEMs are not only used to predict the cell growth and the yield
of recombinant protein production, but can also be used to determine the
differences between different cell lines. Yusufi et al. identified the changes in
metabolism between the wild and the recombinant antibody-producing CHO
cell lines with the integration of transcriptomics data into the iCHO1766
GEM [80]. They used the upgraded models to analyse the differences in
metabolic pathways and to identify the transcriptional hotspots. Moreover,
omics-based GEMs can be used to discover new potential biomarkers for
selecting CHO clones with stable genomes and high productivity, and thus
to improve current selection methods such as DHFR amplification process
[80].

Even though CHO GEMs have a vast scope of successful applications in
the field of biopharmaceutical production, there are still several drawbacks
that need to be addressed in the future [33]. (1) GEMs need to describe
compartmentalisation of metabolic reactions more accurately, whereas reac-
tion directionalities may differ in different compartments [67]. Moreover, the
exchange reactions between compartments can play a vital role in the cell
metabolism and can even present a rate-limiting step. (2) The natural selec-
tion and genetic drift need to be regarded. The accuracy of the models can
be strongly diminished by the accumulated mutations in the cell lines. (3)
Accurate measurements of metabolite concentrations are required in order
to predict accurate protein yield and cell growth. Due to large amount of
different metabolites within various compartments, such measurements are
yet to be improved. (4) We are still unable to completely understand the
mammalian metabolism. Various connections between metabolic pathways
that may be vital are consequently still missing. (5) Biomass objective func-
tions are based on experimental measurements and usually presume static
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environment. In reality this is not the case as biomass composition differs
under different conditions. The models are also currently unable to predict
the dynamics of the cell growth. (6) The models are not able to account for
the influence of inhibitory metabolites (such as lactate or ammonia in the cell
medium) on the cell growth. (7) Finally, the metabolism is just a part of the
whole system that controls the production of recombinant proteins. GEMs
would need to be integrated with other models, such as secretory pathways
and glycosylation models. A lot of effort has been devoted to the construc-
tion of such models, but none have been sufficiently integrated with CHO
GEMs up to date [33].

6.2. iCHO1766 model

The iCHO1766 model was reconstructed on the basis of the annotation
of Cricetulus griseus (the Chinese hamster) genome [79]. The model rep-
resents to date the most accurate computational prediction of the growth
rate and the rate of recombinant protein production. The whole model and
its reconstruction together with the reference data for genes, reactions and
metabolites is available in the BiGG database [45].

The establishment of the model followed a community approach. Dif-
ferent research groups independently reconstructed GEMs, which they inte-
grated into a consensus model. They established initial models on the basis
of experimental results (transcriptomic and proteomic data) and literature
data [67, 71, 81, 82, 83]. Models were also partially derived from the GEM
Recon [5, 6, 84, 85] on the basis of CHO homologies to human genes. The
community built three cell line specific GEMs, namely for CHO-K1, -S and
-DG44 producing cell lines, with the GIMME (Gene Inactivity Moderated by
Metabolism and Expression) algorithm [27]. They generated CHO-K1 and
-S models with the RNA sequencing and proteomic data. Microarray data
were used for the establishment of CHO-DG44 model [33].

In order to accurately describe the cell growth and protein production
in silico, it is necessary to determine the relative amounts of metabolites
needed by the cell to synthesise all cellular components and recombinant
proteins. These data were obtained from Feist et al. [86]. The literature
data for recombinant erythropoietin (EPO) and immunoglobulin G (IgG)
production were used to find the difference between calculated values in non-
producing cell lines and measured values for IgG-producing hybridoma cell
lines. Thereafter, two biomass reactions were formulated and included into
the model [33].
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The iCHO1766 computational models accurately predict the growth phe-
notypes and known auxotrophies. They are able to predict the protein syn-
thesis capacities and to quantify a potential increase in product yield after
specific perturbations are introduced. They were used to show that the cell
engineering may affect the product yield more significantly than bioprocess-
ing treatments. Furthermore, the cell growth and product yield were shown
not to be proportionally related [33].

7. Case study: computational analysis of iCHO1766 model

We can use the FBA and its alternatives to predict the optimal cell growth
and optimal product formation in dependency of different conditions. These
include cell culture media composition and activity of enzymes catalysing the
metabolic reactions within the network. Here we demonstrate the applica-
tion of constraint-based approaches on three different analyses of iCHO1766
model, namely (1) basic FBA of metabolic network to assess the reference
state of the network, (2) qualitative perturbation analysis to assess the activ-
ity of selected biosynthesis reactions before and after the perturbations, and
(3) medium analysis to assess the effects of amino acid medium composition
on cell growth. We performed the analyses on the CHO-S cell line model
[33].

We visualised the metabolic reactions with the software developed by
our group, which we made publicly available at http://lrss.fri.uni-lj.

si/bio/material/viz_tool_matlab_v02.zip. The software is written in
Matlab and supports the automatic visualisation of GEMs using bipartite
graph approach. The visualisation is performed in the neighbourhood of the
metabolites of interest that are specified by the user. Size of the neighbour-
hood is defined with the maximal distance from the specified metabolites.
User can also specify compartments, which should be included in the visu-
alisation. The software runs FBA in the background, which allows the user
to visualise only the reactions with certain flux values. Moreover, user can
trigger perturbations with the modification of flux boundaries. The visuali-
sation of the results of the specified perturbations can be performed in three
different ways, i.e. (1) visualisation of reactions that become active after
the perturbations, (2) visualisation of reactions that become inactive after
the perturbations, and (3) visualisation of reactions that remain active, but
change reaction fluxes after the perturbations.
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7.1. Flux balance analysis of unperturbed model

We can use the FBA to assess the steady-state metabolic fluxes that op-
timise the objective function under the given constraints. We performed the
FBA on the CHO-S cell line model using the maximisation of metabolic flux
through the biomass reaction for a producing cell line as an optimisation
criterion. We used the constraints as provided within the original paper of
Hefzi et al. and in the model iCHO1766 for the selected cell line [33]. Ob-
tained solution presented a reference point for our further analyses described
in Sections 7.2 and 7.3.

We will demonstrate the FBA assessment of steady-state metabolic fluxes
on the reactions that are directly connected to the metabolism of cytosolic
asparagine. We illustrate this segment in Fig. 4. The stoichiometric matrix
N represents a mathematical description of the visualised segment:



r1637 r1643 r1648 r1653 r1654 r1655 r1656 r1553 r1567 r1580 r1592 r1603 r1613 r1630 r2532

asn L[c] −1 −1 −1 1 1 1 1 −1 −1 −1 −1 −1 −1 −1 1
asn L[e] 1 1 1 −1 −1 −1 −1 1 1 1 1 1 1 1 −1
ala L[e] 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0
ala L[c] 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
cys L[c] 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
cys L[e] −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
gln L[c] 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
gln L[e] 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0
gly[e] 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0
gly[c] 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
hom L[e] 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
hom L[c] 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0
ile L[c] 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0
ile L[e] 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
leu L[c] 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
leu L[e] 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0
met L[c] 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
met L[e] 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0
pro L[e] 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0
pro L[c] 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
ser L[c] 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
ser L[e] 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0
thr L[c] 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0
thr L[e] 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
trp L[c] 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
trp L[e] 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0
tyr L[c] 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
tyr L[e] 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0
val L[c] 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0
val L[e] 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0



.

(1)

Here, rows represent the metabolites and columns represent the metabolic
reactions. We can describe the steady-state fluxes through the observed
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Figure 4: Visualisation of the reactions that directly affect the cytosolic asparagine con-
centrations (asn L[c]). We assessed the fluxes through the reactions with the FBA. We
used biomass reaction for a producing cell line as an optimisation criterion. Blue nodes
correspond to metabolites, red nodes to the reactions consuming and green nodes to the
reactions producing cytosolic asparagine. Numbers assigned to each of the corresponding
nodes describe the fluxes through the metabolic reactions. We explain all abbreviations
in the Supplementary text.
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metabolic reactions with the vector

v =



−1000
−1000
−1000
−1000
−1000
−1000
−1000
−1000
1000
1000
−1000
0.0034
−1000
−1000
−999.9966



. (2)

Multiplication of the matrix N with the vector v should yield zero for the
observed metabolite (note that due to the simplicity, we omitted the reactions
not directly connected to cytosolic asparagine from the visualisation as well
as from the stoichiometric matrix). The product of the matrix with the
vector of fluxes is another vector with the first element equal to 0. That
element corresponds to the rate of change of cytosolic asparagine. Therefore,
the concentration of this metabolite is in steady-state when this assumed flux
distribution holds in the network.

7.2. Analysis of model perturbations and their visualisation

One of the main benefits of constraint-based approaches is their capabil-
ity to assess the consequences of perturbations on the metabolic networks.
We can perform the perturbations with the modification of constraints defin-
ing the viable fluxes through observed metabolic reactions on an arbitrary
segment of the model. We are thus able to simulate the consequences of
knock-downs of genes encoding specific enzymes. Moreover, we can use these
perturbations to assess the relevance of specific substrates within the cellular
medium.

We can describe the availability of substrates within the medium with so-
called uptake reactions and their corresponding flux boundaries. In our next
example we observed the consequences of the removal of two non-essential
amino acids from the medium, namely asparagine and glutamine. This was
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achieved by setting the upper and lower flux boundaries through the corre-
sponding uptake reactions to zero. FBA was performed on the additionally
constrained model and the results obtained were compared with the results
of the reference analysis (see Section 7.1). We observed the consequences
of the perturbations in a qualitative manner with the visualisation of the
reactions that became active after a perturbation was introduced.

Asparagine and glutamine serve as important sources of nitrogen and
energy in the mammalian cells. They highly affect the cell growth, protein
production, by-product release and energy metabolism [87]. CHO cells are
however able to synthesize these two amino acids when in demand [33].

Asparagine and glutamine biosynthesis reactions are inactive when as-
paragine and glutamine are available in the medium. We observed this in
silico with the FBA on the unperturbed GEM (see Section 7.1). In our
first perturbation analysis we simulated the removal of asparagine from the
medium. This caused the activation of asparagine biosynthesis reaction (see
upper left Fig. 5). Obtained results correspond with the experimental results
reported in the literature [88]. Asparagine is synthesized from aspartate with
the reaction catalysed by the asparagine synthase. When asparagine is not
present in the medium, the asparagine synthase gene expression is increased.
In our second perturbation analysis we simulated the removal of glutamine
from the medium. In this case two reactions became active, i.e. asparagine
degradation which presents an additional source of ammonia (see middle left
Fig. 5) and glutamine biosynthesis, which consumes ammonia and glutamate,
and is catalysed by the glutamine synthetase (see midle right Fig. 5). This
again corresponds with the experimental results reported in the literature
[89]. When cells are exposed to growth in medium without glutamine, the
glutamine synthetase gene expression is increased. In our third perturbation
analysis both amino acids were removed. In this case, asparagine as well as
glutamine biosynthesis reactions were active (see bottom row in Fig. 5).

7.3. Evaluating the effects of medium composition on cell growth

The optimisation of amino acid composition of CHO cell culture media
is important for optimal cell growth and efficient production of recombinant
proteins [68]. We quantified the influence of selected amino acids on cell
growth. We perturbed the original iCHO1766 CHO-S cell line model [33]
with the constraints that reduce the uptake of selected amino acids. The
original model presumes the medium availability of arginine, asparagine, as-
partate, cysteine, glutamine, histidine, isoleucine, leucine, lysine, methionine,
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Figure 5: Visualisation of the reactions that become active after we removed the selected
amino acids from the medium. Figs. in the left column represent the reactions that directly
affect the cytosolic asparagine concentrations (asn L[c]). Figs. in the right column rep-
resent the reactions that directly affect the cytosolic glutamine concentrations (gln L[c]).
Upper row represents the reactions that become active after the elimination of asparagine
from the medium, middle row the reactions that become active after the elimination of
glutamine from the medium, and bottom row the reactions that become active after the
elimination of both amino acids from the medium. Blue nodes correspond to metabo-
lites, red nodes to the consuming and green nodes to the producing reactions. Numbers
assigned to each of the corresponding nodes describe the fluxes through the metabolic
reactions. We use the following abbreviations for reaction names: ASNS1 – asparagine
synthase (glutamine-hydrolysing), GLNS – glutamine synthetase, ASNN – L-asparaginase.
We explain the remaining abbreviations in the Supplementary text.
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Figure 6: Dependence of cell growth on amino acid availability in medium. We performed
the simulations with unperturbed (left), with 10- (middle) and with 100-fold reduction of
glucosis uptake (right).

phenylalanine, proline, serine, threonine, tryptophan, tyrosine and valine.
We performed our analysis with the additional constraints imposed on their
uptake reactions as well as on the uptake reaction of glucosis, by the re-
duction of the reaction flux boundaries. FBA was performed after the flux
boundary reductions were introduced and the results were compared with
the results of the reference analysis (see Section 7.1).

Cells can compensate the removal of non-essential amino acids with the
increased glucose uptake and increased activity of amino acid biosynthesis
reactions (see Section 7.2). We conducted the perturbations of amino acid up-
take reactions together with the glucose uptake reaction. We performed three
different analyses, i.e. with unperturbed, with 10- and with 100-fold reduc-
tion of glucosis uptake. We present our results in Fig. 6. Arginine, cysteine,
histidine, isoleucine, leucine, lysine, methionine, phenylalanine, proline, thre-
onine, tryptophan and valine present essential amino acids in selected CHO
cell lines. When their availability was decreased by 10-fold, cells stopped
growing. Remaining amino acids, i.e. asparagine, aspartic acide, glutamine,
serine and tyrosine, are non-essential. Their removal from the medium was
compensated with their biosynthesis reactions. When glucose was in excess
only tyrosine affected the cell growth (see left Fig. 6). When glucose was
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decreased by 10-fold, cell growth was still comparable to the unperturbed
growth. In this scenario only glutamine and tyrosine showed to noticeably
influence the cell growth (see middle Fig. 6), which coincides with the liter-
ature data [87]. When glucose was decreased by 100-fold, cell growth was
decreased more drastically. Cells were, however, still able to grow without
non-essential amino acids (see right Fig. 6).

8. Conclusion

Although the response of metabolic networks is mainly derived from sim-
ple enzymatic reactions, they possess complex and rich dynamical proper-
ties. Their study requires complex systems approaches. The dynamics of
metabolic networks can be partially reproduced with the GEMs in combina-
tion with computational approaches we described. Even though the accuracy
of these reconstructions are far from being perfect, our journey does not stop
with the flawless GEMs. Combining computational models of metabolic net-
works with gene regulatory, protein interaction and signalling networks (for
example, see [90, 91]) as well as with other cellular processes into whole-cell
models [92] promises a whole new perspective. This will bring us to the capa-
bilities of building representative virtual tissues and virtual organs with the
long term goal to computationally reconstruct the whole human body [93].
Even though a perfect in silico reconstruction of the human body currently
seems very far from the reality, different state-of-the-art computational mod-
els already serve as an excellent basis for the extraction of novel knowledge.
In many cases they drastically reduce the amount of experimental and clini-
cal work, improve diagnostic tools and increase our understanding of complex
biological phenomena [94, 95].

Here we described some of these approaches that have been vastly applied
in recent years to the fields not directly related to computational modelling,
such as metabolic engineering, systems medicine and production of biophar-
maceuticals. Even though many details are omitted, this review should serve
as a good introduction to the computational reconstruction and analysis of
GEMs.
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[11] Z. A. King, J. Lu, A. Dräger, P. Miller, S. Federowicz, J. A. Lerman,
A. Ebrahim, B. O. Palsson, N. E. Lewis, BiGG models: A platform
for integrating, standardizing and sharing genome-scale models, Nucleic
Acids Research 44 (D1) (2015) D515–D522.

[12] D. Jullesson, F. David, B. Pfleger, J. Nielsen, Impact of synthetic biology
and metabolic engineering on industrial production of fine chemicals,
Biotechnology Advances 33 (7) (2015) 1395–1402.

[13] C. L. Barrett, T. Y. Kim, H. U. Kim, B. O. Palsson, S. Y. Lee, Sys-
tems biology as a foundation for genome-scale synthetic biology, Current
Opinion in Biotechnology 17 (5) (2006) 488–492.

[14] Z. A. Irani, E. J. Kerkhoven, S. A. Shojaosadati, J. Nielsen, Genome-
scale metabolic model of Pichia pastoris with native and humanized
glycosylation of recombinant proteins, Biotechnology and Bioengineer-
ing 113 (5) (2016) 961–969.

[15] C. Chen, H. Le, C. T. Goudar, Integration of systems biology in cell
line and process development for biopharmaceutical manufacturing, Bio-
chemical Engineering Journal 107 (2016) 11–17.

[16] K. P. Jayapal, K. Wlaschin, W. Hu, M. G. S. Yap, Recombinant pro-
tein therapeutics from CHO cells – 20 years and counting, Chemical
Engineering Progress 103 (10) (2007) 40–47.

[17] A. Naik, D. Rozman, A. Belic, SteatoNet: The first integrated hu-
man metabolic model with multi-layered regulation to investigate liver-

24



associated pathologies, PLoS Computational Biology 10 (12) (2014)
e1003993.

[18] A. Mardinoglu, R. Agren, C. Kampf, A. Asplund, M. Uhlen, J. Nielsen,
Genome-scale metabolic modelling of hepatocytes reveals serine defi-
ciency in patients with non-alcoholic fatty liver disease, Nature Com-
munications 5 (2014).
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