
Computational design of synchronous
sequential structures in biological systems

Supplementary text

Lidija Magdevska, Žiga Pušnik, Miha Mraz, Nikolaj Zimic, Miha
Moškon∗

1 Faculty of Computer and Information Science, University of Ljubljana, Večna pot
113, SI-1000 Ljubljana, Slovenia

∗ corresponding author
e-mail: miha.moskon@fri.uni-lj.si

1 Modelling the dynamics of gene regulatory
networks

Quantitative modelling of gene regulatory networks (GRNs) is usually per-
formed using a system of coupled ordinary differential equations (ODEs) [1, 2].
These approximate an average response of the system in a deterministic manner
[3]. Each equation in the system describes the dynamics of a specific chemical
species in the following way:

dxi
dt

= fi(x(t),p), (1)

where fi is a function governing the dynamics of chemical species xi (i ∈
{1, 2, ..., n}) in dependence on the state of the system in time step t, i.e. x(t) =
(x1(t), x2(t), ..., xn(t)) and in dependence on model parameters p = (p1, p2, ...).
In the most simple scenario these functions usually approximate two cellular
processes, i.e. gene expression and protein degradation. While protein degrada-
tion can be described with the simple mass action kinetics, where degradation
is proportional to protein concentration and its degradation rate, Hill equations
are used to describe the regulated gene expression [4]. Let’s presume that the
expression of protein x is regulated with transcription factor (TF) y. We can
describe the dynamics of x with the following equation

dx

dt
=


α ·

(
y

Kd

)n

1+
(

y
Kd

)n − δ · x, when y is activator,

α · 1

1+
(

y
Kd

)n − δ · x, when y is repressor,
(2)

where x and y describe the protein concentrations, α maximal protein expression
rate, Kd dissociation constant between the TF y and promoter binding sites, n

1



Hill coefficient and δ degradation rate of protein x. Gene expression dynamics
can be in several cases approximated with a unit step or Heaviside function,
which means that the gene is either fully off or maximally on [4]. Applying the
approximation to the Equation 2 yields the following equation

dx

dt
=

{
α ·Θ(y −Kd)− δ · x, when y is activator,
α ·Θ(Kd − y)− δ · x, when y is repressor,

(3)

where Θ is a unit step function returning 0 when its argument is a negative value,
and 1 when its argument is a positive value. This notation can be extended to
multiple TFs regulating the expression of the same gene in the following way

dx

dt
= α· (Θ(a1 −Kda1

) ·Θ(a2 −Kda2
) · ... ·Θ(ak −Kdak

)· (4)

Θ(r1 −Kdr1
) ·Θ(r2 −Kdr2

) · ... ·Θ(ak −Kdrl
))− δ · x,

where a1, a2,..., ak are transcriptional activators and r1, r2,..., rl are transcrip-
tional inhibitors.

2 Kinetic parameters values

The kinetic parameter ranges used in the process of tuning were derived from
the basic quantitative properties of the bacterial E. coli cell [4] (see Table 1).
In order to do so we converted the quantitative properties of the cell to kinetic

property value
time to transcribe a gene (Ttrsc) ∼ 1 min = 60 s
time to translate a protein (Ttrsl) ∼ 2 min = 120 s

mRNA half-life (T1/2mRNA
) ∼ 3.5 min = 210 s

cell half-life (T1/2cell) ∼ 30 min = 1800 s

Table 1: Basic quantitative properties of the bacterial E. coli cell according to
[4].

rates that are used in our models. The calculation of the transcription (ktrsc)
and translation rates (ktrsl) can be calculated with the following equations:

ktrsc =
1

Ttrsc
, (5)

ktrsl =
1

Ttrsl
. (6)

The calculation of the mRNA degradation rate is performed with the following
equation:

δmRNA =
ln(2)

T1/2mRNA

. (7)

2



We presume that the average protein half-lives equal the average cell half-life.
The protein degradation rate can be thus expressed as:

δ =
ln(2)

T1/2cell
. (8)

Since we model the transcription and translation as a single step reaction we
need to calculate its kinetic rate, which can be expressed as:

α =
ktrsc · ktrsl
δmRNA

. (9)

The reference parameter values obtained from the basic quantitative properties
of E. coli described in Table 1 and Equations 5–9 are described in Table 2. We

parameter description reference value
ktrsc transcription rate 1.6667 · 10−2 s−1

ktrsl translation rate 8.3333 · 10−3 s−1

δmRNA mRNA degradation rate 3.3007 · 10−3 s−1

δ protein degradation rate 3.8508 · 10−4 s−1

Kd dissociation constant 1 nM
α gene expression rate 4.2079 · 10−2 s−1

Table 2: Reference parameters values.

still need to define the ranges of actual kinetic parameter values that are used
in the process of the model response optimisation. For these, we presume the
following ranges:

• δ: from 10−1–fold to 101–fold its reference value;

• Kd: from 10−2–fold to 102–fold its reference value;

• α: from 10−1–fold to 101–fold its reference value.

3 Genetic algorithm

Genetic algorithm (GA) was used to tune the dynamic response of proposed
master-slave flip-flop implementation [5]. Each optimisation was performed with
16 iterations of the GA using 40 individuals. Initial parameter values were set to
random values from the intervals described in Section 2. Further optimisation
was performed with the evaluation of fitness function of each individual solution,
mutation of individual solutions and their selection.

3.1 Cost function

We assumed that high protein concentration should equal 100 nM and low
protein concentration maximally 10 nM . We defined a sequence of desired

3



states for each of the described topologies. In the first topology, where q is
the input data protein, we expected a high protein q concentration during all
four clock periods. In the second topology, where qc is the input data protein,
we expected the q concentration to be high during the first clock period, low
during the second, high during the third and low during the fourth. The cost
of each individual solution was determined as the sum of partial costs that
were calculated for each of the four periods separately. The partial costs were
calculated in k time points for both output proteins, i.e. q and qc.

The optimisation was divided in two phases. In the first 80 % of optimisation
time mean values of proteins q and qc were compared to their expected concen-
trations in k time points. In the remaining 20 % of optimisation time variance
of proteins q and qc was also observed to fine tune the dynamic response of the
system. If the calculated partial costs of an individual exceeded a predefined
threshold (i.e. 10 nM), it was artificially increased to lower the probability for
the individual to be selected into the next round of optimisation.

3.2 Mutations

We defined an interval [x, y], which was linearly narrowed after each iteration.
When performing mutations on an individual, we randomly select one of its
parameters, multiply it by a random value from the interval [0, y − x], and
finally add value x. If the upper or lower parameter boundary is exceeded, we
set the parameter to the exceeded boundary value. For the starting interval
[x, y] interval [0.05, 1.95] was selected, while for the ending interval [0.4, 1.6] was
used.

3.3 Selection

Only half of the population will survive and thus remain in the next round of
the optimisation. All individuals from the current population are sorted in an
increasing order regarding their costs. The fittest one percent (rounded up) will
always survive (elitism). The remaining individuals are selected with a roulette
rule. The probability that the individual i is selected equals:

pi =
i

n·(n+1)
2

, (10)

where i is the index of an individual in the sequence of sorted individuals, and n
is the population size. Each of the individuals can be selected more than once.
Individuals are selected according to their probabilities as long as necessary, i.e.
until all positions (i.e. half of the new population) are taken. The remaining half
of the population in the new generation will be generated with the mutations
(see Section 3.2) of the first half of the population.

4



4 Description of Matlab code

The code used in this paper is available at http://lrss.fri.uni-lj.si/bio/material/
counter.zip under the Creative Commons Attribution license. Below is its brief
documentation.

• ’simulations\find params d.m’: finds a set of kinetic parameter values for
which the flip-flop topology exhibits predefined dynamics.

• ’simulations\counter.m’: performs a simulation of Johnson counter with
the results of ’find params d.m’.

• ’simulations\getParametersRange.m’: returns valid ranges for each kinetic
parameter.

• ’simulations\plotGraphs.m: plots and saves flip-flop simulation graphs ob-
tained with the results of ’find params d.m’.

• ’analysis\runSimulations.cmd’: Windows batch script that runs 20 flip-
flop simulations in parallel and saves the results to a given subfolder.

• ’analysis\find params.m’: finds a set of kinetic parameter values for which
the flip-flop topology exhibits predefined dynamics and saves the results
to a given subfolder.

• ’analysis\morris.m’: performs the Morris sensitivity analysis.

• ’analysis\drawErrorBarSensitivity.m’: draws the error bars for sensitivity
analysis results.

• ’analysis\drawHeatMaps.m’: performs the parameter sweep analysis and
saves generated heatmaps to subfolder ’heat’.

References

[1] N. Le Novere, “Quantitative and logic modelling of molecular and gene net-
works,” Nature Reviews Genetics, vol. 16, no. 3, pp. 146–158, 2015.

[2] H. de Jong, “Modeling and simulation of genetic regulatory systems: a liter-
ature review.,” Journal of Computational Biology, vol. 9, no. 1, pp. 67–103,
2002.

[3] M. Kaern, W. J. Blake, and J. Collins, “The engineering of gene regulatory
networks,” Annual Review of Biomedical Engineering, vol. 5, pp. 179–206,
2003.

[4] U. Alon, An Introduction to Systems Biology. Chapman & Hall/CRC, 2007.

[5] C. H. J. Sun, J.M. Garibaldi, “Parameter estimation using metaheuristics
in systems biology: A comprehensive review,” IEEE/ACM Transactions on
Computational Biology and Bioinformatics, vol. 9, pp. 185–202, 2012.

5

http://lrss.fri.uni-lj.si/bio/material/counter.zip
http://lrss.fri.uni-lj.si/bio/material/counter.zip

	Modelling the dynamics of gene regulatory networks
	Kinetic parameters values
	Genetic algorithm
	Cost function
	Mutations
	Selection

	Description of Matlab code

