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ABSTRACT

University of Ljubljana
Faculty of Computer and Information Science

Mattia Petroni
Computational methodology for enhanced sensitivity analysis of gene regulatory networks

Biological computing is held towards a new era of processing platforms based on the
bio-logical computer structures that are at the heart of biological systems with informa-
tion processing capabilities. These bio-logical computer structures are mostly based on
gene regulatory networks, mainly because their dynamics reminds the computer logic
structures functioning. The use of these bio-structures is still in its early days since they
are for the time being far less effective than their silicon counterparts. However, their
use can be already exploited for a wide range of applications, covering pharmacological,
medical and industrial. In order to develop such applications, a precise design that is
based on computational modelling is vital in the process of their implementation.

Gene regulatory networks can be described as a chemical reacting systems. The
dynamics of such systems is defined at the molecular level with a set of interacting reac-
tions. The stochastic simulation algorithm can be used to generate the time evolution
trajectories of each chemical species by firing each reaction according to a Monte-Carlo
experiment. The main shortcoming of this approach is its computational complexity,
which increases linearly with the total number of reactions that have to be simulated.
When the number of reactions becomes too high, the stochastic simulation algorithm
turns out to be impracticable. This is the case of certain gene regulatory networks,
which can be either found in nature or can be artificially constructed. An additional
problem lies in the fact that reactions in such networks can often occur at different
time scales, which can differ by many orders of magnitude. Such scenario occurs when
gene regulatory networks contain multiple cis-regulatory binding sites, on which differ-
ent transcription factors are able to bind non-cooperatively. The transcription factors
binding occurs much faster than the average reactions in the gene expression, therefore,
this time-scale gap needs to be accounted into the simulation. Moreover, the transcrip-
tion control can be affected by specific dispositions of the bound transcription factors,
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which is only possible to simulate, if all the reactions that can produce the same dis-
positions are defined. The number of such reactions increases exponentially with the
number of binding sites.

In order to decrease the time complexity of the stochastic simulation algorithm for
such gene regulatory networks, an alternative algorithm called the dynamic multi-scale
stochastic algorithm (DMSSA) is proposed, in which the reactions involved in the
transcription regulation can be simulated independently, by performing the stochas-
tic simulation algorithm in a nested fashion. This is conditioned by the property of
the set of reactions, describing the gene regulatory network, being divided into two
subsets, i.e. a set of “fast” reactions, which occur frequently in a short time scale, and
a set of“slow” reactions, which occur less frequently in longer time scales. This thesis
demonstrates the equivalence between this approach and the standard stochastic sim-
ulation algorithm and shows its capabilities on two gene regulatory models, that are
commonly used as examples in systems and synthetic biology.

The thesis focuses on how to identify the most important input parameters of multi-
scale models, that affect the system the most. This is a common practice during the
design of bio-logical structures and can be achieved with the sensitivity analysis. It
may be difficult to carry out such analysis for complex reaction networks exhibiting
different time scales. In order to cope with this issue, an alternative computation of
the elementary effects in the Morris screening method is proposed, which is able to sort
all the model parameters, independently on their structural or time scale definitions, in
order of importance, i.e. which parameter carries the largest influence on the response
of the model.

To ease the use of the simulation algorithm and to perform the sensitivity analy-
sis, the thesis presents ParMSSA, an OpenCL based engine for performing parallel
stochastic simulations on multi-core architectures. ParMSSA aims to accelerate the
simulations, performed with our approach. ParMSSA is capable to run concurrently
multiple instances of DMSSA, which are usually needed for reducing the noisy re-
sults of stochastic simulations. ParMSSA provides also a framework for performing
the Morris screening experiment on reaction networks, which allows users to carry
out the sensitivity analysis of observed systems. The simulation results provided by
the ParMSSA can be easily interpreted and can be used to assess the robustness of the
bio-logical computer structures.

The proposed algorithms and the proposed simulation engine were applied on two
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case studies, i.e. on the Epstein-Barr virus genetic switch and on the synthetic repres-
silator with multiple transcription factor binding sites. The results of the sensitivity
analysis of the repressilator revealed that larger numbers of binding sites increase the
robustness of the system and thus the robustness of the oscillatory behaviour.

Key words: stochastic modelling, multi-scale modelling, sensitivity analysis, systems
biology, synthetic biology, stochastic simulation algorithm, multiple transcription fac-
tors binding sites





POVZETEK

Univerza v Ljubljani
Fakulteta za računalništvo in informatiko

Mattia Petroni
Računalniško podprta metodologija za analizo občutljivosti večnivojskih stohastičnih modelov

bioloških preklopnih gradnikov

Biološko računalništvo je zasnovano na procesnih platformah, ki izhajajo iz bioloških
preklopnih struktur z zmožnostjo procesiranja informacij. Te strukture večinoma te-
meljijo na gensko regulatornih omrežjih (GRO). Njihova dinamika spominja na de-
lovanje računalniških preklopnih gradnikov. Uporaba bioloških preklopnih struktur
je trenutno še v povojih, saj je njihova učinkovitost neprimerno manjša od silicijevih
ekvivalentov. Kljub temu njihove aplikacije že posegajo v farmakaloška, medicinska in
industrijska področja. Natančno načrtovanje na podlagi matematičnega in računalni-
škega modeliranja je ključnega pomena za razvoj in implementacijo tovrstnih aplikacij.

GRO lahko opišemo s sistemom kemijskih reakcij. Njihovo dinamiko definiramo
na molekularnem nivoju z množico kemijskih zvrsti in njihovih medsebojnih interakcij.
Za generiranje časovne evolucije vsake kemijske zvrsti lahko uporabljamo stohastični
simulacijski algoritem (SSA). V njem posamično reakcijo simuliramo na osnovi Monte
Carlo eksperimenta. Glavna slabost te metode je računska kompleksnost, ki se poveča
linearno s številom reakcij, ki jih je potrebno upoštevati v simulaciji. V primeru preve-
likega števila reakcij postane stohastični simulacijski algoritem neobvladljiv. Tovrstne
primere najdemo pri nekaterih GRO, ki vsebujejo več neekoperativnih DNA vezavnih
mest transkripcijskih faktorjev in ki so pogosta pri sodobnih bioloških procesnih struk-
turah. Dodaten problem se pojavi, ko želimo vse reakcije sistema simulirati v enem
samem časovnem okvirju. V GRO se nekatere reakcije izvedejo tudi za več redov ve-
likosti hitreje od drugih. Pri GRO, ki vsebujejo več nekooperativnih DNA vezavnih
mest transkripcijskih faktorjev, se pojavi ravno taka okoliščina. Vezava transkripcijskih
faktorjev poteka mnogo hitreje kot reakcije genske ekspresije, zato je pogosto potrebno
to razliko ustrezno obravnavati. Poleg tega je število vseh reakcij vezave in disociacije
eksponentno odvisno od števila vezavnih mest.

V disertaciji smo razvili dinamični večnivojski stohastični simulacijski algoritem
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(DMSSA), ki občutno zmanjša časovno kompleksnost stohastičnega simulacijskega al-
goritma pri tovrstnih GRO. DMSSA je zmožen reakcije vezave izvajati neodvisno od
reakcij, ki zadevajo gensko ekspresijo. Izvedba reakcij vezave poteka znotraj vgnezdene-
ga SSA. Prednost takega pristopa je v ločenju množice reakcij sistema na dve neodvisni
podmnožici, in sicer na množico hitrih in množico počasnih reakcij. Počasne reakcije
potekajo v časovni skali, ki sovpada z redom velikosti hitrosti reakcij v genski ekspresiji,
kot sta reakciji transkripcije in translacije. Te reakcije DMSSA izvede manj pogosto.
Hitre reakcije, kot sta reakciji vezave in disociacije tranksripcijskih faktorjev na/iz DNA
vezavna mesta, se po drugi strani izvajajo bolj pogosto. V pričujoči disertaciji pokaže-
mo, da se natančnost DMSSA ujema s SSA. Uporabo DMSSA pokažemo na dveh
modelih s področja sistemske in sintezne biologije.

V disertaciji se dodatno osredotočimo na pomen ocenitve občutljivosti večnivojskih
stohastičnih modelov GRO, ki vsebujejo več nekooperativnih DNA vezavnih mest. Z
analizo občutljivosti lahko sortiramo vhodne parametre na osnovi največjega vpliva na
izhode modela. Analiza občutljivosti stohastičnih modelov predstavlja računski izziv za-
radi računske kompleksnosti algoritmov, ki se uporabljajo za pridobitev odzivov samih
modelov. V disertaciji predlagamo uporabo spremenjene Morrisove metode na osnovi
alternativnih elementarnih učinkov, s katerimi lahko ocenimo občutljivost parametrov
modela neodvisno od njegove večnivojske razsežnosti.

Za pohitritev simulacij stohastičnih modelov smo v sklopu disertacije razvili orodje
ParMSSA, ki vsebuje simulator za paralelno izvajanje stohastičnih simulacij z algorit-
mom DMSSA. Orodje ParMSSA je zmožno paralelno izvajati več instanc DMSSA
algoritma z različnimi vhodnimi parametri za potrebe analize občutljivosti s spreme-
njeno Morrisovo metodo. Rezultate pridobljene na podlagi občutljivostne analize z
orodjem ParMSSA je možno neposredno uporabljati za ocenjevanje robustnosti sto-
hastičnih večnivojskih modelov GRO, ki vsebujejo večkratna nekooperativna DNA
vezavna mesta trankripcijskih faktorjev.

Uporabo razvitih algoritmov skupaj z orodjem smo demonstrirali na dveh vzorčnih
primerih, tj. na analizi mehanizma preklopa v virusu Epstein-Barr in na analizi sin-
tetičnega represilatorja z več vezavnimi mesti za transkripcijske faktorje. Na slednjem
smo pokazali, da povečevanje števila vezavnih mest za transkripcijske faktorje povečuje
robustnost sistema in s tem oscilatornega delovanja.

Ključne besede: stohastično modeliranje, večnivojsko modeliranje, občutljivostna anali-
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za, sistemska biologija, sintezna biologija, stohastično simulacijski algoritem, večkratna
vezavna mesta transkripcijskih faktorjev





ACKNOWLEDGEMENTS

First, I have to thank my advisor Miha Moškon for the patience he always had in guiding
me and motivating my research. His suggestions, corrections and his pioneering work in the
computational biology group here in Ljubljana made this thesis possible, so thank you.
Special thanks to Luigi Canciani MD, for helping us to receive the necessary funding

for our research and to Iztok Lebar Bajec for his innumerable tips about LATEX and design.
Thanks also go to Marc Leguen de Lacroix for proofreading my English writing. And a
special thanks to my colleagues of the FRIdom band: Igor, Brane, Nejc, andMatevž. Thanks
for enriching my time by playing together good music while I was immersed in writing.
I would like to thank all the current and former colleagues of the Computer Structures

and Systems Laboratory and of the Laboratory for Adaptive Systems and Parallel Processing
for all the funny moments that we spent during coffees and lunches. Thanks for all the
endless discussions and the innumerable laughs.
A great thanks to my parents who always motivated my scientific curiosity both for biology

and technology, and allowed me to study the things that I always loved.
And at last, with all my heart I want to thank my beloved Marija, without whom this

thesis wouldn’t have seen the light of the day. Thank you for the immense patience you had
along the way and for your brilliant wisdom which constantly lights my path as a father
and as a scientist. I love you.

— Mattia Petroni, Ljubljana, April .

ix





to Isobel and Marija





CONTENTS

Abstract i

Povzetek v

Acknowledgements ix

 Introduction 
. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
. Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
. Scientific contributions of this thesis . . . . . . . . . . . . . . . . . 
. Dissertation overview . . . . . . . . . . . . . . . . . . . . . . . . 

 Information processing in gene regulatory networks 
. Information processing machinery in the cell . . . . . . . . . . . . 
. Gene expression . . . . . . . . . . . . . . . . . . . . . . . . . . . 
. The control of gene expression . . . . . . . . . . . . . . . . . . . . 

.. Transcriptional regulation . . . . . . . . . . . . . . . . . . 
.. Gene switching . . . . . . . . . . . . . . . . . . . . . . . 
.. Complex cis-regulatory modules . . . . . . . . . . . . . . 

. Gene regulatory networks . . . . . . . . . . . . . . . . . . . . . . 
. Representation and visualization of GRNs . . . . . . . . . . . . . . 
. Synthetic GRNs . . . . . . . . . . . . . . . . . . . . . . . . . . . 

.. Building blocks of SGRN circuits . . . . . . . . . . . . . . 
.. Logic gates based on SGRNs . . . . . . . . . . . . . . . . 

xiii



xiv Contents Mattia Petroni

 Modelling approaches in systems and synthetic biology 
. Basics of chemical kinetics . . . . . . . . . . . . . . . . . . . . . . 
. Reaction kinetics in the cell . . . . . . . . . . . . . . . . . . . . . 
. Reaction kinetics of gene regulatory networks . . . . . . . . . . . . 

.. Reactions in gene regulation . . . . . . . . . . . . . . . . . 
.. Reactions in gene expression . . . . . . . . . . . . . . . . . 
.. Reaction rate’s dependencies . . . . . . . . . . . . . . . . . 

. Modelling approaches and simulation techniques . . . . . . . . . . 
.. Deterministic approaches . . . . . . . . . . . . . . . . . . 
.. Stochastic approaches . . . . . . . . . . . . . . . . . . . . 
.. Multi-scale approaches . . . . . . . . . . . . . . . . . . . 

. Common issues in modern approaches . . . . . . . . . . . . . . . 

 Modelling GRN with complex cis-regulatory modules 
. Chemically reacting systems of complex cis-regulatory modules . . . 

.. Binding and unbinding reactions . . . . . . . . . . . . . . 
.. A model for multiple binding sites representation . . . . . . 
.. Activation and inhibition rules . . . . . . . . . . . . . . . 
.. Time evolution of TF binding . . . . . . . . . . . . . . . . 

. A dynamic multi-scale stochastic simulation algorithm . . . . . . . 
.. A simulation for the fast system . . . . . . . . . . . . . . . 
.. Combining slow and fast scale simulations . . . . . . . . . 
.. Computational validation . . . . . . . . . . . . . . . . . . 

 Sensitivity analysis in systems and synthetic biology 
. Sensitivity analysis methods . . . . . . . . . . . . . . . . . . . . . 
. Local sensitivity analysis . . . . . . . . . . . . . . . . . . . . . . . 
. Global sensitivity analysis . . . . . . . . . . . . . . . . . . . . . . 

.. The Morris method . . . . . . . . . . . . . . . . . . . . . 
.. Other global sensitivity analysis approaches . . . . . . . . . 

. Parameter sampling . . . . . . . . . . . . . . . . . . . . . . . . . 

 Sensitivity analysis of complex cis-regulation 
. Sensitivity analysis of stochastic models . . . . . . . . . . . . . . . 
. Sensitivity analysis of multi-scale stochastic models . . . . . . . . . 



Computational methodology for enhanced sensitivity analysis of gene regulatory networks xv

. The response function of the Morris method . . . . . . . . . . . . . 
.. The TF binding gradient . . . . . . . . . . . . . . . . . . 
.. Adapted Morris elementary effects . . . . . . . . . . . . . . 
.. Oscillatory response . . . . . . . . . . . . . . . . . . . . . 

 Case studies 
. The Epstein-Barr virus genetic switch . . . . . . . . . . . . . . . . 

.. The system response to the external signal Oct-+Grg/TLE . 
.. Sensitivity analysis . . . . . . . . . . . . . . . . . . . . . . 

. A synthetic genetic oscillator . . . . . . . . . . . . . . . . . . . . . 
.. Sensitivity analysis . . . . . . . . . . . . . . . . . . . . . . 
.. Multiple transcription factors binding sites implications . . . 
.. Robustness estimation . . . . . . . . . . . . . . . . . . . . 

 Conclusions 
. The main contributions of the dissertation . . . . . . . . . . . . . . 
. Future research directions . . . . . . . . . . . . . . . . . . . . . . 
. Final remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

A Appendices 
A. Multi-scale stochastic simulation techniques . . . . . . . . . . . . . 

A.. Slow-scale stochastic simulation algorithm . . . . . . . . . 
A.. Multi-scale stochastic simulation algorithm . . . . . . . . . 
A.. Nested stochastic simulation algorithm . . . . . . . . . . . 

A. Additional notes . . . . . . . . . . . . . . . . . . . . . . . . . . . 
A.. Alternative parameter sensitivities definitions . . . . . . . . 
A.. The Fourier series approximation . . . . . . . . . . . . . . 
A.. The average and the median of Fourier coefficients . . . . . 

A. ParMSSA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
A.. Accelerating stochastic simulations . . . . . . . . . . . . . 
A.. The ParMSSA engine . . . . . . . . . . . . . . . . . . . . 
A.. OpenCL . . . . . . . . . . . . . . . . . . . . . . . . . . . 

A. ParMSSA user guide . . . . . . . . . . . . . . . . . . . . . . . . . 
A.. Command line options . . . . . . . . . . . . . . . . . . . 
A.. Model description . . . . . . . . . . . . . . . . . . . . . . 



xvi Contents Mattia Petroni

B Razširjen povzetek 

Bibliography 

Nomenclature 

Abbreviations 

Index 





Introduction





  Introduction Mattia Petroni

A senior professor once asked
a student of his: “Why computers can not have emotions?”

The student replied: “Because they are insensitive.”

A fun fact during a lecture of algorithms and data structures.

What do a bacteria, a fishing hook and a lonely tree in an empty field have in com-
mon? Apart from some hilarious jokes that can be found on Internet forums frequented
by young scientists in rough hours in the night, probably nothing would come in mind
at first, and we may spend some time thinking before surrender to the peculiarity of
this question. In fact, this question is indeed strange and someone may really doubt
there is something that connects together all these animated and inanimate objects.
For instance, any sceptic would be convinced that the only thing these objects have in
common is a place in the Oxford dictionary, besides the basic atomic composition that
is shared by all the matter in the universe of course. Probably with more conviction
a religious person would say that all these three objects are creations of God. And an
experienced sailor would say that all these things can be found on the Isle of Man. At
last, a scientist may observe these objects with a deep introspective and determine a
common shape that all these objects can have in specific circumstances.

Leaving comic fantasy, personal belief and imagination aside for a moment, it is
really a challenge to find such a connection and by the time we read this first page
someone would probably doubt the truthfulness of this question. However, there is
nothing wrong with it and a plausible explanation of such a connection between these
objects really exists, but without saying too much at this point we could provide a little
suggestion, that would introduce the main topic of this dissertation.
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When observing any natural event, we are usually interested to make some empirical
statement about it (much like anything else). In order to do so, there are often required
long term observations and large data gathering. But usually we are only interested
in very simple conclusions or facts, such as the quantification of some measurable
value, a rough explanation of some unmeasurable quality, or just a simple estimation
or characterization of the event itself, i.e. how bad or good it is. For instance, if we
observe a meteorological event, such as a North Atlantic storm hitting the western coast
of Ireland, probably the first things we notice is the wind blowing at fifty (or more)
miles per hour and possibly some gigantic waves breaking on the rocks. If we would like
to collect some empirical information from such a meteorological phenomena, perhaps
we will begin by measuring the speed of the wind or by estimating roughly the height
of the waves. The intensity of the wind can be measured by searching for some trees in
the nearby and watching how much their branches are bended. A simple conclusion
statement will hold that more the branches are bended, bigger is the force of the storm. The
quantity of bending can therefore tell us how powerful is this natural event (or either
how brutal). A similar conclusion can be made by estimating the height of the waves
by observing how much splash the waves produce when smashing on the rocks. Here
the quantity of splash can address the same measure as the bending does for the wind.
We may therefore continue by providing different metrics and measurements, until a
robust confirmation will validate our conclusions.

By observing this storm for a long time, we may therefore gather a lot of measure-
ments. However no matter what kind of natural event we are observing, we may always
find out that the values of these measured quantities, may never cross certain limits. For
instance, if the wind speed reaches more than hundred miles per hour, we would prob-
ably witness eradication of some trees and their inevitable fall. On the other hand, if
the height of a wave exceed more than twenty meters we may witness not just a big
splash on the rocks, but probably a devastating flood all around the point of impact.
Of course in such an occasion we are observing an exceptional storm, but such abnor-
mal events, as eradication and flooding, can be simply described as a deviation from a
reference interval of our chosen metrics – wind and waves. We can therefore conclude
that the bigger this deviation is, then bigger the damage will probably be.

In this dissertation we wanted to address a similar statement, but with one major
difference. We would not observe huge North Atlantic storms neither similar brutal
meteorological events. Instead, the main natural event of our study will be the gene
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regulation in living organisms. We would like to, or at least try to, extrapolate similar
conclusions as was done for the storm, by modelling the biochemical events that shape
the gene regulatory networks of biological systems. More specifically we are interested
in those gene regulatory networks that can perform information processing just like
common computers.

. Motivation

The ultra large scale integration (ULSI) and the increasing miniaturizing processes used
by computer chips manufactures are pushing the boundaries of computing capabilities
of modern computers. The semiconductor technology today enables placing billions of
transistors on a single chip. The so-called Moore’s law, which states that the number of
placed transistors on a chip doubles in size every two years, is still valid after more than
 years from its formulation. However several semiconductor manufacturers recently
agreed, that we are about to reach the upper limit of the number of transistors that
are physically possible to place on a single surface in an integrated circuit []. Despite
the fact, that such limits and the eventual slowdown were already predicted several
years ago [], the development of complementary metal oxide semiconductor technol-
ogy (CMOS), did not stop, and according to the International Technology Roadmap
for Semiconductors (ITRS), the nm CMOS-based transistors could be achieved for
manufacturing commercial chips. At nm the CMOS transistor will be still immune
from quantum tunneling, that may heavily affect the response of logic gates. Although
ITRS predicts that use of novel materials and structural enhancements, such as -D
circuits, can lead to improved chip fabrication, and enable further development and
improvements in computer chip performances, a large number of physicists, chemists
and computer scientists are searching for novel processing platforms able to perform
logic computation. In this vast investigation and research, biological systems came
up as a possible processing platform. In fact the advances in molecular biology and
biotechnology of the last two decades allow certain CMOS logic gates and other logic
structures to be re-visited from a biological point of view. Advances in synthetic biol-
ogy have shown that implementation of robust bio-logical gates is possible [–]. As
tempting this possibility is, problems arise when constructing complex circuitry. Bio-
logical gates do not always obey the same behaviour as CMOS gates. For instance,

 nm transistor technology is currently in use at the time of this dissertation.
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fan-out and logic input/output levels may differ profoundly within the same circuit.
A huge endeavour has been tackled by biotechnologists, computational and synthetic
biologists in order to develop robust CMOS-like bio-logical gates, capable to perform
any logic function. One of the aim of synthetic biology is in fact to provide modular
constructs to be used for creating scalable logic circuitry, such as logic gates, memory
cells (i.e. flip-flop) and oscillators [–].

Synthetic biology has embraced this challenge in the last two decades, and the results
are countless []. By exploiting the recombinant DNA technology, synthetic biolo-
gists can engineer new devices in living cells []. In light of these advances plenty of
novel laboratory methods and techniques have been developed [–]. These meth-
ods are co-responsible for today first commercial products, e.g. in pharmacological,
environmental and fuel production applications [, –]. Examples of such de-
vices include single logic gates NOR [, , ], NOT, AND, NAND [, , ],
XOR, XNOR gates [, ], logic operators [, ], toggle [, , ] and genetic
switches [], biocomputers and signal processing applications [, ], pattern for-
mation functionalities [], biomedical applications [], genetic oscillators [, ],
counters [], memory storage [–], and also more complex logic circuits [].

The majority of these devices is based on gene regulatory networks (GRNs) because of
their programmable nature []. A GRN can be viewed as the basic framework used
to implement biological systems with information processing functionalities. How-
ever, the capabilities of these systems in terms of complexity and size, i.e. to be used
modularly in large scale circuits, are today still limited []. With the advent of syn-
thetic transcription activator-like effector (TALE) [–] and the recent discovery of
the CRISPR-Cas system [–], a wider range of more complex, modular and scal-
able GRNs can now be implemented and hence the ability to construct complex logic
connected structures and circuits in vivo, such as those in modern computers, currently
becomes no longer an unachievable goal []. Such GRNs are often referred as synthetic
gene regulatory networks (SGRNs) [].

The construction of SGRN has been performed in almost all types of cells used in
bioengineering and biotechnology: yeast [], bacteria [] and mammalian [] cells.
The design of these systems is rarely straightforward and often requires the trial and
error [] or more selective strategies []. Mathematical and computational mod-

The inverse problem is to discover the structure of GRN while having available a long DNA sequence of
base-pairs. This is one of the main problems in the field of bioinformatics [, ].
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elling techniques have proved crucial for helping the design process to minimize the
costs and the time needed to develop these systems. Modelling provides a quantitative
estimation of the dynamics of designed biological systems before their experimental
implementation [–]. Current efforts emphasize the need of accurate modelling of
gene expression dynamics and more specifically of large GRNs. The aim of modelling
is to construct mathematical or computational models of biological systems by includ-
ing all their physiological characteristics in a formal mathematical way. These models
can be used not only to quantitatively validate the response of underlying systems, but
also for predicting their behaviour through time. This is particularly important in the
case of sequential logic circuits, where a certain logic level may be required for trigger-
ing the response of logic gates at specific time. Furthermore, the comprehensive view
of the system’s behaviour helps to quickly assess the logic correctness of the circuit at
any time.

Biological systems are known to reflect robust behaviour, even in a noisy environ-
ment, which is a consequence of long evolutionary processes []. The robustness of
a biological system (or model) is the capacity of the system to maintain intact its cur-
rent operating mode (or state), despite the continuous perturbation of its internal and
external inputs. Robustness needs to be estimated precisely and in different environ-
mental conditions in order to optimize the design of SGRNs. Robustness is believed
to be the key factor of adaptability in the evolutionary process of biological systems
[]. In cell biology, the robustness is a property that permits every single-cell system
to adapt to unpredictable environment conditions, e.g. the bacterial chemotaxis dy-
namics []. Qualitative and quantitative robustness estimation can be therefore of
crucial importance in the design of reliable and scalable biological systems with novel
functionalities.

Although a general quantitative measure for robustness has still not been established,
numerous efforts have come from various scientific disciplines, especially from the con-
trol theory. Many metrics for robustness have been proposed in the last decade [–].
Different studies show that the robustness can be effectively estimated with the aid of
sensitivity analysis [, ], such as parameter sensitivity analysis [–]. Additional
benefit of using the sensitivity analysis is its ability to guide experimental work, mean-
ing that with its results, it is possible to identify the inputs of the model that affect
the system’s outputs the most. Such inputs should be a subject of further experimental
investigation []. This property makes the sensitivity analysis suitable for estimating
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the robustness of synthetic biology systems.
The majority of state-of-the-art sensitivity analysis approaches can be applied to de-

terministic models only, which are unfortunately unable to capture the noise induced
effects, inherently present in biological systems. However few exceptions were reported
in literature [–].

Switching mechanisms in biological systems are known to be subjected to large
amounts of noise. This may represent a major problem in the design of robust logic
structures with higher complexity. The design of biological systems with high scala-
bility and reliability is therefore far from being straightforward. Stochastic modelling
approaches have proven to be useful in this context because they are capable to model
the noise induced dynamics in the underlying systems, by stochastically simulating the
reactions occurring in the systems [–]. These techniques are unfortunately com-
putationally demanding in most cases, especially, if the number of reactions is very
high. This can occur in novel biological systems containing multiple non-cooperative
transcription factor binding sites [, , , ]. One way to decrease the compu-
tational complexity of these modelling approaches is to use a multi-scale modelling
approach [–], in which several dependent chemical reaction subsystems are pre-
sumed to be independent and can be therefore analysed and simulated separately in
different time-scales. Stochastic multi-scale modelling maintains all the pros of stochas-
tic modelling and furthermore, it allows to increase the computational performance of
the simulation algorithm, and therefore increases the accuracy of the approximations
of underlying chemical kinetics. Despite the rapid development of sensitivity analysis
methodologies in recent years, there is still a lack of methods that can evaluate the
sensitivity of stochastic multi-scale models, which can be sometimes the only way to
obtain a valid dynamical response of the system in-silico. Establishing a methodology
to overcome this problem is vital for the robust design of SGRNs and hence for further
development of synthetic biological systems with information processing capabilities.

In this doctoral dissertation we developed a methodology for performing the sen-
sitivity analysis of stochastic multi-scale models of GRNs containing multiple non-
cooperative transcription factor binding sites. Such methodology can be applied along
the design strategy of SGRNs with information processing capabilities.
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. Methodology

The development of the aforementioned methodology has been carried out through
the following phases:

In the first phase we reviewed and analysed the current state-of-the-art stochas-
tic multi-scale simulation techniques and the sensitivity analysis methods. We
favoured the computational algorithms that are able to deal with large data struc-
tures efficiently and allow a high level of parallelisation in order to be exploited
in modern multi-core architectures. We then chose those sensitivity analysis
methods, that require the minimum computational effort for obtaining the sim-
ulations’ response, e.g. the Morris sensitivity analysis technique.

In the second phase we proposed a variant of the stochastic simulation algo-
rithm, called DMSSA, which is able to tackle the multi-scale nature of GRNs,
that contain multiple non-cooperative transcription factor binding sites. The
validity of the responses obtained with this algorithm and its equivalence with
the stochastic simulation algorithm were proved on a simple multi-scale model,
that is being used constantly in systems and synthetic biology. We implemented
DMSSA alongside a simulation engine, called ParMSSA, which is capable to per-
form multiple parallel simulations.

In the third phase we completed our methodology by implementing the Morris
sensitivity analysis technique with few major enhancements, for obtaining the
parameters sensitivities of the multi-scale models. These sensitivities allow to
classify the model parameters by influence upon the models’ outputs.

In the fourth phase we applied the methodology on two case studies: on the
genetic switch of the Epstein-Barr virus and on a genetic oscillator.

. Scientific contributions of this thesis

Overall we achieved the following contributions:

A new simulation algorithm for GRNs with multiple non-cooperative transcription
factors binding sites. A variant of the commonly used stochastic simulation al-
gorithm is proposed for performing accurate simulations of GRNs containing
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multiple non-cooperative transcription factor binding sites. The algorithm is
used inside a simulation engine called ParMSSA, built for simulating systems
and synthetic biology models of GRNs with any feasible number of binding
sites. This contribution is presented in chapter .

Establishment of a methodology for enhanced sensitivity analysis of stochastic multi-
scale models. The state-of-the-art sensitivity analysis approaches lack the capa-
bility to investigate stochastic multi-scale models. Establishing a methodology
that will fill this gap is essential for the robust design of SGRNs and hence for
the development of synthetic biological system with information processing ca-
pabilities. We enhanced a sensitivity analysis technique, based on the Morris
screening experiment, which is capable to estimate the parameters sensitivities
of stochastic multi-scale models that are frequent in both systems and synthetic
biology research. These parameter sensitivities can be directly used as an estima-
tor of the model’s robustness. As such they can be used as metrics for the de-
sign of robust biological systems with information processing capabilities. This
contribution is presented in chapter . An extension of the metrics for the de-
sign of robust biological systems with information processing capabilities can
be therefore established by exploiting the sensitivity values from the proposed
methodology.

. Dissertation overview

The dissertation is organized as follow.
Chapter  presents an introduction of the foundations of molecular biology, em-

phasizing the information processing mechanisms inside the cell, especially those that
are of close interest for computer engineers. The main topics of systems and synthetic
biology are also introduced, as well as an overview in gene regulatory networks with
multiple non-cooperative transcription factor binding sites, which represent the main
objects of study of the thesis.

Chapter  contains a basic introduction in the field of reaction kinetics and a brief
overview of the state-of-the-art modelling and simulation techniques. These short in-
troduction is essential for understanding the basics of the multi-scale computational
modelling presented in chapter .

Chapter  presents a computational solution to the exponential complexity prob-
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lem of describing the transcription factors-DNA binding and unbinding events over
a cluster of multiple binding sites, through simple reactions. The solution is then im-
plemented in an algorithm called DMSSA, which can be used generally for simulating
the dynamics of any GRN containing multiple transcription factor binding sites. The
correctness of the algorithm is then validated with a sample model of GRN containing
multiple transcription factors binding sites.

Chapter  reviews the most commonly used approaches to perform the sensitivity
analysis in systems and synthetic biology, with a major focus on screening experiments,
more precisely the Morris method.

Chapter  presents a set of alternative output functions to be used for computing
the elementary effects in the Morris screening experiment, in order to enhance the
ability of the sensitivity analysis method to cope with the complexity of stochastic
multi-scale models of GRNs containing multiple non-cooperative transcription factor
binding sites. The Morris sensitivity method is adapted to handle the complex outputs
of such models.

A simulation engine called ParMSSA is presented in appendix A., which imple-
ments among other things, the algorithm DMSSA, and exploits the coarse parallelism
of modern computer architectures, to ease the computational expensiveness of the
screening experiments.

The full capabilities of the engine ParMSSA are presented in chapter  on two case
studies: the model of the Epstein-Barr virus’ genetic switch and a SGRN of a robust
biological oscillator. In this chapter is shown that by analysing in both models the
parameter sensitivities obtained with the method proposed in chapter , it is possible
to sort the models’ parameters in order of importance. Such information can be useful
to understand:

how the system in reality would behave, if perturbed through one of its inputs
(a valuable information in pharmacological research), and

what the designer must be aware of during the design process of SGRNs, in
other words, which model parameter can be neglected.

Chapter  contains the final remarks of the dissertation and a short analysis of the
future research directions.
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Lt. Cmdr. Matt T. Sherman: Where is Lt. Holden?
Lt. Watson: When the air raid started they took off. All he

said was - “In confusion there is profit.”

Operation Petticoat, 

The most peculiar characteristic of any biological system is the inherent ability to
process information at a molecular level. The cell itself is a prodigious machinery where
thousands of different chemical reactions take place. Each of this reactions is a small
piece of a complex set of biochemical processes that ultimately take the semblance of
life. Cellular respiration and replication are two common examples. The physiology of
the cell is shaped by its intrinsic and complex dynamics. Metabolic, signalling pathways,
and gene regulatory networks define some of the main mechanisms that drive these large
and complex processes.

. Information processing machinery in the cell

All of these mechanisms in different ways perform biochemical transformations over
complex organic molecules, which result in more complex or smaller biochemical com-
pounds. The chemical reactions that involve the deoxyribonucleic acid (DNA) and the
ribonucleic acid (RNA) play a central role, not only for control, guidance and driving
the cell physiology, but mainly for expressing the organism’s phenotypes. In fact the
information about an organism’s phenotype is encoded in the DNA molecule. Long
sequences of nucleotides called genes can encode the information regarding structure
and composition of proteins. When the genes are expressed, the proteins are assem-
bled via the concatenation of amino acids, following the nucleobases sequences that
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are found inside the genes. Proteins have different functions inside the cell: they can
work as reactions catalysts, control the gene expression and DNA replication, drive
the intra and extracellular signalling response and facilitate the transport of molecular
compounds inside and outside the cell [].

. Gene expression

DNA can contain several hundred of thousands of different genes, i.e. the entire ge-
netic material of the organisms. In this case it is also referred as the “genome”. Each
gene in the genome can encode the information regarding a specific phenotype, DNA
regulatory protein, metabolites, enzymes, or basically everything composed of amino
acids. The gene expression is indeed one of the most remarkable information process-
ing events occurring in the cell. The information inside a gene, that is coded with a
unique sequence of nucleotides, is processed in stages. First, it needs to be copied out
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Figure .
The three main compo-
nents of the gene expres-
sion: DNA, RNA and
proteins. a) The gene
expression scheme. The
coding sequence of a gene
is transcribed into the
mRNA strand, which in
turn transports the coded
information inside the ri-
bosome, where the protein
can be finally assembled. b)
The ratio between the size
and the concentration of
the three components of
gene expression inside the
cell [].

from the DNA double strand. This process is called gene transcription and the prod-
uct of this stage is a single stranded ribonucleic acid called messenger RNA (mRNA).
In the next stage the copied information, carried by the mRNA, is transported into
the ribosomal site. Inside the ribosome another ribonucleic acid called transfer RNA
(tRNA) is responsible to decode each adjacent triplet of the nucleotide sequence into a
specific amino acid. This process is called translation. In the last stage the amino acids
are chained together in the same order as in the nucleotide sequence transcribed from
the gene. The product of this assembly is the synthesis of the final protein, see Fig. ..
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Transcription

The transcription can be described as a three stage process. The first stage is called
initiation and begins with a binding of an enzyme called RNA polymerase (RNAP)
to a specific site inside the gene called promoter. When the RNAP is bound to the
promoter, it opens the double helix of the DNA in two strands by separating the nu-
cleobases bond, and begins sliding along the coding sequence, which usually lies in
proximity or next to this promoter site, separating the two strands of DNA furtherer.
This stage is called elongation. This sliding is always directed in the direction ’ →
’. On each open nucleotide of the open DNA strand, the transcription machinery

facilitates the binding of a free complementary nucleotide (see Fig. .). Once all the
nucleotides of the open strand are bound with their complementary bases, they form a
new ribonucleic backbone strand that is the basis of the mRNA. The formation of this
complementary strand ends, when the RNAP reaches a site along the gene called termi-
nator. Every gene has its own terminator site. When the mRNA is fully assembled and
detached from the original DNA strand, the transcription of the coded information is
complete and the two original DNA strands can be tied together again in the classic
double helix formation. This last event represents the final stage of transcription and
is called termination.

Translation

The mRNA then travels towards the ribosome. In eukaryotes, the mRNA leaves
the nucleus, where the transcription occurred. In prokaryotes the nucleus is absent,
therefore the mRNA can reach the ribosome faster. Once the mRNA binds the ri-
bosome, the translation process can begin. Similarly as transcription, also the trans-
lation can be divided in stages []. Inside the ribosome, the ribonucleic acid tRNA

Note: the RNAP binds in the close proximity of the promoter. The promoter itself is in the position
on the DNA sequence, where the genetic information of the gene starts and hence is the location, where the
transcription should begin.

The ’ and ’ notations are used to indicate the orientation of the carbon atoms in the deoxyribose sugar
ring, that composes the DNA backbone (see orientation/directionality in [, ] for more details).

Here the transcription machinery is referred as the complex group of transcriptional initiator complexes,
transcriptional cofactors and transcription factors that drive the transcription along all the three stages. A more
complete and exhaustive explanation of these machinery can be found in any molecular biology textbook (see
[, ] as examples).

More precisely, the mRNA, like every other molecule inside the cell, floats inside the nuclear matrix and
cell’s cytosol.
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Figure .
A simple schematic of the
transcription process. The
RNAP after binding on
the promoter region starts
sliding along the coding
sequence of the gene and
opens the DNA double
helix, separating the two
strands, i.e. the elongation
stage. The mRNA template
begins to form on the open
strand directed ’ → ’.

starts reading the coding sequence of the mRNA by binding to a specific triplet called
start codon, which is the nucleobases sequence AUG. The ribosome slides forward the
mRNA strand by three nucleotides at a time, enabling the tRNA to read the entire
coding sequence of the mRNA, also known as the open reading frame (ORF). The read-
ing ends when the tRNA binds over a particular triplet called stop codon. The tRNA
itself consists of a complementary anticodon (a complementary triplet which enables
to bind the tRNA to a specific triplet on the mRNA), and an amino acid. This amino
acid is tightly bound to the anticodon sequence according to the genetic code [].
Each tRNA anticodon carries its own specific amino acid. Thus the tRNA represents
the link between the genetic information and the protein structure. When the tRNA is
bound to the mRNA inside the ribosome, the carried amino acid is detached from the
tRNA and it is chained together with the amino acid of the previous bounded tRNA.
By repeating this process over all the codons of the mRNA, a polypeptide is obtained.
This chaining process ends when the stop codon is reached, for which the complemen-
tary tRNA anticodon does not provide any amino acid. The chain of amino acids
that is formed in this fashion represents the primary structure of the new synthesized
protein.
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. The control of gene expression

The expression of proteins is usually regulated. There are several mechanisms that
prevent the genes to be expressed unsupervised. These control mechanisms are known
as gene regulation [].

Post-translational regulation for instance ensures, that the concentration of a free
synthesized protein never surpasses a certain limit. This can be achieved by protein
structural modifications, e.g. with phosphorylation, which can switch on or off the
functionality of individual protein. Other gene expression control mechanisms in-
volve modifications of the RNAs in various stages of the gene expression. Some of this
modifications facilitate the RNA and proteins degradation, or the mRNA inhibition
via the microRNA post-transcriptional regulation [], which can cause the loss of
the gene product information. If the control of gene expression is performed at the
gene transcription stage, then the control mechanism is called transcriptional regulation
and the involved proteins (or RNAs in some cases) are called transcriptional regulators.
The aim of transcriptional regulation is to induce or inhibit the gene transcription by
starting or blocking the initiation stage.

.. Transcriptional regulation

In order to initiate the transcription, the RNAP needs to bind on the gene promoter
region. This process is driven by the transcription machinery, a complex set of DNA
binding proteins, enzymes and signalling proteins that actively participate in the gene
expression. Some of this proteins have the capability to facilitate (or even recruit) the
nearby RNAP and guide it to its binding site on the gene’s promoter. Such proteins are
called transcription activators, because they not only augment the chance of initiating
the transcription correctly, but also sometimes to enable it at all. Other proteins have
the opposite function i.e. they prevent the RNAP to bind on the promoter. Such pro-
teins are called gene repressors. Both activators and repressors are known as transcription
factors (TF).

Now, in the majority of cases, especially in mammalian cells, this scenario is highly unlikely to happen
independently, because the DNA is packed inside a complex structure called chromatin, which usually prevents
the interactions of the DNA with other compounds []. Therefore, in order to initiate the transcription of a
gene, first the chromatin complex needs to be opened, so the DNA inside can be accessed. This event concerns
epigenetics and we refer to [] for more insights about this topic. Later in this dissertation we will assume, that
this task is (eventually) always performed, regardless the complexity of the observed gene regulation.
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The majority of TFs are complex and often large molecules, usually composed by
a functional and a binding domain. The former performs one of the two regulatory
functions – activation or repression, while the latter allows the TFs to bind to a specific
binding site close to the promoter region on the DNA. These transcription factor binding

TF’s functional 
domain

TF 
activator

RNA polymerase

TF’s DNA 
binding domain

c d

a b

TF binding site

promoter

bound RNA polymerase

upstream bound 
TF repressor

RNA polymeraseRNA polymerase

downstream bound TF 
repressor

coding sequence

coding sequence

coding sequence

coding sequencepromoter

promoter

promoter

Figure .
A simple scheme of tran-
scriptional regulation
possibilities. a) A transcrip-
tion factor (TF) activator,
composed by a DNA
binding and a functional
domain, recruits the RNAP
in the nearby of a gene that
needs to be transcribed.
b) The activator binds on
its binding site close to
the promoter and enable
the RNAP to initiate the
transcription. c) A repres-
sor binds to an upstream
binding site close to the
gene’s promoter and pre-
vents the RNAP to initiate
the transcription. d) A
similar situation than (c)
whereas the binding site is
located downstream to the
promoter region.

sites (TFBSs) are in literature known as cis-regulatory modules or elements. If the TF
is an activator then, when it is attached to its binding site, the functional domain
recruits the RNAP and facilitates its binding to the promoter (see Fig. . a,b). TFs
can have a higher binding affinity than the RNAP, and therefore they can find the
right gene location inside the DNA more quickly. Repressors can bind strongly over
similar locations of activators (sometimes even on the same sites, including downstream
to the promoter region), but instead to facilitate, they prevent the RNAP to initiate
transcription (see Fig. . c,d ). A concise representation of activation and repression
mechanisms is depicted on Fig. ..

Not all the genes have TFBS in the promoter’s vicinity. Many promoters do not have
associated transcriptional regulators at all. In such cases these genes can be transcribed
by the RNAP without negative (or positive) influence from TFs. The promoters in
such genes are called constitutive promoters.
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.. Gene switching

When the activators are present, the gene can be expressed. We can therefore say, that
the activators trigger the production of proteins. The counterpart in digital circuits of

Table .
Symbols used in literature to represent the protein production dependency from transcription factor activation and repression.

type symbol logic

activation 𝐴 𝑃 𝐴 𝑃

repression 𝑅 𝑃 𝑅 𝑃

such a device is the driver (or buffer). On the other hand the repression works exactly

Figure .
The two gene regulation
motifs: a) activation and b)
repression. Both activators
(A) and repressors (R) can
be seen as an input signal
in the gene expression
mechanism, while the
product protein (P) of
the transcribed coding
sequence can be seen as the
output signal.

b
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coding sequence

TF binding site
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as an inverter, because the presence of TF repressors inhibits the gene transcription and
therefore prevents the protein synthesis. A short schematic representation of these two
switches is depicted in Fig. ., while the symbols used in literature to represent both
activation and repression of proteins are shown in Tab. .. These two gene switching
mechanisms allow TFs, i.e. input signal, to enable or disable the presence of a protein,
i.e. output signal, inside the cell. This holds of course only if the protein in question
can be synthesized solely from the coding sequence of the gene that these TFs regulate.

As the voltage switching in CMOS transistors is the foundation of all logic gates
operations in digital circuits, the gene switching paradigm represents the foundation for
implementation of information processing applications in biological systems [, ].
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.. Complex cis-regulatory modules

It is not always possible to describe the gene regulation in terms of digital switches as
the gene promoter being switched on/off by the TF binding in its closed proximity.
The gene regulation generally exhibits a more variable behaviour that is not necessary
binary in the value of the gene product, i.e. only a high or low concentration of the
output protein. This of course prevents any interpretation of gene regulation as a digital
switch. Moreover, close to the promoter region, there could be more than one TFBS.
In such scenario the binding dynamics of TFs to their cis-regulatory elements becomes
much more complicated to describe than the case depicted in Fig. .. Furthermore,
several different types of TFs exists in nature that can influence each other even in the
smallest concentrations. An extensively large spectrum of DNA binding possibilities
may also exist even for the same TFs, which enriches further the complexity of the
transcription regulation. Here we shortly present the main TFs binding scenarios that
can occur during gene regulation.

Clusters of TF binding sites

Genes can be often regulated with multiple TFBSs, which are known as clusters of
cis-regulatory elements []. Multiple TFBSs for a single promoter allow a variety
of possible regulation dynamics, competition and cooperativity. Examples of clusters of
cis-regulatory elements can be found in the well studied Drosophila melanogaster, in
the yeast Saccharomyces [] as well as in viruses, such as in the Epstein-Barr virus
[, ]. A simple schematic of a cluster of TFBSs is depicted in Fig. ..

TF binding sites

coding sequence
...

promoter

Figure .
The multiple (or clustered )
TFBSs-cis-regulatory
module motif. On each
adjacent binding site can
bind one TF.

The cluster is not necessary structured with equally spaced binding sites locations
(see for instance the NF-𝜅B binding sites in the NFKBIA gene []). It is important
however, that these binding sites are located in the proximity of the promoter, so the
TF activator can recruit the RNAP in such a way, that the polymerase will be still able
to bind to the promoter, when the TF is bound to one of these sites. Multiple TFs can
therefore bind to these sites, and act together to recruit or inhibit the RNAP binding.
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However, the dynamics of competition and cooperativity on such clusters are still not
well understood and are a current topic of research in molecular biology.

Cooperativity

Normally a TF is a simple protein that binds directly to its TFBS upstream or down-
stream of the promoter region (Fig. .). In this scenario the gene expression is known
to be gradual in respect to the input TFs concentration []. The bound TF can
either recruit or inhibit the RNAP to bind over the promoter of the coding sequence.
If on a cluster of binding sites, multiple TFs bind independently without affecting
each other or the subsequent regulation (i.e. their binding reactions are independent
events), then the transcription rate increases proportionally to the amount of bound
TF activators and inversely proportional to the amount of bound TF repressors. Such
dynamics defines non-cooperative TF binding and it will be one of the main objects
of study through this dissertation.

In the opposite scenario, when the binding affinity of a TF increases with the number
of already bound TFs on the cluster of multiple binding sites (i.e. their binding reac-
tions are not independent events), then the transcription rate increases (or decrease)
non-linearly to the amount of bound TFs. This TF binding dynamics is called coopera-
tive binding. The term cooperativity is normally used to indicate the type of non-linear
effect that the TFs binding have over the transcription products.

Competition between different TFs

Two or more different types of TFs, either activators or repressors can also bind to the
same binding site. This is a scenario where TFs “compete” for binding on the regulatory
site. Which TF would prevail depends on different conditions, from binding affinity
to the concentration of individual type of TFs. The transcription regulation driven
by TFs competition becomes exceptionally complex to describe, if multiple adjacent
binding sites are present in the promoter proximity. In such a scenario activators and
repressors may bound at the same time on different but adjacent binding sites. In this
case the regulation effect can be difficult to predict and usually experimental verification
is needed. We refer to [, ] for more insights and for a more complete review of
the TFs’ competition dynamics.
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Rules of activation

Usually clusters of TFBSs allow the binding of only one of the two types of TFs, ei-
ther activators or repressors. However, there are exceptions as in the case of synthetic
genes, produced from the designs in synthetic biology (see section .), that can be
regulated by synthetic proteins (activators and repressors), which bind over the same
cluster of TFBSs [, , ], creating thus a binding and regulative competition. This
is then a scenario of TFs competition over multiple binding sites, that deserves to be
investigated. Even if only one type of TF has the ability to bind over a cluster, there are
some questions that arise and need to be answered. For instance, how multiple bound
activators recruit the RNAP? How the regulation behaves in the presence of just one
bound repressor in the cluster? In the work of Giorgetti et al. [] and Lengyel []
there were investigated possible regulation rules of activations of genes with multiple
bound TFs in their cis-regulatory elements []. A regulation rule is an hypothesis
of activation or repression for a specific combination of bound TFs over the cluster of
binding sites. Since the combinations that have to be evaluated can exponentially grow
with the number of binding sites in the cluster, it is obvious that this is not a simple
problem to tackle. However some of these combinations can be intelligently grouped
in a way, so that each group is composed only by rules with identical effect on gene
regulation. In the work of Giorgetti et al. [] the following rules for activation were
analysed:

additive,

all-or-none and

singular.

These rules are also schematically depicted in Fig. .. The additive rule states that the
transcription of the regulated gene is activated with a rate, that is proportional to the
number of bound TFs activators. Bound TFs hence contribute in an additive manner
to the promoter’s activation. In the all-or-none rule, the transcription of the gene is
activated only, if every binding site of the cluster is occupied by a TF activator. In this
scenario the RNAP is recruited by all the bound activator together. The singular rule
states contrary that, at least one activator needs to be bound, so that the RNAP can be
recruited.



  Information processing in gene regulatory networks Mattia Petroni

Figure .
The possible rules that
can govern the gene
activation in the scenario
where multiple TFBSs are
located in the proximity
(upstream) of the promoter
region. a) The scheme
showing the additive
rule. In this scenario
each bound activator
contributes equally to the
recruitment of the RNAP
and eventually to the rate
of transcription. b) The
all-or-none rule. In this
case all the binding sites
need to be occupied so the
RNAP can be successfully
recruited. c) The singular
rule. At least one activator
needs to be bound on
the cluster of binding
sites, so the RNAP can be
recruited.
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. Gene regulatory networks

A gene regulated by a TF may encode a protein, which in turn can be a TF itself. If
multiple genes are regulated by TFs that are expressed within the same set of genes,
then these genes form a gene regulatory network (GRN). In the literature GRNs are
also called transcriptional or cis-regulatory networks. Since the gene regulation, as we
showed earlier, performs like a switch, GRNs can be seen as a network of connected
switches, similarly as a digital circuit, and hence they can be considered as a processing
platform. We often refer to the network of genes’ switches also as a gene or genetic
circuit []. We will see later in this chapter, that through this network of switches,
biological systems can store and process logic information in a way that is analogous
to digital computers.

Since GRNs often exhibit one or more logic switch motifs (they are often composed
of cascade sequences of gene switches), their dynamics can be described in terms of logic
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𝜆𝑐𝐼

𝑙𝑎𝑐𝐼

𝑡𝑒𝑡𝑅

Figure .
An example of a GRN-
graph, i.e. the repressilator
circuit [], which has an
oscillatory response in the
concentration of all the
three TFs that are involved
in the gene regulation: 𝜆𝑐𝐼 ,
𝑙𝑎𝑐𝐼 and 𝑡𝑒𝑡𝑅.

variables and functions [–]. A key element for discovering such logic motifs in
GRNs is the searching and analysis of TFBSs [, ].

. Representation and visualization of GRNs

Any GRN can be represented as a directed graph. This graph consists of nodes, that
depict the gene products or the active TFs, and of directed edges, which represent the
interactions between TFs and genes. These actions can be either inducible (activation)
or inhibitory (repression). The directed edges are depicted with the same symbols as
shown in Tab. .. A basic example is shown in Fig. ., where three TFs inhibit each
other in a cycle.

. Synthetic GRNs

While systems biology tries to characterized the multitude of GRNs hidden in the
genome of living cells, synthetic biology exploits the technology of recombinant DNA
to construct GRNs that do not occur naturally [], hence the name synthetic GRN
(SGRN).

Synthetic biologists construct GRNs with natural occurring genes that encode spe-
cific TF proteins or to design and construct SGRNs with genes that encode synthetic
TFs, such as TALEs [–]. These synthetic TFs are usually chimeric proteins,
which consist of a DNA binding domain and a functional domain, i.e. the functionality
of the TF can be either activation or repression (see Fig. .). The use of natural oc-
curring TFs is highly suitable for constructing relatively small GRNs with simple func-
tionalities. The proved robustness and expression efficiency of such genes make these
TFs good candidates for implementation of logic gene circuits. The most prominent
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Figure .
The repressilator circuit, a
SGRN with an oscillatory
response []. a) A simple
schematic of the dynam-
ics of the SGRN. b) The
repressilator SGRN im-
plemented on the plasmid
pSC.

lacI

lacI

lacI
lacI

ba

lacI

example of such circuit, built with natural occurring TFs is the repressilator network
[], which is depicted in Fig. ..

However, any natural occurring TF used in the designed GRNs, can potentially
interfere with the host DNA, and hence their application is usually limited. Another
drawback of the utilization of natural TFs is that, there are only few of them that can
be used simultaneously in a SGRN. This enormously limits the capabilities of such
SGRNs for implementation of logic circuits.

Therefore, in order to construct SGRNs with a large number of switches, a large
number of orthogonal TFs is required to prevent possible TFs overlapping (i.e. cross-
talk) []. This is where the synthetic TFs come to the rescue. By constructing a
set of independent and orthogonal TFs, it is possible to broaden the spectrum of gene
circuits that can be implemented with SGRNs [, ].

.. Building blocks of SGRN circuits

The fundamental building block of any SGRN is the set of transcription factors that
is used to implement the genetic switches. Since the number of natural TFs is limited,
various synthetic TFs have been developed in the last two decades. The aim is to
provide a large set of “easy-to-implement” orthogonal TFs, which could be used to

Orthogonal TFs are here defined as TFs that do not interact between each other (they do not affect the
binding or unbinding of other TFs), and do not have any influence to the cell metabolism.
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construct any feasible SGRN. Today the most potential candidates for such set are:

zinc finger transcription factors (ZFTFs) [],

microRNA-TFs [, , ]

transcription activator-like effectors (TALE) [, ] and

the CRISPR/Cas- system [, , , ].

Each of these TFs has its own pros and cons, but all of them have been used extensively
to implement SGRNs with information processing capabilities. Which TF group to
choose for a particular design, depends on the design itself [, ], however a recent
research showed that the effectiveness and orthogonality of TALEs seems to be ahead
of the other TFs []. Anyway both TALEs and CRISPR/Cas- are regarded today as
the best choice of orthogonal TFs to construct multi-level logic circuits [, , ].

TALEs and CRISPR/Cas- based TFs can benefit from their strong DNA binding
domain fusion with an arbitrary functional domain, such as the Krüppel associated box
repressor (KRAB) [] or the powerful activator functional domain VP []. The
main benefit of this fusion is that the binding domain can be the same for both the
activator and repressor TFs []. This means that the affinity of binding on the DNA
site is the same for both activators and repressors. The TALEs TFs are known to bind
the TFBSs on the DNA as monomers non-cooperatively. The non-linear response
that is required for the implementation of logic gates can be achieved with different
modifications of the circuit, such as multiple TFBSs or competitive binding between
activators and repressors [].

In order to simplify the development and the construction of genetic circuits based
on SGRNs, a database of already characterized constructs (which includes plasmids,
promoters, primers, etc. ) was founded in the early days of synthetic biology when
the first possibilities for building genetically based computers appeared []. This
database allows synthetic biologists to quickly find the component of a SGRN that
they need, thus improving the effectiveness of the entire design process and also the

As in digital electronics, this is fundamental for designing a circuit with the same type of wires. No circuit
designer wants a digital circuit where the signals travel with different speed on different routes, because this can
quickly lead to possible malfunction and unexpected switching [, ].

Also called registry of standard parts. Available at http://parts.igem.org/Main_Page [].

http://parts.igem.org/Main_Page
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quality of the final SGRN. These components are often referred as devices. A hard
effort is today invested in synthetic biology towards the standardization of these devices
[, ].

In order to detect the output signal proteins in vivo from a SGRN, synthetic and
systems biologists use fluorescence proteins that can be easily detected under the con-
focal microscope. An example of such protein is the green fluorescence protein (GFP),
as used for instance in [] for detecting the oscillations in the repressilator circuit.

.. Logic gates based on SGRNs

Logic gates are the building blocks of all digital circuits, and they are the foundation
of any modern computing platforms. Implementing logic gates with SGRNs then,
means to allow digital computation also in the cell.

The simplest example is the NOT gate (symbol “¬”), which is depicted in Fig. ..
The inverter can be implemented with a SGRNs motif that contains only one regula-
tion site, where an input signal, i.e. a repression protein, can inhibit the transcription
of the output protein. With a simple extension of the NOT motif, we can construct
a two input NOR gate (symbol “↓”), by adding an additional binding site next to the
promoter for the second input signal, see Fig. . a). We will refer to the group com-
posed by the TF’s binding site, the promoter and the output gene as a SGRN construct.
From the NOR motif it can be constructed also the OR gate (symbol “∨”) by adding
to the output of the NOR gate an additional inverter as depicted in Fig. . e), g).

To construct the AND gate (symbol “∧”) we can use the same motif of the NOR
gate by inverting the two inputs signals, see Fig. .. In a similar way, as depicted for
the AND gate, it is possible to construct the NAND gate (symbol “↑”), or any other
basic logic gate. The principal characteristic of these implementations is that all these
logic gates are founded from the basic gene repression. In fact, as proven in recent
studies [], any type of logic gates can be implemented from the repression motif.

Once we have available any functional complete set (FCS) of operators, in this case
SGRNs constructs from Fig. . and Fig. ., we can combine them to implement
any logic function. Typical FCS are the following:

{¬, ∨, ∧} , {¬, ∨} , {¬, ∧} , {↓} , {↑} (.)

This is the set of operators with which we can implement any arbitrary logic function.
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Figure .
Representation of a pos-
sible implementation of
the NOR and OR gates
with SGRNs as proposed
in [, ]. a) The all possible
combinations of bound
repressors over the regula-
tory sites in the SGRNs
construct that implements
the NOR gate. The repres-
sors 𝑅 and 𝑅 can bind
only on the red and brown
binding sites, respectively.
Only one bound repres-
sor is needed to stop the
transcription of the output
protein 𝑃. However, the
cis-regulatory modules
proposed in [, ] of all
the depicted constructs are
composed by multiple non-
cooperative TFBSs. b) The
GRN-graph representing
the SGRN of the NOR
gate. c) The logic schematic
of the NOR gate used in
electronics. d) The truth
table of the NOR gate for
two input variables. e) The
combinations of bound
repressors over the regula-
tory sites in the SGRNs
constructs that implements
the OR gate. The OR gate
is implemented via a two
input NOR gate with the
inverted output. Two logic
gates are therefore needed
to implement the OR logic.
The first construct is a
NOR gate, for which the
output is used as the input
in the second construct,
i.e. the inverter. The out-
put of the inverter, i.e. the
protein 𝑃, is the output
of the equivalent OR gate.
f ) The GRN-graph of the
SGRN implementing
the OR gate. g) The logic
schematic of the OR gate
used in electronics. h) The
truth table of the OR gate.
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Figure .
A possible implementation
of the AND gate with a
SGRN as proposed in [].
a) The all possible combi-
nations of bound repressors
over the regulatory sites in
the SGRNs construct that
implements the AND gate.
The AND logic is imple-
mented with a NOR gate
having both the inputs in-
verted. b) The GRN-graph
representing the SGRN of
the AND gate. c) The logic
schematic of the equivalent
AND gate. d) The truth
table of the AND function
for two input variables.
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Generally the design of logic gates based on SGRNs is a complex task. Many motifs
have been designed through years with more or less success. Some of them involved
cross-regulation, protein-protein interactions, inductor activation, external light and
signalling triggering and even quorum sensing [–]. This is today a hot research
topic, because logic gates would someday allow implementation of “intelligent” drugs,
so any active principle may be produced by SGRNs only on demand and possibly
only in the targeted cells. A more complete review of possible information processing
structures based on GRNs for basic digital operations can be found in [] and we
refer to [, , ] for a wider spectrum of possible logic gate designs with SGRNs.

In digital electronics, the switching between logical levels in logic gates needs to hap-
pen rapidly and robustly, which means, that the switching response must be nonlinear.
A robust nonlinear response in GRNs can be on the other hand achieved with genes
regulated by clusters of TFBSs, as a recent research demonstrated [].
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Lt. Cmdr. Matt T. Sherman: Sir, Sea Tiger was built to fight. She deserves a
better epitaph than “Commissioned ,
sunk , engagements none, shots fired
none.” Now, you can’t let it go that way.
That’s like a beautiful woman dying an old
maid, if you know what I mean by old maid.

Capt. J.B. Henderson: Did you ever sell used cars?
Lt. Cmdr. Matt T.Sherman: No, Sir.

Capt. J.B. Henderson: I’ve got a hunch you missed your calling.

Operation Petticoat, 

Mathematical and computational modelling coupled with computer simulations
are today the two pillars that hold the scientific discovery in almost all the branches of
science. There is no scientific field that does not benefit of an a priori modelling of the
objects of study []. Modelling biological systems allows a deeper and a wider view
over the dynamics of a particular biochemical process in the cell, and helps to identify
the most important properties that govern the behaviour and the development of the
cell. In synthetic biology, an a priori modelling and simulation of the dynamics of
GRNs or SGRNs, is fundamental for a correct design of synthetic gene circuits [].

Here we present a short introduction to the modelling techniques and simulation
algorithms, that are widely used in systems and synthetic biology. We refer to a vast
literature that covers this topic, since it is almost impossible to include all the research
developments in this field in a short review [, –].
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. Basics of chemical kinetics

Biochemical processes of the cell can be formally described in the same way as any
other chemical process: with a system of chemical reactions. The natural laws that guide
these reactions are the chemical thermodynamic laws. They define exactly when and in
which conditions these reactions may occur, based on the thermodynamic properties
of the reactants and of the environment. On the other hand, if we want to answer the
question: “what is the speed of the reaction?”, we have to dive in the field of reaction
kinetics [].

When modelling biological systems, the set of reactions is usually already identified.
However the dynamics and kinetics of these reactions often need to be evaluated. Be-
fore introducing the topic of chemical reaction kinetics and the modelling techniques,
we first present some of the basic chemical formalisms.

Having an environment with volume 𝑉 , containing 𝑁 different species, the set of
all chemical species is denoted as

S = {𝑆, 𝑆, … 𝑆𝑁 } . (.)

The preferred measurement unit used for the concentration of chemical species is usu-
ally the number of moles per litre, which is also called molarity or molar concentration
and is usually denoted with 𝑀 = 𝑚𝑜𝑙/𝐿.

A chemical reaction system in a closed environment of volume 𝑉 with 𝑀 different
chemical reactions and 𝑁 species can be defined as per Def. ..

Definition .: A chemical reaction system R is a set of reactions

R = 𝑅, 𝑅, …𝑅𝑗, …𝑅𝑀 , (.)

in which the 𝑗-th reaction is defined as:

𝑅𝑗 =

⎧⎪⎪⎨
⎪⎪⎩

𝑁

𝑖=
𝑚𝑖𝑗𝑆𝑖

𝑘𝑗
⎯⎯→

𝑁

𝑖=
𝑛𝑖𝑗𝑆𝑖

⎫⎪⎪⎬
⎪⎪⎭ , (.)

where 𝑘𝑗 is the reaction rate constant, and 𝑚𝑖𝑗 and 𝑛𝑖𝑗 denote the number of

In the thesis we also used the synonym chemically reacting system for referring to this definition.
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molecules of the 𝑖-th reactant and the number of molecules of the 𝑖-th product
respectively.

The reaction rate constant is also referred as the reaction rate coefficient or simply the
kinetic constant. The measurement unit of the kinetic constant 𝑘 depends on the type

of reaction, more precisely on the coefficients 𝑚𝑖𝑗, by the relation 𝑀−(∑𝑁𝑖= 𝑚𝑖𝑗) 𝑠−.
The 𝑚𝑖𝑗 and 𝑛𝑖𝑗 are also known as the stoichiometric coefficients and are defined inside
the system’s input/output matrices:

I = 𝑚𝑖𝑗𝑀×𝑁 and O = 𝑛𝑖𝑗𝑀×𝑁 . (.)

The reaction 𝑅𝑗 from Eq. (.) can be defined also with its stoichiometric vector.

Definition .: The stoichiometric vector, with length𝑁 , of the 𝑗-th reaction in the
chemical reaction system R is denoted by 𝜈𝑗 and is defined as follows:

𝜈𝑗 = 𝑛𝑗 − 𝑚𝑗, 𝑛𝑗 − 𝑚𝑗, … 𝑛𝑁𝑗 − 𝑚𝑁𝑗 . (.)

Each element of the stoichiometric vector, which we will denote by 𝜈𝑖𝑗, represents
the difference between the two stoichiometric numbers of the 𝑖-th species in the 𝑗-th
reaction. The difference is calculated by subtracting the number of molecules of the
species that is consumed in the reaction from the number of molecules of the same
species that is produced by the reaction.

Given a system of 𝑀 different reactions, we can define the stoichiometric matrix,
denoted by N, as

N = O − I = 𝜈𝑖𝑗𝑀×𝑁 , (.)

which is a matrix of all the stoichiometric vectors of the chemical reaction system .

. Reaction kinetics in the cell

Given any reaction in the form depicted in Eq. (.) we are interested in how fast the
reaction can occur, given a specific set of conditions. The answer is represented by the
kinetic rate law of the reaction. Let be 𝐺 and 𝐺 two reactants, and 𝑃 the product of
reaction 𝑅 with a kinetic constant 𝑘:
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𝑚𝐺 + 𝑚𝐺
𝑘⎯⎯→ 𝑛𝑃, (.)

and let be [𝐺], [𝐺] and [𝑃] their concentrations. Then the rate of the reaction 𝑅 is
denoted by 𝜐 and is defined as

𝜐 = 𝑘 𝑓 ([𝐺] , [𝐺]) .

The function 𝑓 is called the rate function. Usually the speed is proportional to the
species concentrations, i.e.

𝜐 = 𝑘 [𝐺]𝑚 [𝐺]𝑚 .

The reaction rate can be generalized for any arbitrary reaction from Eq. (.) as

𝜐 = 𝑘
𝑟

𝑖=

[𝐺𝑖]𝑚𝑖 . (.)

By using an infinitesimal notation, we can write the reaction rate equation (RRE) as

𝜐 = d [𝑃]
d𝑡 = 𝑘 [𝐺]𝑚 [𝐺]𝑚 . (.)

The RRE from Eq. (.) is also known as the law of mass-action and essentially is a
differential equation that describes how fast the product is produced from the reactants.
Moreover it tells us how the concentration of the product changes with time. Eq. (.)
can be generalized for reactions of the type depicted in Eq. (.) as

d [𝑃𝑖]
d𝑡 = 𝑘

𝑟

𝑖=

[𝐺𝑖]𝑚𝑖 . (.)

. Reaction kinetics of gene regulatory networks

The dynamics of GRNs, as biological systems, is described through the gene regulation
and expression. This dynamics can be conveniently formalized as reaction networks, in
which the fundamental reactions of gene regulation and expression take place. GRNs
can be viewed as collections of TFs, genes, promoters and binding sites that are inter-
acting (or reacting) together, hence forming a reaction network.
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Definition .: The rate-limiting step reactions that can uniquely define the dynam-
ics of a GRN, are of the following types:

. TF-DNA binding,

. gene transcription,

. mRNA translation,

. protein and mRNA degradation.

Gene regulation can be effectively formalized with reactions of the first type, while the
gene expression can be represented with the remaining three types.

.. Reactions in gene regulation

The reactions describing the binding of one or multiple TFs on one or multiple specific
DNA-binding sites, represent the key of the transcriptional regulation in GRNs. The
activation and repression of a gene can be systematically formalized with the binding
reactions between TFs and the TFBSs. If a TF activator binds to its TFBS close to
the promoter region, then the promoter will become “activated” (see chapter ). The
RNAP will hence quickly bind to the promoter and it will initiate the transcription of
the gene. Contrary, if a TF repressor binds to the same site, then the promoter will
become “repressed” and the gene transcription will not occur. This simple behaviour
can be formalized with Def. ..

Definition .: Let be BS𝑝𝑟 the cis-regulatory promoter region, i.e. the TFBS of a
gene, 𝑇𝐹𝑎𝑐𝑡 a TF activator and 𝑇𝐹𝑟𝑒𝑝 a TF repressor. Then the bidirectional reac-
tions

BS𝑝𝑟 + 𝑇𝐹𝑎𝑐𝑡
𝑘⇌
𝑘

BS+𝑝𝑟 (.)

BS𝑝𝑟 + 𝑇𝐹𝑟𝑒𝑝
𝑘⇌
𝑘

BS−𝑝𝑟 (.)

represents the promoter activation BS+𝑝𝑟 and the promoter repression BS−𝑝𝑟, respec-
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tively. The kinetic constants 𝑘 and 𝑘 refer to the binding and the unbinding
rate of the TF on the DNA binding site, respectively.

Usually in the case of DNA binding, the values 𝑘 and 𝑘 differ by multiple
orders of magnitude. In the case of E. coli, the RNAP binding 𝑘 is in the range of
10 𝑀−𝑠− [], while the kinetic rate constant for the unbinding 𝑘 is around
2.9 𝑠− []. The affinity of a particular TF to a DNA binding site can be represented
by the ratio between 𝑘 and 𝑘. Contrary, the ratio between 𝑘 and 𝑘, i.e. 𝑘𝑘
is called the dissociation constant 𝐾𝑑, and it denotes the propensity of the binding TF
to dissociate from the DNA.

.. Reactions in gene expression

A good approximation of the gene expression can be obtained with the separation of
the gene transcription and translation as two rate-limiting step reactions.

Transcription

In the previous chapter, we described the gene transcription as a complex biochemical
process, that produces a mRNA template from the gene coding sequence. Its dynamics
can be approximated with a rate-limiting step reaction.

Definition .: Let be 𝑝𝑟+ an activated promoter as the result of an activator bind-
ing in its proximity and let be 𝑅𝑁𝐴𝑃 a free RNA polymerase enzyme. Then the
reaction:

𝑝𝑟+ + 𝑅𝑁𝐴𝑃
𝑘⎯⎯⎯⎯→ 𝑚𝑅𝑁𝐴 + 𝑝𝑟+ + 𝑅𝑁𝐴𝑃. (.)

is the rate-limiting step reaction of the transcription process.

The reaction from Eq. (.) depicts a scenario when a free RNAP enzyme binds to
the activated promoter 𝑝𝑟+. This initiates the transcription, for which the product
is a 𝑚𝑅𝑁𝐴 molecule, while the 𝑅𝑁𝐴𝑃 at the end detaches from DNA and leaves
the gene coding region. Sometimes it is convenient to assume, that the concentration
of RNAP is constant through the entire cell life time. Such assumption implies that
the propensity of the transcription becomes conditioned solely by the amount of acti-
vated promoters. This leads to a simplification of the reaction in Eq. (.), which by
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omitting the 𝑅𝑁𝐴𝑃 becomes

𝑝𝑟+
𝑘⎯⎯⎯⎯→ 𝑚𝑅𝑁𝐴 + 𝑝𝑟+. (.)

The rate-limiting step reaction in Eq. (.), despite having a simple mass action kinet-
ics, conveniently represents the process of transcription. The main shortcoming of this
simplification is the kinetic rate 𝑘 of this reaction. Kinetic rates for rate-limiting step
reactions are known to be hard to establish or estimate, and often they are calculated as
simple time-delay inverses. In this case the value of 𝑘, should take into account all
the complex kinetics of transcription. And since the transcription process is composed
of three main phases, namely initiation, elongation and termination, it is obvious that
the value of 𝑘 must be dependent on the kinetics of all these three stages.

It is logical then to assume that the entire transcription time can be derived as the
sum of all the three stages (often the RNAP-DNA binding can be included as part of
initiation). In ideal conditions, this time should be equal for all the same long coding
sequences. However we should remember that transcription is a complex biochemical
process that is still under research focus, and making an assumption of such ideal con-
ditions would be an oversimplification. In fact, not only all known RNAP enzymes
have different binding dynamics to the promoter of eukaryotic and prokaryotic cells,
but also can elongate with a variable rate. This is due to the multiple pausing that may
keep the polymerase to stall during the formation of mRNA transcripts [, ].

Table .
The time-speed ranges for the three transcription phases of the most common eukaryotic and prokaryotic RNAP reported in
literature (notation: [nt] nucleotids, [kbp] kilo-base pairs, [bp] base pairs).

initiation elongation termination

RNAP II . 𝑠− []
. ± . kb 𝑚𝑖𝑛− –

. kb 𝑚𝑖𝑛−
[, –]

. – . 𝑠−
[]

E. coli RNAP
. min – . h

[]
. nt 𝑠− []

. 𝑠− [] –  𝑠−
[], – 𝑠− []

T RNAP . 𝑠− []  ± . nt 𝑠− []  –  𝑠− []

Despite this complexity, there is a large effort in the literature to measure the values
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of the kinetic rates of all the three transcription stages, see Tab. ..
By taking into account all these considerations, the authors in [] proposed to

define the reaction’s kinetic rate constant, depicting the effective transcription rate 𝑘
of a gene, as

𝑘 =
1


𝑘𝑖𝑛𝑖𝑡

+ 𝑁𝑙
𝑘𝑒𝑙
+ 
𝑘𝑡𝑒𝑟𝑚

, (.)

where 𝑘𝑖𝑛𝑖𝑡 is the kinetic rate of transcription initiation, 𝑘𝑒𝑙 is the elongation speed, 𝑁𝑙
is the length in nucleotides of the coding sequence being elongated by the RNAP, and
the 𝑘𝑡𝑒𝑟𝑚 is the kinetic rate of termination.

The Eq. (.) allows a representation of the transcription in the form of a rate-
limiting step such as the Eq. (.) and Eq. (.).

Translation

The translation machinery involved in the process, that we explained earlier in section
., can be difficult to model exactly. The translation process is often seen as only an
intermediate state in the path from the transcription to the final synthesized product.
In this scenario the translation can be defined as per Def. ..

Definition .: Let𝑚𝑅𝑁𝐴 be the product of transcription, 𝑟𝐵 the ribosome and 𝑃
the final synthesized protein from the translation process. Then the reaction

𝑚𝑅𝑁𝐴 + 𝑟𝐵
𝑘⎯⎯⎯⎯→ 𝑚𝑅𝑁𝐴 + 𝑟𝐵 + 𝑃 (.)

represents the rate-limiting step reaction of translation for the mRNA template.

It can be assumed that the total number of ribosome in the cytosol is constant
through time. This means that the 𝑟𝐵 concentration affects the propensity of the trans-
lation reaction, but can be included in the reaction rate constant and can be therefore
omitted as the 𝑅𝑁𝐴𝑃 in the transcription reaction. Eq. (.) then becomes

𝑚𝑅𝑁𝐴
𝑘⎯⎯⎯⎯→ 𝑚𝑅𝑁𝐴 + 𝑃. (.)

Sometimes the reaction in Eq. (.) can be included directly in the transcription re-
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action from Eq. (.) in the form

𝑝𝑟+
𝑘𝑡𝑟𝑠𝑐+𝑡𝑟𝑠𝑙⎯⎯⎯⎯⎯⎯⎯→ 𝑃 + 𝑝𝑟. (.)

The mRNA molecule is subjected to a multitude of transformations during its way
from the nucleus to ribosome, such as microRNA interactions and splicing, which in
turn make the value 𝑘𝑡𝑟𝑠𝑐+𝑡𝑟𝑠𝑙 in Eq. (.) hard to estimate accurately.

Using the reaction depicted in Eq. (.) as the rate-limiting step reaction for trans-
lation, we need to estimate the value of 𝑘. The kinetic rate constant 𝑘, similarly
than 𝑘 is dependent upon several sub-reactions. In fact the translation process is
composed of similar phases as transcription: initiation, elongation and termination.
Hence, it should be possible to describe the rate 𝑘 in the same terms as transcrip-
tion, such as in Eq. (.).

The first modelling proposal of the translation kinetic dates back to the work of
Bergmann and Lodish [], which elucidated the importance of all the three phases
of translation, and proposed a simple linear model at steady state. Contrary, a recent
study in [] proposed a non-linear approach, which allowed estimation of the overall
translation elongation rate also in terms of the initial association rate. Despite that
authors in [] suggested, that the elongation and initiation are too fast (at least in the
E. coli K) to be considered as rate-limiting step reactions for translation, in [] it
was pointed out, that without folding errors, the total translation time can be estimated
as the sum of initiation 𝑡𝑖𝑛𝑖𝑡 (which can be assumed sometimes as the rate-limiting step
[]) and elongation time 𝑡𝑒𝑙. For long encoding sequence of mRNA it is fair to
assume that 𝑡𝑒𝑙 ≫ 𝑡𝑖𝑛𝑖𝑡, so the rate 𝑘 can be approximated as

𝑘 =
1
𝑡𝑒𝑙
= 𝑘𝑒𝑙
𝑁𝑎
, (.)

where 𝑘𝑒𝑙 is the total elongation rate of the transcript and 𝑁𝑎 is the length in amino
acids of the mRNA transcript. For the E. coli the value of 𝑘𝑒𝑙 can be in the range
between 10 and 20 amino acids/s []. We refer to [] for a thorough review and
analysis of translation kinetics.

It is important to highlight that, Eq. (.) and Eq. (.), from which we derived
Eq. (.) and Eq. (.) respectively, are rate-limiting step reactions, and although
they seem to break the conservation laws, because of the presence of an extra product
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(mRNA in the case of transcription and 𝑃 in the case of translation), they are perfectly
valid, if we assume to omit all the additional reactants involved in both transcription
and translation, which are present in the reaction environment in constant amounts
and are therefore non interesting to the external observer. These additional reactants,
such as the free amino acids that provides the nucleotides during the formation of the
mRNA strand in the transcription process, ensure the compliance with the conserva-
tion laws in both the limiting-step reactions depicted in Eq. (.) and Eq. (.).

Degradation

Degradation is a physical phenomenon in which the concentration exponentially de-
creases with time. In cell biology, the degradation of organic compounds is often
increased by co-factors and enzymes, which prevent a single substance to be present in
excessive concentrations. The intracellular degradation process occurs for every chem-
ical compound. Specific enzymes called proteases are responsible for fast degradation
of large macromolecules, such as proteins. They bind to the target macromolecule and
facilitate the break down of the protein’s amino acid chain. In GRNs the two species
that are more susceptible to degradation are proteins (including TFs) and mRNAs
[].

Definition .: The degradation of a chemical species 𝑆 can be defined as

𝑆
𝑘
⎯⎯⎯→ ∅. (.)

Note that the symbol ∅ denotes the null product.

Without losing generality we can expand the definition of degradation also for proteins.
Let 𝑃 be the initial concentration of a protein (or mRNA) in the cell and let denote
with 𝑃 the concentration of the same protein at a particular time 𝑡. By applying a
simple mass-action kinetic to the reaction above, the degradation can be described
with the following differential equation

d𝑃
d𝑡 = −𝑘𝑃, (.)
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Table .
The time ranges for degradation half-life of the majority of proteins and mRNAs found in the most common hosts studied in
systems biology (table adapted from values listed in []). Note, that there are some proteins and mRNAs found especially in
yeast and human cells, that have higher upper limit values (see [, ]).

E. coli S. cerevisiae H. sapiens

mRNA  –  (min)  –  (min)  –  (h)
proteins  –  (min)  –  (h)  –  (h)

where 𝑘 is the kinetic constant of the degradation. By rearranging and integrating
both sides of the Eq. (.), we obtain:


𝑃

𝑃

d𝑃
𝑃 = −𝑘

𝑡


d𝑡, (.)

and finally

ln 
𝑃
𝑃
 = −𝑘𝑡. (.)

From the Eq. (.) we can express the solution for [𝑃] and for time 𝑡, as

𝑃 = 𝑃e−𝑘𝑡, (.)

𝑡 = ln (𝑃) − ln (𝑃)
𝑘

. (.)

With Eq. (.) we can evaluate the half-life time 𝑡 

, which is the time that needs to

elapse for the initial concentration to be halved, i.e. 𝑃 = 𝑃
 :

𝑡 

=
ln(𝑃) − ln 𝑃 

𝑘
= ln (2)
𝑘

. (.)

Half-life is much easier to obtain than the DNA binding kinetic constants for TFs.
Moreover, by knowing the value of half-life we can obtain the kinetic constant 𝑘
from Eq. (.). Typical values for mRNA and protein half-life are listed in Tab. ..
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.. Reaction rate’s dependencies

The kinetic rate constants of all the reactions described in this section are usually hard
to obtain. Specific experimental techniques can measure the value of these rates in
particular environments, but unfortunately they are not always accurate. Alternative
approaches include

. the exploitation of parameter estimation techniques, that can help to overcome
the lack of data, or

. the decomposition of the kinetic rate constants as functions of other “more han-
dleable” parameters, that can be determined effortlessly.

Physical chemistry is a branch of chemistry that aims to solve the latter. In fact several
(if not all) kinetic constants can be written as a function of sub-parameters, such as
the diffusion coefficient in cell cytoplasm, the molecular mobility, the temperature
of the environment, the UV radiation intensity, etc. In the light of these relations,
it is sometimes convenient to define the kinetic rates of GRNs reaction networks as
composite parameters according to Def. ..

Definition .: A kinetic rate constant, or any reaction-related parameter which is
not a species concentration, is called a composite parameter, if it can be decomposed
either analytically or numerically as an expression of sub-parameters, that can be
directly measured or estimate experimentally.

The view of a kinetic rate constant as a composite parameter can be found useful in the
case, where the constant is unknown and the sub-parameters can be instead measured
experimentally. An example of a composite parameter is the transcription rate 𝑘,
which is defined in Eq. (.).

. Modelling approaches and simulation techniques

One of the main aims of in silico modelling and simulation is to determine the response
of a reaction network or system, given a set of observed chemical reactions and a set of
initial parameters’ values. The first step is to formalise the GRNs as reaction networks,
according to Def. ..
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Definition .: Let’s observe the cell reactive environment, which can be approxi-
mated as a homogeneous mixture of different molecules, with fixed volume 𝑉 . Let
be 𝑀 the number of different reactions (or reaction channels) in the system, which
are denoted by the column vector R = [𝑅, …𝑅𝑀]⊺, with their kinetic constants
Θ = [𝑘, … 𝑘𝑀]⊺. These reactions have 𝑁 different chemical species, denoted by
the vector S = [𝑆, … 𝑆𝑁 ]. The value 𝑥𝑖(𝑡) defines the concentration (or sometimes
the number of molecules, i.e. the population) of the species 𝑆𝑖 at time 𝑡. The state
vector

X(𝑡) = [𝑥(𝑡), … 𝑥𝑁 (𝑡)] (.)

describes the current state of the system at time 𝑡, while the initial state can be
denoted by X(𝑡) = x. Often it is convenient to rewrite the notation 𝑥𝑖(𝑡) simply
as 𝑥𝑖 and the vector X(𝑡) as x or simply as 𝑥.

The reactions R and the species S are linked together via the stoichiometric ma-
trix, which is denoted by N = [𝜈𝑖𝑗], of size 𝑀×𝑁 . The vector

𝜈𝑗 = 𝜈𝑗, … , 𝜈𝑁𝑗 (.)

is called the state transition vector or also state-change vector, because it defines the
changes in concentrations for all the chemical species involved in the reaction 𝑗. The
execution of reaction 𝑅𝑗 changes the system to the new state X + 𝜈𝑗.

The second step consists in choosing the simulation method for deriving the response
of the system dynamics instead. One can choose between deterministic, stochastic or
multi-scale approaches.

.. Deterministic approaches

Deterministic approaches provide an average response of the population of each species
of the reaction network. Such description is usually obtained with a set of ordinary
differential equations (ODEs). Any GRN can be represented by a system of ODEs,
since the reaction network can be described in terms of mass action kinetics, see Ex. ..
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Example .: Let be a reaction network composed by the following two reactions:

𝑅 ∶ 𝑆 + 𝑆
𝑘⎯⎯⎯→ 𝑃,

𝑅 ∶ 𝑃
𝑘⎯⎯⎯→ ∅.

with the initial concentrations [𝑆] = 2 𝜇𝑀, [𝑆] = 2 𝜇𝑀 and the kinetic constants
𝑘 = 10 𝑀−𝑠− and 𝑘 = 2.3 𝑠−. From Def. . it follows:

R =
⎡
⎢⎢⎢⎣
𝑅
𝑅

⎤
⎥⎥⎥⎦ , S = [𝑆 𝑆 𝑃] ,

K =
⎡
⎢⎢⎢⎣
10
2.3

⎤
⎥⎥⎥⎦ , X = 2 ⋅ 10− 2 ⋅ 10− 0 ,

N =
⎡
⎢⎢⎢⎣
−1 −1 1
0 0 −1

⎤
⎥⎥⎥⎦ .

The dynamics of this reaction network can be fully described by the following system
of ODEs:

d𝑃
d𝑡 = 𝑘𝑆𝑆 − 𝑘𝑃,

d𝑆
d𝑡 = −𝑘𝑆𝑆,

d𝑆
d𝑡 = −𝑘𝑆𝑆.

Systems of ODEs can be solved analytically only for simpler biochemical systems. For
reaction networks of large GRNs, numerical integration is usually preferred.

In systems and synthetic biology, ODEs are usually used for accurate modelling
of the dynamics of entire populations of cells exhibiting the same pattern of species
concentrations. The simulation carried by a numerical solution of ODEs, represents
the average response in the population.

The main shortcoming of deterministic approaches is their lack to handle efficiently
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the noise that is inherently present in every biological system []. As such, the cellular
dynamics is often regarded as noisy. If the noise has a large influence on the cellular
response, then it should be included in the model definition. In order to simulate the
response at a molecular level, other approaches should be used instead of simple ODEs.
Stochastic methods are usually preferred in such cases.

.. Stochastic approaches

Stochastic modelling is a prominent computational approach to analyse dynamical
systems, which are highly affected by noise and for which the system’s response cannot
be analytically derived. Stochastic chemical kinetics allows to take into account such
constraints implicitly in the model definition.

Stochastic chemical kinetics is based on the Def. .. Let Θ = {S,X,R} be a
system from the definition Def. . and let X(𝑡) = 𝑥 describe the current state of the
system at the time 𝑡. Each reaction 𝑅𝑗 of the vector R can be linked with a specific
propensity function, which is denoted by 𝑎𝑗(𝑥). The value 𝑎𝑗(𝑥)d𝑡 is the probability,
that the reaction 𝑅𝑗 will occur in the next infinitesimal time interval [𝑡, 𝑡 + d𝑡). The
propensity function can be calculated according to the type of reaction:

for monomolecular reactions it holds

𝑆𝑖
𝑘𝑗
⎯⎯→ … 𝑎𝑗(𝑥) = 𝑘𝑗𝑥𝑖, (.)

for bimolecular reactions

𝑆𝑖 + 𝑆𝑖′
𝑘𝑗
⎯⎯→ … 𝑎𝑗(𝑥) =

𝑘𝑗
Ω𝑥𝑖𝑥𝑖′ , 𝑖 ≠ 𝑖′ (.)

𝑎𝑗(𝑥) =
𝑘𝑗
Ω(𝑥𝑖 − 1)𝑥𝑖, 𝑖 = 𝑖′ (.)

and generally we can extend these rules with the following equation [, ]:

𝑎𝑗(X(𝑡)) =
𝑘𝑗

Ω𝑛−

𝑛

𝑖=

𝑥𝑖(𝑡)!
(𝑥𝑖(𝑡) − 𝑙𝑖)!

, (.)

where 𝑛 is the number of different chemical reactants in the reaction 𝑅𝑗, 𝑛 is the
total number of consumed molecules in the reaction 𝑅𝑗, 𝑙𝑖 is the number of consumed
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molecules for the 𝑖-th species in the reaction𝑅𝑗 andΩ is the volume of the environment
solution defined as Ω = 𝑉 ⋅ 𝑁𝐴, where 𝑁𝐴 is the Avogadro constant.

Chemical Master Equation

The probability that the system will be in a particular state at a specific time can be
formalized as a Markov jump process

𝑃(𝑥, 𝑡 + d𝑡|𝑥, 𝑡) =𝑃(𝑥, 𝑡|𝑥, 𝑡)

⎛
⎜⎜⎜⎜⎜⎜⎝1 −

𝑀

𝑗=
𝑎𝑗(𝑥)d𝑡

⎞
⎟⎟⎟⎟⎟⎟⎠ +

𝑀

𝑗=
𝑃(𝑥 − 𝜈𝑗, 𝑡|𝑥, 𝑡)𝑎𝑗(𝑥 − 𝜈𝑗)d𝑡,

(.)

where 𝑃(𝑥, 𝑡|𝑥, 𝑡) denotes the probability of the system to be in state 𝑥 at time 𝑡,
with 𝑡 and 𝑥 representing the initial time and state. 𝑃(𝑥, 𝑡 + d𝑡|𝑥, 𝑡) denotes the
probability that the system will be in state 𝑥 in the next infinitesimal time 𝑡 + d𝑡.

Rearranging the Eq. (.) and limiting the differential time d𝑡 → 0 we obtain

d𝑃(𝑥, 𝑡|𝑥, 𝑡)
d𝑡 =

𝑀

𝑗=
𝑃(𝑥 − 𝜈𝑗, 𝑡|𝑥, 𝑡)𝑎𝑗(𝑥 − 𝜈𝑗) − 𝑃(𝑥, 𝑡|𝑥, 𝑡)𝑎𝑗(𝑥) , (.)

which is the formal notation of the chemical master equation (CME) []. Note that the
reaction rate equation from Eq. (.) can be derived from Eq. (.) by simply assum-
ing that there are no molecular fluctuation in the reaction environment, i.e. making
the stochastic reacting system deterministic []. More details about the formulation
of CME can be found in [, ].

The CME is hard to solve in practice. The problem is, that we cannot express the
probabilities 𝑃(𝑥, 𝑡|𝑥, 𝑡) in terms of concentrations. Moreover, the number of possi-
ble states, in which the system could be at a determined time, is enormous and hence
also the number of (stochastic) differential equations cannot be efficiently solved.

The solution of the CME can be obtained computationally with the stochastic sim-
ulation algorithm (SSA), which can precisely simulate (and not only approximate) the
sequence of reactions that occur in the system, and hence equivalently depict the same
dynamics described with the CME.
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Stochastic simulation algorithm

SSA is a widely used method for simulating the dynamics of a well-stirred system of
molecules []. Let’s denote the probability, that the reaction 𝑅𝑗 will take place in
the system at the time interval [𝑡 + 𝜏, 𝑡 + 𝜏 + d𝜏) with 𝑝(𝜏, 𝑗|𝑥, 𝑡)d𝜏. This probability
is associated to the joint event of two random variables

the time 𝜏 elapsing between two reactions and

the index of the next reaction 𝑗.

We can write the probability 𝑝(𝜏, 𝑗|𝑥, 𝑡)d𝜏 as the product of probabilities of these
two random variables

𝑝(𝜏, 𝑗|𝑥, 𝑡)d𝜏 = 𝑃(𝜏|𝑥, 𝑡)𝑃(𝑗|𝜏, 𝑥, 𝑡), (.)

and the same holds for their probability density functions (PDFs)

𝑝(𝜏, 𝑗|𝑥, 𝑡) = 𝑝(𝜏|𝑥, 𝑡)𝑝(𝑗|𝜏, 𝑥, 𝑡). (.)

The PDF 𝑝(𝑗|𝜏, 𝑥, 𝑡) represents the scenario when the 𝑗-th reaction will occur among
a total of 𝑀 different reactions and it can be calculated as the ratio between the 𝑗-
th propensity function 𝑎𝑗(𝑥) and the cumulative propensity function, namely 𝑎(𝑥).
Shortly

𝑎(𝑥) =
𝑀

𝑗′=

𝑎𝑗′ (𝑥), (.)

𝑝(𝑗|𝜏, 𝑥, 𝑡) =
𝑎𝑗(𝑥)
𝑎(𝑥)

. (.)

On the other hand, 𝑝(𝜏|𝑥, 𝑡) is more difficult to estimate, since the distribution of
the time 𝜏 is unknown. We can evaluate the probability 𝑝(𝜏, 𝑗|𝑥, 𝑡)d𝜏 from Eq. (.)
in a different way. 𝑃(𝜏|𝑥, 𝑡) refers to the probability that the next reaction will occur
in exactly 𝜏. This is equal to the probability 𝑃(𝜏|𝑥, 𝑡) that no reaction will occur
before 𝜏. We can therefore calculate the probability 𝑝(𝜏, 𝑗|𝑥, 𝑡)d𝜏 as the probability
that no reaction will take place till the time 𝑡+𝜏, times the probability that exactly one
reaction 𝑅𝑗 will occur in the infinitesimal time interval [𝑡 + 𝜏, 𝑡 + 𝜏 + d𝑡]. The latter
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probability is formally represented by the propensity value 𝑎𝑗(𝑥)d𝜏

𝑝(𝜏, 𝑗|𝑥, 𝑡)d𝜏 = 𝑃(𝜏|𝑥, 𝑡)𝑎𝑗(𝑥)d𝜏. (.)

The only unknown term in the right side of Eq. (.) is 𝑃(𝜏|𝑥, 𝑡). One way to eval-
uate this probability is by extending the event to an infinitesimal time d𝜏. The proba-
bility that no reaction will occur in 𝜏 + d𝜏 is a joint probability between the case that
no reaction occurs till time 𝜏, i.e. 𝑃(𝜏|𝑥, 𝑡) and that no reaction will occur during the
infinitesimal time d𝜏. This can be formalized as

𝑃(𝜏 + 𝑑𝜏|𝑥, 𝑡) = 𝑃(𝜏|𝑥, 𝑡)

⎡
⎢⎢⎢⎢⎢⎢⎣1 −

𝑀

𝑗′=

𝑎𝑗′ (𝑥)d𝜏

⎤
⎥⎥⎥⎥⎥⎥⎦ . (.)

The first term on the right in Eq. (.) is the same as in Eq. (.), while the second
term stands for the probability that no reactions will occur during the infinitesimal
time d𝜏. Considering that 𝑎(𝑥) = ∑𝑀

𝑗′= 𝑎𝑗′ (𝑥), the Eq. (.) can be rewritten as

𝑃(𝜏 + 𝑑𝜏|𝑥, 𝑡) − 𝑃(𝜏|𝑥, 𝑡) = −𝑃(𝜏|𝑥, 𝑡)𝑎(𝑥)d𝜏,

which we can rearrange furtherer as

𝑃(𝜏 + 𝑑𝜏|𝑥, 𝑡) − 𝑃(𝜏|𝑥, 𝑡)
d𝜏 = −𝑃(𝜏|𝑥, 𝑡)𝑎(𝑥), (.)

and assuming that 𝑑𝜏 → 0, we can write Eq. (.) as a simple first order differential
equation using the basic law of infinitesimal calculus

̇𝑓 = lim
△𝑡→

𝑓(𝑡 + △𝑡) − 𝑓(𝑡)
△𝑡 ,

which bring us to the form

lim
𝜏→

𝑃(𝜏 + d𝜏|𝑥, 𝑡) − 𝑃(𝜏|𝑥, 𝑡)
d𝜏 = −𝑃(𝜏|𝑥, 𝑡)𝑎(𝑥),

or equivalently
�̇�(𝜏|𝑥, 𝑡) = −𝑃(𝜏|𝑥, 𝑡)𝑎(𝑥). (.)
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By rearranging and integrating both sides of Eq. (.) we get


𝜏



�̇�(𝜏|𝑥, 𝑡)
𝑃(𝜏|𝑥, 𝑡)

d𝜏 = −𝑎(𝑥)
𝜏


d𝜏.

Solving the integrals leads us to

ln (𝑃(𝜏|𝑥, 𝑡)) = −𝑎(𝑥)𝜏,

from which 𝑃(𝜏|𝑥, 𝑡) can be expressed as

𝑃(𝜏|𝑥, 𝑡) = e−𝑎(𝑥)𝜏. (.)

Now, if we put the definition of 𝑃(𝜏|𝑥, 𝑡) in the Eq. (.), we get

𝑝(𝜏, 𝑗|𝑥, 𝑡) = 𝑎𝑗(𝑥)e−𝑎(𝑥)𝜏. (.)

The equation Eq. (.) is the foundation for stochastic simulation of the reacting
system. If we combine the Eq. (.) with Eq. (.) in Eq. (.), then we get

𝑝(𝜏|𝑥, 𝑡) = 𝑎(𝑥)e−𝑎(𝑥)𝜏. (.)

The dynamics of the system can be simulated, by firing the 𝑗-th reaction at each time
interval 𝜏. Since we have defined the PDFs for both of the two random variables
𝜏 and 𝑗, through Eq. (.) and Eq. (.), we can now approximate these values by
using the inverse generating method, which is one of the fundamental tools of the Monte
Carlo simulation approach []. The time 𝜏 in which the next reaction will occur in
the system can be inferred knowing its PDF, i.e.

𝑃(𝜏 ≤ 𝑡|𝑥, 𝑡) =
𝑡

−∞
𝑝(𝜏|𝑥, 𝑡)d𝜏 = e−𝑎(𝑥)𝑡. (.)

By replacing 𝑡 with 𝜏 in Eq. (.) or by simply reversing Eq. (.), the time 𝜏 can
be expressed as

𝜏 = 1
𝑎(𝑥)

ln 
1
𝑟
 . (.)

Similarly the index of the next reaction can be determined by using a selection process
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that resembles the roulette wheel selection:

min
𝑗

⎧⎪⎪⎨
⎪⎪⎩

𝑗

𝑘=

𝑎𝑘(𝑥) ≥ 𝑟𝑎(𝑥)

⎫⎪⎪⎬
⎪⎪⎭ . (.)

Here 𝑟 and 𝑟 are two random numbers uniformly distributed in the interval (0, 1).
Eq. (.) and Eq. (.) represent the Monte Carlo step in the stochastic simulation
algorithm.

Algorithm .

The stochastic simulation algorithm (SSA).

Input: a model from Def. ..

Output: the model responses 𝑥 over time 𝑡.

procedure SSA

. Determine all the propensities values 𝑎𝑗(𝑥) and their cumulative sum 𝑎(𝑥).

. Monte Carlo step: compute 𝜏 and the index 𝑗 from Eq. (.) and Eq. (.).

. Increase the time step 𝑡 ← 𝑡 + 𝜏 and update the system state 𝑥 ← 𝑥 + 𝜈𝑗.

. Record the current pair (𝑥, 𝑡) and go back to step  if 𝑡 < 𝑡𝑚𝑎𝑥.

end procedure

The Alg. . is known as the Gillespie’s stochastic simulation algorithm (SSA), or
the Gillespie’s direct method (DM) [, ]. The main advantage of the SSA is
that, the average of multiple runs of the simulation, will provide a convergence to the
analytical solution of the CME [, , , ]. However, the SSA is known to
be computationally expensive. The computational cost of the algorithm depicted in
Alg. . can be tied to these two main factors:

the determination of the propensities 𝑎𝑗(𝑥) and

the computation of the index 𝑗.

Both of these costs are linearly dependent on the number of reactions (hence∼ 𝒪 (𝑀))
[]. By using optimized data structures for storing species and propensities, we can
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decrease the overall time complexity of the SSA [].

Variants and improvements of the SSA

The SSA can be used to model any arbitrary reactions, however, for larger systems,
it should be rather replaced by one of its improvements, since the DM implementa-
tion can be computationally expensive. However, it is still widely used in systems and
synthetic biology, due to its simplicity and reliability. SSA has been greatly studied
and tuned since its original formulation in  []. Several variants have been
developed, such as the

next reaction method (NRM) [],

optimized direct method (ODM) [],

sorting direct method (SDM) [],

logarithmic direct method (LDM) [],

partial propensities direct method (PDM) [] and

composition rejection (SSA-CR) [].

The first reaction method (FRM) is also considered as an alternative improvement, de-
spite being developed along with the DM []. The majority of these methods mainly
aims to improve the computational performance of the simulation algorithm, by in-
tegrating either reduction assumptions, or improved data structures, without loosing
generality or quality of the simulations. Authors in [] provide a short review as well
as an efficient benchmark study of the algorithms listed above.

.. Multi-scale approaches

The multi-scale approaches refer globally to the modelling techniques that deal with
models that are composed of multiple sub-systems. Their dynamics usually occur on
different scales: spatial, temporal, or both. In chemically reacting systems some reac-
tions occur faster than others. If this difference in speed spans at least one order of
magnitude, then the system is considered to have a multiple time scale dynamics. On

The terms “multi-scale” and “multiple-time scale” have been used in literature often to represent different
concepts. We refer to [] for a general overview of terminology and definition of the multi-scale concept.
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the other hand, if a model contains sub-systems that differ in size by several orders
of magnitude, then the system is told to be defined in spatially different scales. For
instance, modelling an entire organism (such as the human body) will require to dif-
ferentiate the system in various sub-groups, such as organs, tissues and cells. In such
scenario the sub-systems’ dynamics can profoundly differ from each other, because of
the different spatial scales in which the functionalities of the organism are defined.

GRNs, that are described with reactions defined in Def. ., are an example of
chemically reacting systems that exhibit multiple time scale reactions. For instance, the
TFs binding reactions are known to be much faster than rate-limiting step reactions
of transcription and translation. Their occurrence may be described in a different time
scale.

The difference in reaction speeds is not the only multi-scale aspect of GRNs. The
populations of species can differ by several orders of magnitude. For example, pro-
moters are structurally a part of the DNA. If we consider the genome of the cell, then
its promoters will be probably present only in one specific region of the genome. On
the other hand, free TFs can have population of way over 10 (see Fig. .). Com-
bined with the multiple time scale of reaction networks, a large population difference
between species, create the so-called multi-scale problem of chemically reacting systems
[].

A similar notion of spatial multi-scale model is compartmentalization. The cell re-
acting environment is usually divided in smaller sub-spaces (or sub-volumes) in which
particular reactions take place. Transcription and translation rate-limiting step reac-
tions in eukaryotes are two typical examples. The former occurs inside the nucleus,
while the latter occurs in the cytosol. The nucleus and cytosol can be spatially segre-
gated sub-systems, with only TFs and mRNA as common species. The transition be-
tween these two “compartments” can be simply modelled with reaction delays [].
However, in most practical uses, the compartmentalization of the cytosol and nucleus
can be omitted. We refer to the review in [, ] for a detailed summary of other
spatial multi-scale approaches in systems biology.

Hereafter we will mostly focus in the multiple time scale dynamics, by introduc-
ing the most used multi-time-scale techniques that are able to tackle the multi-scale
problem of chemically reacting systems.

In SGRNs however, promoters are usually located on a plasmid vector in multiple copy numbers and hence
their population would be identical to the population of the vector in the cell times the promoter copy number.
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Stiffness in chemically reacting systems

Despite the simplicity of the SSA, any implementation of the Alg. . will perform
slowly in multiple time scale systems. Such scenario can be described with the following
condition:

Condition .: A chemically reacting system from . can contain a combination
of two types of reactions, which can be either exceptionally slow (occurring less
frequently or sporadically) or exceptionally fast (occurring more frequently or all
the time).

If Cond. . is met, then the SSA will suffer by the constant firing of the “fast” reac-
tions (the reactions having a high kinetic constant value, i.e. higher speed, will have by
definition a higher propensity function and therefore a higher probability to be fired),
making the simulation extremely slow. This multi-scale problem is known as stiffness
[].

In order to allow a mathematical sounded representation of the stiffness occurring
in GRNs, we need to separate reactions among fast and slow [, ]. A short
redefinition of the system defined in Def. . is therefore needed.

Consider that the set of reactions R can be always divided in two subsets, the set of
fast reactions 𝑅𝑓 and the set of slow reactions 𝑅𝑠, i.e.

𝑅𝑓 = 𝑅𝑓 , 𝑅
𝑓
 , …𝑅

𝑓
𝑀𝑓 , (.a)

𝑅𝑠 = 𝑅𝑠, 𝑅𝑠, …𝑅𝑠𝑀𝑠. (.b)

Being R = 𝑅𝑓 ∪ 𝑅𝑠 the union of disjoint reactions sets 𝑅𝑓 and 𝑅𝑠, for which 𝑀 =
𝑀𝑓 +𝑀𝑠. The criterion for creating these two subsets is usually heuristic, however the
easier way to separate the reactions in fast and slow is by discriminating the value of
their propensity function.
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Similarly, the set of species can be also partitioned into two disjoint subsets, i.e.

𝑆𝑓 = 𝑆𝑓 , 𝑆
𝑓
 , … 𝑆

𝑓
𝑁𝑓 , (.a)

𝑆𝑠 = 𝑆𝑠, 𝑆𝑠, … 𝑆𝑠𝑁𝑠. (.b)

A fast species is defined as any species which gets changed by at least one fast reaction. A
slow species on the other hand is defined as the species which gets changed by solely slow
reactions. Here, one would observe an interesting asymmetry: a slow species cannot
get changed by a fast reaction, whether a fast species can get changed by a slow reaction
[]. The total number of different species in the system are therefore

𝑁 = 𝑁𝑓 + 𝑁𝑠. (.)

The state vector takes the form

𝑋(𝑡) = 𝑋𝑓(𝑡), 𝑋𝑠(𝑡) , (.)

or more compactly 𝑥 = 𝑥𝑓 , 𝑥𝑠, where 𝑋𝑓(𝑡) and 𝑋𝑠(𝑡) denote the fast and the slow
process respectively. Consequently, the stoichiometric matrix and the state transition
vectors need to be redefined for each reaction and species partition, as

𝜈𝑓𝑗 = 𝜈
𝑓𝑓
𝑗 , 𝜈

𝑓𝑓
𝑗 , … 𝜈

𝑓𝑓
𝑁𝑓 𝑗, 𝑗 = 1,… ,𝑀𝑓 , (.a)

𝜈𝑠𝑗 = 𝜈
𝑓𝑠
𝑗 , 𝜈

𝑓𝑠
𝑗 , … 𝜈

𝑓𝑠
𝑁𝑓 𝑗, 𝜈

𝑠𝑠
𝑗, 𝜈𝑠𝑠𝑗, … 𝜈𝑠𝑠𝑁𝑠𝑗, 𝑗 = 1,… ,𝑀𝑠, (.b)

where

𝜈𝑓𝑓𝑖𝑗 denotes the change of the 𝑖-th fast species in the 𝑗-th fast reaction 𝑅𝑓𝑗 ,

𝜈𝑓𝑠𝑖𝑗 denotes the change of the 𝑖-th fast species in the 𝑗-th slow reaction 𝑅𝑠𝑗 and

𝜈𝑠𝑠𝑖𝑗 denotes the change of the 𝑖-th slow species in the 𝑗-th slow reaction 𝑅𝑠𝑗 .

Note that by definition 𝜈𝑠𝑓𝑖𝑗 (the change of the 𝑖-th slow species in the 𝑗 fast reaction) is

zero, and hence the vector 𝜈𝑓𝑗 can be shorten to the size of 𝑁𝑓 .
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The corresponding propensity functions can be defined as functions of both partiti-
oned subsets of species and reactions, i.e.

𝑎𝑓𝑗 (𝑥) = 𝑎
𝑓
𝑗 𝑥𝑓 , 𝑥𝑠 𝑗 = 1,… ,𝑀𝑓 ,

𝑎𝑠𝑗 (𝑥) = 𝑎𝑠𝑗 𝑥𝑓 , 𝑥𝑠 𝑗 = 1,… ,𝑀𝑠.
(.)

Having redefined the basic structures from Def. ., we can now define a stiff chemi-
cally reacting system limited by the multiple time scale constraints.

Definition .: A well stirred chemically reacting system, subjected to Cond. .
can be formalized as an extension of Def. ., in which the reaction channels, the
species, the state vector, the state transition vectors and the propensity functions
are partitioned according to Eq. (.), Eq. (.), Eq. (.), Eq. (.) and Eq.
(.), respectively.

Approximation techniques

Several multi-scale computational approaches have been developed, which can be ef-
ficiently applied to the multi-scale models. The most representative computational
methods are the slow-scale stochastic simulation algorithm (ssSSA), themulti-scale stochas-
tic simulation algorithm (MSSA) and the nested stochastic simulation algorithm (nSSA),
which are described thoroughly in Appendix (see section A.). Another approach
called the implicit tau-leaping, described first in [] as a solution of the “explicit”
tau-leaping method, is also known as a viable approach to model multi-scale reacting
systems. We will omit here a detail description and refer to the original paper []
for more details about its definition and implementation.

. Common issues in modern approaches

The stochastic simulation algorithm (SSA) [] and its improvements, have become
popular for modelling natural and synthetic GRNs in both the fields of systems and
synthetic biology. Stochastic simulations are able to account for heterogeneity []
and the intrinsic noise, inherent in the chemically reacting systems.

Multi-scale approximation techniques can be used to simulate the behaviour of stiff
chemically reacting systems. However, there are scenarios in which the existing meth-
ods are not able to describe efficiently the gene regulation dynamics of the biological
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system under study. Consider for instance a GRN or a SGRN that contains promot-
ers with clusters of multiple non-cooperative TFBSs, such as one depicted in Fig. ..
According to the reaction network definition in Def. ., such system may be compli-
cated to formalize. The reason is, that it is unclear how to represent the activated and
the repressed promoters. Def. . does not provide any criterion or rule on how to
define a promoter with multiple bound TFs in its cis-regulatory module. If we con-
sider all the possible promoter’s states as a specific species, then we will have to deal
with a combinatorial explosion of states. It is obvious then, that the Def. . should
be enlarged and generalized to include and allow also this complex scenario.

Current literature is rather poor in the formalization of such GRNs, however there
were some efforts to fill this gap, although only for few specific models, as investigated
in the work of Giorgetti et al. and Lengyel et al. [, ]. In both works, authors
considered only deterministic simulation approaches. In this dissertation we wanted to
address this problematic and in chapter  we provide a solution for this type of GRNs,
by proposing a multi-scale stochastic algorithm, able to precisely simulate the dynamics
of complex cis-regulatory modules containing multiple non-cooperative TFBSs.







Modelling GRNs with complex
cis-regulatory modules
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Lt. Cmdr. Matt T. Sherman: Molumphry, will this boat go down?
Chief Molumphry: Like a rock sir.

Lt. Cmdr. Matt T. Sherman: Mr. Watson, how are the plates?
Lt. Watson: Tight as a drum sir.

Lt. Cmdr. Matt T. Sherman: And the engines, Tostin?
Chief Mechanic’s Mate Sam Tostin: Factory fresh, sir.

Lt. Cmdr. Matt T. Sherman: Well how about it?
Capt. J.B. Henderson: I say take your thieves and these liars here and

get the hell out. Oh there’s one stipulation,
you’ll engage no enemy shipping and that
includes lifeboats. Even if you see one of them
swimming in the water, avoid him. He might
kick a hole in your side. Good luck Matt.

Operation Petticoat, 

In nature, it is possible to come across several GRNs containing complex cis-regula-
tory modules. Such modules are often composed of multiple TFBSs that regulate the
gene expression in complex ways, as we briefly reviewed in section ... An example
of such cis-regulatory module can be found in the Epstein-Barr virus (EBV) [].
It allows competitive TF binding that results in a robust gene switching mechanism.
Multiple non-cooperative TFBSs are also found in SGRNs [, , , ]. In recent
years it has been shown that such systems reflect a robust behaviour. A high number
of TFBSs for the same promoter can provide a more stable and robust gene regulation.
Such property is currently exploited through novel synthetic DNA binding domains,
in the design process of complex gene circuits with information processing capabilities
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[, , ]. Modelling approaches for such systems have already been proposed [,
], although mainly based on deterministic thermodynamics.

In this chapter we explore the possibility to describe GRNs containing clusters of
cis-regulatory elements by the aid of the multi-scale stochastic modelling, which allows
one to perform highly accurate simulations at molecular level and, at the same time,
manage efficiently the chemical stiffness of these GRNs. Hereafter we present a vari-
ant of SSA for the accurate modelling of GRNs containing promoters with multiple
non-cooperative TFBSs. With a relative small computational complexity, the adapted
algorithm is able to simulate efficiently the stiff chemically reacting system of these
GRNs.

. Chemically reacting systems of complex cis-regulatory modules

Describing a chemically reacting systems, e.g. a GRN, in which there is at least one
promoter that is being regulated by multiple TFBSs, can pose a challenging modelling
task. The reason is, that the functional state of a promoter, (free, active or inhibited) is
defined indirectly by bound TFs. If multiple TFs are bound close to the promoter, then
it depends on the activation (or inhibition) rules (described in section ..) to decide
whether the promoter will be active or inhibited. But modelling such decision requires
to deal with a high number of permutations of bound activation and repressor TFs. In
fact the number of possible promoter’s binding sites states increases exponentially with
the number of binding sites, and hence it can be extremely hard to construct an accurate
model for such systems. Moreover, if the cis-regulatory modules, containing these
multiple binding sites, are present in extremely low concentration (low copy number),
then a high level of stiffness may occur, especially for those reactions concerning these
TFBSs, i.e. the TFs binding and unbinding reactions.

In the following section we will provide a more detailed formalization of a stochastic
simulation algorithm capable to tackle both of these issues.

.. Binding and unbinding reactions

Let’s presume a promoter being regulated by 𝑛 consecutive (clustered) TFBSs as de-
picted in Fig. .. The reactions of TF binding and unbinding are
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𝑏𝑖 + 𝑇𝐹
𝑘⎯⎯⎯⎯→ 𝑏TF

𝑖 ,

𝑏TF
𝑖

𝑘⎯⎯⎯⎯→ 𝑏𝑖 + 𝑇𝐹,
(.)

where 𝑏𝑖 and 𝑏TF
𝑖 denote an empty and a occupied binding site.

If two types of TFs can bind competitively to the same binding site, e.g. activators
𝑇𝑎 and repressors 𝑇𝑟, then the reactions that change each binding site’s states can be
described per Eq. (.) and Eq. (.), as

𝑏𝑖 + 𝑇𝑎
𝑘⎯⎯⎯⎯→ 𝑏+𝑖 ,

𝑏+𝑖
𝑘⎯⎯⎯⎯→ 𝑏𝑖 + 𝑇𝑎,

𝑏𝑖 + 𝑇𝑟
𝑘⎯⎯⎯⎯→ 𝑏−𝑖 ,

𝑏−𝑖
𝑘⎯⎯⎯⎯→ 𝑏𝑖 + 𝑇𝑟,

(.)

where 𝑏𝑖 refers to the 𝑖-th non-occupied binding site, 𝑏+𝑖 refers to the same binding site
on which an activator 𝑇𝑎 is bound and 𝑏−𝑖 denotes a binding site on which a repressor
𝑇𝑟 is bound.

The number of reactions of Eq. (.) and Eq. (.) increases drastically with the
number of binding sites. Let’s denote with 𝑘, the number of different types of TFs,
that can bind to 𝑛 consecutive binding sites. The total number of possible promoter
states is then

(𝑘 + 1)𝑛. (.)

The total number of all the possible binding and unbinding reactions increases conse-
quently. With 𝑘 different TF types that can bind to 𝑛 available binding sites,

𝑛

𝑖=

𝑛
𝑖 
𝑖 𝑘𝑛−𝑖+ (.)

different binding reactions can occur.
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.. A model for multiple binding sites representation

Consider a cis-regulatory module of a promoter that is composed of 10 TFBSs on
which two TFs can bind competitively. Consider also that such promoter is used in a
SGRN that we want to simulate through the classic SSA. In such scenario there would
be



𝑖=

10
𝑖 

⋅ 𝑖 ⋅ 2−𝑖 = 393, 660 (.)

possible combinations of binding and unbinding reactions. It is clear that, if one would
choose the SSA (or any other of its variants) to simulate the system, the model would
have to describe 393, 660 different reactions for TF-promoter interactions only. Con-
sidering that the binding and unbinding reactions between DNA and TFs can be pre-
sumed to be faster than transcription and translation, one can simply adopt the ssSSA
approach proposed by Cao et al. [, ], which suggests to threat the virtual fast
system containing all the fast reactions, as a stochastic birth-dead process. However,
because of the exponential number of TF’s binding and unbinding reactions, such
solution (or any other solution which would require to represent analytically the fast
system of binding reactions as a finite Markov process) would be difficult to implement,
at least for the systems with a large number of reactions as per Eq. (.).

In order to make the system in question manageable, we propose to handle all the
promoters states dynamically, without the need to store statically all the (𝑘 + 1)𝑛 pro-
moter species. By denoting with 𝑀𝑝 the number of all the different promoters in the
GRN, we can construct a time dependent binding site matrix B𝑚(𝑡) for each of the
promoters with multiple TFBSs. The matrix B𝑚(𝑡) has dimensions 𝑐𝑚 ⋅ 𝑛𝑚, where
𝑐𝑚 is the copy number of the 𝑚-th promoter in the GRN and 𝑛𝑚 is the number of
TFBSs in the cis-regulatory module of the same promoter, whereas 𝑚 = 1,… ,𝑀𝑝.
Each element of B𝑚(𝑡) represents one binding site and is defined as

𝑏𝑚𝑖,𝑗(𝑡) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0; if the binding site is empty at the time 𝑡,
1; if the binding site is occupied by an activator at the time 𝑡,
−1; if the binding site is occupied by a repressor at the time 𝑡,

(.)
where 𝑏𝑚𝑖,𝑗(𝑡) (also written simply as 𝑏𝑚𝑖𝑗 or 𝑏𝑖𝑗) denotes the state of the 𝑗-th binding site
on the 𝑖-th copy of the 𝑚-th promoter at time 𝑡. We will also use the notation 𝑏𝑚+𝑖,𝑗 (𝑡)
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and 𝑏𝑚−𝑖,𝑗 (𝑡) (or simply 𝑏+𝑖𝑗 and 𝑏−𝑖𝑗) for referring to a binding site occupied by an activator
and a repressor respectively.

Matrix B𝑚(𝑡) represents the entire DNA binding space for all the copies of the 𝑚-
th promoter inside the GRN at time 𝑡. In order to account for all the 𝑚 different
promoters of the GRN, 𝑀𝑝 matrices B𝑚 needs to be defined. The matrix B𝑚 can be
also conveniently represented as a column vector of rows b𝑖, 𝑖 = 1,… , 𝑐𝑚 as

B𝑚 = b𝑚 , b
𝑚
 , … , b𝑚𝑐𝑚 

⊺
, (.)

where each row b𝑖 is defined as

b𝑖 = 𝑏𝑚𝑖,, 𝑏𝑚𝑖,, … , 𝑏𝑚𝑖,𝑐𝑚  . (.)

With the aid of the matrix B𝑚, one can simply retrieve the state of any promoter in the
GRN. This allows a more compact management of the TFs’ binding reactions. One
can simply fire a binding or unbinding reaction by changing the state of a binding
site 𝑏𝑖𝑗 directly in the matrix B𝑚. Instead of dealing with an exponential sized data
structures, as would be the stoichiometric matrix in such a scenario, we only need to
evolve 𝑀𝑝 different matrices of size 𝑐𝑚 ⋅ 𝑛𝑚. Obviously there would be cases in which
the value 𝑐𝑚 will be high, however, that size will be still incomparably smaller than
the stoichiometric matrix that could be used instead.

.. Activation and inhibition rules

Such representation allows us to effectively represent all the states of the promoter
through time. However, different binding sites configurations needs to be classified
among three possible states:

idle (or free/empty),

active or

repressed (or inhibited),

e.g. 𝑐𝑚 ≈  would be the number of plasmids, that can be ingested and maintain by a mammalian cell,
which means that  promoters of the same type will be present in the GRN (under the assumption that
on each plasmid there is only one copy of such promoter). In such scenario the matrix B𝑚 will have a size of
 ⋅ 𝑛𝑚
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which describe the actual activity of the promoters. This is determined by specific
rules that take into account the number of bound repressors and activators in the cis-
regulatory module, as we shortly reviewed in section ... Examples in [] are

all-or-none,

singular and

additive.

It is important to clarify, that while authors in [] describe these rules more as an
interaction behaviour between the bound TFs and the RNAP, by attributing to each
scenario from ., the corresponding level of promoter activation, a slightly different
interpretation should be considered for stochastic simulations. The bound TFs con-
figuration defines the overall logic state of the promoter instead of a specific level of
activation (or inhibition).

The rules that determine if a specific promoter, i.e. a specific row of the binding
site matrix, is activated or inhibited, may be based, in a case of competitive TFs, on
a simple majority rule, i.e. simply by counting the number of bound activators and
repressors.

Such rules can be defined specifically for each type of promoters. For example, if
the experimental findings show that some repressor TFs have a stronger effect than the
activators, this would suggest that the rule governing the promoter activation may be
based on whether just one repressor is bound on a TFBS. Another realistic rule may
also consider the fact, that bound TFs on those binding sites that are closer to the
promoter (i.e. their position in the rows of matrices B𝑚 matters) may have a stronger
effect on the promoter activity than the other TFs bound far away from the promoter.
Bound activators that are close to the promoter may in fact facilitate the recruiting of
the RNAP. Such scenarios should be properly investigated, since they would provide
detailed rules to be used for determining the exact activation state of each promoter.

To find out how many promoters of the 𝑚-th type are activated and how many
are inhibited in the observed GRN, one can then simply apply the activation (or the
inhibition) rules, for each of the promoter states, i.e. for each row of the matrix B𝑚.
This can be done with the time dependent activation matrix A(𝑡), which contains the
activation state of every promoter. The matrix A(𝑡) can be defined as a function of
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B𝑚 as
A𝑚(𝑡) = ℎB𝑚(𝑡) = ℎ b𝑚 , b

𝑚
 , … , b𝑚𝑐𝑚  , (.)

where ℎ() is the rule function. It computes the state of each row b𝑚𝑖 of the matrix B𝑚,
by setting the respective row of the matrix A𝑚 to a value 𝑎𝑚𝑖 (𝑡) (also written as 𝑎𝑖(𝑡) or
simply 𝑎𝑖), defined as

𝑎𝑚𝑖 (𝑡) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0; if b𝑚𝑖 encodes an idle state at the time 𝑡,
1; if b𝑚𝑖 encodes an active state at the time 𝑡,
−1; if b𝑚𝑖 encodes an inhibited state at the time 𝑡.

(.)

By counting the frequencies of each state in the matrix A𝑚, it is then straightforward
to set the global concentrations for the species representing each of the three possible
promoter states.

We illustrate this approach in the following example.

Example .: Let’s presume a promoter 𝑝𝑟 with two binding sites (𝑏 𝑏), on which
an activator 𝐴 and a repressor 𝑅 can bind competitively. The promoter can be thus
free (𝑝𝑟), inhibited (𝑝𝑟𝑅) or activated (𝑝𝑟𝐴). Let presume a copy of the promoter
on 4 different plasmids. All four promoters are activated according to a simple
majority rule, i.e. if the number of bound activators is higher than the number of
bound repressors, then the promoter will be activated. In a case of an equal amount
of both TFs, repressors will prevail. Given any possible configuration of the binding
sites matrix B(𝑡), we can compute the current status of the activation matrix A(𝑡),
e.g.

B(𝑡) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0
−1 1
1 0
−1 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
→ A(𝑡) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
−1
1
−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

By counting the frequencies of each state: idle (𝑓), active (𝑓) and inhibited (𝑓−)
in the matrix A, we can then set the global concentration of the promoter species
at the current time 𝑡: 𝑝𝑟 = 𝑓 = 1, 𝑝𝑟𝐴 = 𝑓 = 1 and 𝑝𝑟𝑅 = 𝑓− = 2.
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.. Time evolution of TF binding

The simulation of the promoters regulation can be performed by simplifying the reac-
tions that describe the activators and repressors binding, i.e. by interpreting the pro-
moter binding reactions from Def. ., as simple binding site reactions similarly as
depicted in Eq. (.). This simulation can be performed with a nested SSA subroutine,
inside the main stochastic simulation (which can also be performed with a SSA and
is used to simulate the time evolution of non-TF related, binding and unbinding, re-
actions). Binding and unbinding reactions can be straightforwardly translated to the
binding site matrix B𝑚 for any free, activated and repressed binding site (𝑏𝑖𝑗, 𝑏+𝑖𝑗 and
𝑏−𝑖𝑗 respectively). The binding site matrix B𝑚 is therefore used inside the inner SSA in-
stance, similarly as the nested SSA subroutines in the nSSA (see Alg. A. in chapter A).
When simulating a binding reaction in the inner SSA, a free binding site is randomly
chosen from the matrix B𝑚 and its value is changed according to Eq. (.), i.e. the
chosen matrix element is set from 0 to 1 for activator binding and to −1 for repressor
binding. On the other hand, if an unbinding reaction is simulated, an occupied site
is randomly chosen from the matrix B𝑚 and its value is changed to 0, meaning that
the binding site is being released. At each step of the outer SSA, the configuration of
the promoter is evaluated. The promoter is activated, if the TFs’ occupancy configu-
ration in its cis-regulatory module represents an activated configuration, according to
the activation rule of the promoter.

To make the things more clear, we illustrate the time evolution for the matrix B𝑚
in the example Ex. ..

Example .: Let’s presume the same scenario as in ., i.e.

B(𝑡) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0
−1 1
1 0
−1 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
→ A(𝑡) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
−1
1
−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Now, we can drive the time evolution of binding and unbinding reactions by simply
taking into account these two types of reactions
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𝐵𝑆 + 𝐴 ⇌ 𝐵𝑆𝐴 and 𝐵𝑆 + 𝑅 ⇌ 𝐵𝑆𝑅

where the 𝐵𝑆 denotes the count of free binding sites (the number of 0’s), 𝐵𝑆𝐴
denotes the count of activated binding sites (the number of 1’s) and 𝐵𝑆𝑅 denotes
the count of inhibited binding sites (the number of −1’s) in B. These values are
used to calculate the propensities of each reaction. Further on, if for example, a
repressor binding reaction

𝐵𝑆 + 𝑅 ⎯→ 𝐵𝑆𝑅 (.)

is chosen by the SSA, the matrixB(𝑡)will evolve, by randomly picking a free binding
site (for instance the second element in the -th row of B) and by changing its value
to −1. This will result in a new state of the matrix

B(𝑡 + 1) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0
−1 1
1 −1
−1 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

By applying again the majority rule over all the rows of the matrix B(𝑡 + 1), we can
compute the activation matrix A(𝑡 + 1), i.e. the amount of activated and inhibited
promoters in the GRN at the time 𝑡 + 1, i.e.

B(𝑡 + 1) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0
−1 1
1 −1
−1 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
→ A(𝑡 + 1) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
−1
−1
−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

By counting the frequencies of each state in the matrix A(𝑡 + 1) we can set the
global concentrations of the promoter species at time 𝑡 + 1

𝑝𝑟 = 1, 𝑝𝑟𝐴 = 0, 𝑝𝑟𝑅 = 3.

With such approach it is possible to simulate any arbitrary GRN and SGRN de-
spite the complexity of the promoters’ cis-regulatory modules. Hereafter we propose a
stochastic simulation algorithm that successfully deals with such scenarios, by includ-
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ing the time evolution of the matrices B𝑚 and A𝑚 in a multi-scale SSA algorithm,
similar to the nSSA.

. A dynamic multi-scale stochastic simulation algorithm

In order to apply a stochastic SSA-based algorithm that would include the same time
evolution of the promoters with multiple TFBSs, as we described in the previous sec-
tion, we have to provide a more strict definition of the system that we aim to simu-
late.

Definition .: Let Ω be a chemically reacting system of a GRN, containing 𝑀𝑝
different promoters with multiple TFBSs, in which only the reaction from Def. .
takes place. The types of reactions that control the gene expression in Ω are

pr+𝑚 ⎯→ mRNA𝑚 + pr+𝑚, (.a)

mRNA𝑚 ⎯→ mRNA𝑚 + P𝑚, (.b)

mRNA𝑚 ⎯→ ∅, (.c)

P𝑚 ⎯→ ∅, (.d)

where mRNA𝑚 is the gene product expressed by the activated promoter pr+𝑚, and
𝑃𝑚 refers to the group of translation products of the𝑚-th gene, with𝑚 = 1,… ,𝑀𝑝.
On the other hand, let the following reaction types represent the gene regulation

pr𝑚 + T ⇌ pr+𝑚, (.a)

pr𝑚 + T ⇌ pr−𝑚, (.b)

where pr𝑚 is the 𝑚-th promoter of the system, pr+𝑚 and pr−𝑚 are its activated and
inhibited state, T and T are general TF activators and repressors respectively,
capable to bind to any of the 𝑚-th promoter’s TFBSs (where 𝑚 = 1,… ,𝑀𝑝).

Without loosing generality we can say that this is a viable representation of the key
reactions in GRNs, which would allow one to simulate its dynamics accurately.
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Now, suppose the system Ω is affected by stiffness, where the reactions occur in
different time scales, as per Cond. .. Assume also that the reactions in Eq. (.)
of transcription (Eq. (.)), translation (Eq. (.)) and degradation (Eq. (.)) are
slow compared to the reactions defined in Eq. (.) of TFs binding and unbinding (as
defined in .). We can thus partition the set of reactions in two different sets: the slow
and the fast. We propose the following arrangements, in order for Def. . to be able
to represent also the scenario in which the promoters contain complex cis-regulatory
modules with multiple non-cooperative TFBSs.

Definition .: The Def. . is modified to be capable of dealing with a chemically
reacting system as depicted in Def. . by including the following arrangements:

. Let 𝑐𝑚 be the copy number and 𝑛𝑚 the number of binding sites of each of
the promoters in the system, 𝑚 = 1,… ,𝑀𝑝.

. Reactions can be partitioned according to Eq. (.) and Eq. (.).

. Let 𝒫 𝑠 and 𝒫 𝑓 be the sets of the promoter species used in the slow and in
the fast reactions, i.e.

𝒫 𝑠 = 𝑝𝑟𝑠+ , … , 𝑝𝑟𝑠+𝑀𝑝,

𝒫 𝑓 = 𝑝𝑟𝑓 , 𝑝𝑟
𝑓+
 , 𝑝𝑟𝑓− , … , 𝑝𝑟

𝑓
𝑀𝑝 , 𝑝𝑟

𝑓+
𝑀𝑝 , 𝑝𝑟

𝑓−
𝑀𝑝,

(.)

where 𝑝𝑟𝑠+𝑖 denotes the 𝑖-th active promoter, involved in the slow reaction
of transcription, and 𝑝𝑟𝑓𝑖 , 𝑝𝑟

𝑓+
𝑖 , 𝑝𝑟𝑓−𝑖 denote the 𝑖-th idle, active and inhib-

ited promoter respectively, involved in the fast reactions of TF binding and
unbinding, where 𝑖 = 1,… ,𝑀𝑝.

. Let 𝒯 𝑓 and 𝒯 𝑠 denote the sets of the TFs involved in the fast and in the
slow reactions respectively

𝒯 𝑠 = 𝑇 𝑠, … , 𝑇 𝑠𝑁tf𝑠  and 𝒯 𝑓 = 𝑇𝑓 , … , 𝑇
𝑓
𝑁tf
𝑓
, (.)
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where𝑁tf
𝑠 and𝑁tf

𝑓 denote the number of different TFs involved in the slow
and in the fast reactions respectivelya.

. The slow and the fast species vectors can be redefined as

𝑆𝑠 = 𝒫 𝑠, 𝒯 𝑠, 𝒰 𝑠 and 𝑆𝑓 = 𝒫 𝑓 , 𝒯 𝑓, (.)

where 𝒰 𝑠 denotes the slow species, that are neither TFs, nor promoters
(e.g. mRNAs), where |𝑆𝑠| = 𝑁 𝑠 and |𝑆𝑓 | = 𝑁𝑓 . Hence the state vector from
Eq. (.) is composed by the fast and slow species amounts accordingly.

. Letℬ be the set with cardinality𝑀𝑝 of all the binding site matrices B𝑚, i.e.

ℬ = B, … B𝑀𝑝 . (.)

aUsually 𝒯 𝑓 = 𝒯 𝑠, since TFs are involved in both the gene expression and regulation reactions.

.. A simulation for the fast system

The basic approach to simulate the dynamics of multi-scale chemically reacting systems,
as in the nSSA, is to perform two SSAs, one for the fast and one for the slow reactions
of the system. The slow reactions are performed in the main (outer) SSA, while the
fast reactions are performed as an SSA subroutine inside the main SSA routine. Now
the two reactions sets share a subset of common species which need to be updated
before both SSAs can use them, i.e. these are the components in the system𝑋𝑠(𝑡) from
Eq. (.) that are changed by the stoichiometric vector’s elements 𝜈𝑓𝑠𝑖𝑗 defined in Eq.
(.). These species are in the case of a GRN defined as per Def. ., the TFs lying
in the intersection

𝒯𝑠∩𝑓 = 𝒯 𝑠 ∩𝒯 𝑓 . (.)

Apart from 𝒯𝑠∩𝑓 , the two scales also share the active promoters species 𝑝𝑟𝑠+𝑚 of the
set 𝒫 𝑠, for which their amount needs to be computed, as we shown in the Ex. .
and Ex. .. This can be done by computing the frequencies of appearance of each
promoter state (active, repressed or idle) in the activation matrix A for all the 𝑀𝑝
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different promoters in the GRN

𝑝𝑟𝑠𝑚 = 𝑓A𝑚(𝑡), (.a)

𝑝𝑟𝑠+𝑚 = 𝑓A𝑚(𝑡), (.b)

𝑝𝑟𝑠−𝑚 = 𝑓−A𝑚(𝑡), (.c)

where 𝑓, 𝑓 and 𝑓− denote the total number of idle, activated and repressed promot-
ers, respectively, and where 𝑚 = 1,… ,𝑀𝑝.

We can adapt the SSA from Alg. . to perform the fast reactions from Eq. (.)
having multiple TFBSs. Let’s have a system as per Def. . with the arrangements
listed in Def. .. The system state is defined as

𝑋(𝑡) = 𝑋𝑓(𝑡), 𝑋𝑠(𝑡), (.a)

𝑋𝑓(𝑡) = 𝑋𝒫 𝑓 , 𝑋𝒯 𝑓 , (.b)

𝑋𝑠(𝑡) = 𝑋𝒫 𝑠 , 𝑋𝒯 𝑠 , 𝑋𝒰 𝑠, (.c)

where the stoichiometric vectors can be defined accordingly (see Eq. (.)). Therefore,
the SSA can evolve the system 𝑋𝑓(𝑡). The only difference is that the reactions need
to occur over the matrix B𝑚, instead on the species 𝑆𝑓 directly. This can be done
efficiently by following the proposed approach in the previous section, i.e. by applying
the fast reactions from Eq. (.) directly on B𝑚 and by describing the concentration
of each fast promoter species (𝑝𝑟𝑓𝑚) as

𝑝𝑟𝑓𝑚 = |𝑏𝑚𝑖𝑗 |, (.a)

𝑝𝑟𝑓+𝑚  = |𝑏𝑚+𝑖𝑗 |, (.b)

𝑝𝑟𝑓−𝑚  = |𝑏𝑚−𝑖𝑗 |, (.c)

where 𝑏𝑚𝑖𝑗 , 𝑏𝑚+𝑖𝑗 and 𝑏𝑚−𝑖𝑗 denote the elements of the matrix B𝑚 as in Eq. (.) and
where the notation | | denotes their cardinality. These values are used to calculate the
propensities of four reactions that are observed at this point, i.e. binding and unbinding
of activator, and binding and unbinding of repressor.
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If a TF binding reaction is chosen by the SSA, it is performed by randomly choosing
an empty site in B and by placing the value 𝑏𝑚+𝑖𝑗 or 𝑏𝑚+𝑖𝑗 (1 or −1) according to the type
of the binding. A TF unbinding reaction is instead performed by randomly selecting
a bound TF value, anywhere in B𝑚 and placing the empty value 0 on the chosen site.

The algorithm therefore performs the time evolution of all the binding site matrices
B𝑚. We call this algorithm the binding sites evolution SSA (bseSSA).

Algorithm .
The binding sites evolution stochastic simulation algorithm for performing the fast reactions of TF-DNA binding and
unbinding.

Input: a stochastic system 𝑋𝑓 from Eq. (.b) for the reactions of Eq. (.),
the set of matrices ℬ with cardinality 𝑀𝑝.

Output: the evolution of the system 𝑋𝑓 .

procedure bseSSA( 𝑋𝑓 (), ℬ )
Set the initial time value.
𝑡𝑓 = 
Quantify the number of activated, repressed and empty promoters as per Eq. (.)
for all 𝑚 = ,… ,𝑀𝑝 do

B𝑚 = ℬ (𝑚)
𝑋𝑓
𝑝𝑟𝑓𝑚
() = |𝑏𝑚𝑖𝑗 |

𝑋𝑓
𝑝𝑟𝑓+𝑚

() = |𝑏𝑚+𝑖𝑗 |

𝑋𝑓
𝑝𝑟𝑓−𝑚

() = |𝑏𝑚−𝑖𝑗 |
end for

Perform the time evolution over all the matrices B𝑚
while 𝑡𝑓 < 𝑇

𝑓
 do

Perform one SSA step:
) select the 𝑗-th reaction to be fired in the system 𝑋𝑓 (𝑡), 𝑗 = ,… ,𝑀𝑓
) compute 𝜏𝑓
) get the index 𝑚 of the promoter for which the 𝑗-th reaction will be fired

[𝑗, 𝜏𝑓 ] = SSA_step( 𝑋𝑓 (𝑡𝑓 ) )
Identify which promoter is affected, i.e. retrieve the index 𝑚 of the promoter
involved in the 𝑗-th reaction.
𝑚 = getPromoterIndex( 𝑗 )
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Evolve the binding site matrices B𝑚(𝑡𝑓 )
if ( 𝑗 = “an index of an activator binding reaction” ) then

Select a random empty site 𝑏𝑚 in B𝑚(𝑡𝑓 )
and change its value to  (as per Eq. (.))
𝑏𝑚 = 

else if ( 𝑗 = “an index of an activator unbinding reaction” ) then
Select a random site 𝑏𝑚+ occupied by an activator in B𝑚(𝑡𝑓 )
and change its value to 
𝑏𝑚+ = 

else if ( 𝑗 = “an index of a repressor binding reaction” ) then
Select a random empty site 𝑏𝑚 in B𝑚(𝑡𝑓 ) and change its value to −
𝑏𝑚 = −

else if ( 𝑗 = “an index of a repressor unbinding reaction” ) then
Select a random site 𝑏𝑚− occupied by a repressor in B𝑚(𝑡𝑓 )
and change its value to 
𝑏𝑚− = 

else
No time evolution of B𝑚(𝑡𝑓 ) required for the reaction 𝑗.

end if

Perform the state change on 𝑋𝑓 (𝑡𝑓 ) according to the relative 𝜈𝑓𝑗
𝑋𝑓 (𝑡𝑓 + 𝜏𝑓 ) = 𝑋𝑓 (𝑡𝑓 ) + 𝜈

𝑓
𝑗

Increase the time step
𝑡𝑓 = 𝑡𝑓 + 𝜏𝑓

end while
end procedure

The main question, that arises here is, how long the time evolution of the binding site
matrices should be simulated, i.e. how big should 𝑇𝑓 be. This question is tightly
related to the slow-scale approximation in Def. A.. However, in contrast with the
virtual fast process �̂�𝑓 of the ssSSA (see section A..), the process 𝑋𝑓 in the bseSSA
is strictly defined for the TF-DNA binding reactions only, and hence there could be
much more manoeuvring space for the definition of 𝑇𝑓. A possible value for 𝑇𝑓
can be defined heuristically or as per condition used for the nSSA []

𝑇𝑓 ≈ Δ𝑠 ≪ 𝑡𝑠, (.)
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where 𝑡𝑠 is the average expected time to the next slow reaction to occur and Δ𝑠 is the
time increment, for which the product 𝑎𝑠𝑗 (𝑥𝑠; 𝑥𝑓)Δ𝑠 is the probability, that a slow scale
reaction 𝑅𝑠𝑗 will occur in the next time interval [𝑡, 𝑡 + Δ𝑠).

.. Combining slow and fast scale simulations

The algorithm, that performs

the SSA simulation over 𝑋𝑠 and

the bseSSA over the fast system 𝑋𝑓 ,

is called the dynamic multi-scale stochastic simulation algorithm (DMSSA) and it is de-
picted in Alg. .. The DMSSA simulates the slow system 𝑋𝑠, where at each time step
𝜏𝑠, a bseSSA procedure is called in order to retrieve the states of every promoter in the
GRN.

Algorithm .
The dynamic multi-scale stochastic simulation algorithm.

Input:  (a model from .) with the arrangements from Def. .,
ℋ (the set of all the promoters’ activation rules).

Output: the system state evolution 𝑋.

procedure DynamicMultiscaleSSA( , ℋ )
Given the values 𝑐𝑚 and 𝑛𝑚, construct the set ℬ containing
all the matrices B𝑚, for each 𝑚 = ,… ,𝑀𝑝

ℬ = B, B, … B𝑀𝑝
Initialize the system
𝑋𝑓 = 𝑋𝒫 𝑓 , 𝑋𝒯 𝑓 
𝑋𝑠 = 𝑋𝒫 𝑠 , 𝑋𝒯 𝑠 , 𝑋𝒰 𝑠 
𝑋 = 𝑋𝑓 , 𝑋𝑠
Set the initial time
𝑡𝑠 = 
while 𝑡𝑠 < 𝑇𝑠 do

Update the TFs species used in the slow-scale to the fast process 𝑋𝑓

𝑋𝑓
𝒯𝑠∩𝑓 = 𝑋

𝑠
𝒯𝑠∩𝑓

Time evolve the fast process 𝑋𝑓 (𝑡)
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𝑋𝑓 (𝑡𝑠 + 𝑇
𝑓
) = 𝑏𝑠𝑒𝑆𝑆𝐴𝑋𝑓 (𝑡𝑠),ℬ 

Compute the activation matrices A𝑚 by applying the activation rule on the
matrices B𝑚, and update the slow promoter species with the according
frequencies, as per Eq. (.)
for all (𝑚 = , … ,𝑀𝑝) do

A𝑚(𝑡𝑠) = ℎ𝑚B𝑚(𝑡𝑠)
𝑝𝑟𝑠+𝑚 = 𝑓A𝑚(𝑡𝑠)

end for
Update the TFs species used in the fast-scale to the slow process 𝑋𝑠

𝑋𝑠
𝒯𝑠∩𝑓 = 𝑋

𝑓
𝒯𝑠∩𝑓

Perform one step of the SSA for the slow reactions,
i.e. compute Eq. (.) and Eq. (.).
𝑗, 𝜏𝑠 = 𝑆𝑆𝐴𝑋𝑠(𝑡𝑠)
Apply the change and increase the time step 𝑡𝑠
𝑋𝑠(𝑡𝑠 + 𝜏𝑠) = 𝑋𝑠(𝑡𝑠) + 𝜈𝑠𝑗
𝑡𝑠 = 𝑡𝑠 + 𝜏𝑠

end while
end procedure

If 𝑛𝑚 = 1(∀𝑚 = 1,… ,𝑀𝑝), all the matrices B𝑚 reduce to a column vector, in which
case the exponential number of binding reactions reduces to two single reactions, as
per Eq. (.). In such scenario, the Alg. . reduces to a classic SSA. In this case it
would be computationally more convenient to adopt one of the multi-scale approaches,
such as the ssSSA, MSSA or the nSSA. The algorithm . can manage the explosion
of the number of promoters’ states by simply constructing the binding sites matrices,
one for each promoter type of the GRN. Moreover, the algorithm from . allows the
application of custom activation rules for the evaluation of the promoter functional
states.

.. Computational validation

To illustrate the performance enhancement of the DMSSA, as well as to validate its cor-
rectness, we propose a simple model of a SGRN, containing a promoter with multiple
non-cooperative TFBSs. The cis-regulatory module of this promoter, namely 𝑝𝑟, con-
tains 2 TFBSs (𝑛 = 2) on which either a repressor 𝑅 or an activator 𝐴 can bind. For
the purpose of the validation, we will assume, that both the activator and the repres-
sor species are present in the reacting volume in constant amounts. The cis-regulatory
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module of the promoter 𝑝𝑟 is driving the regulation of a gene, for which the product
is a protein 𝑃. The slow reactions of the system are defined as

𝑝𝑟+
𝑘⎯⎯⎯⎯→ 𝑚𝑅𝑁𝐴 + 𝑝𝑟+, (.a)

𝑚𝑅𝑁𝐴
𝑘⎯⎯⎯⎯→ 𝑚𝑅𝑁𝐴 + 𝑃, (.b)

𝑚𝑅𝑁𝐴
𝑘−
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯→ ∅, (.c)

𝑃
𝑘
⎯⎯⎯⎯→ ∅, (.d)

while the fast reactions are represented with the two bidirectional reactions

𝑝𝑟 + 𝐴
𝑘⇌
𝑘

𝑝𝑟+, (.a)

𝑝𝑟 + 𝑅
𝑘⇌
𝑘

𝑝𝑟−. (.b)

The TF binding to the promoter’s 𝑝𝑟 cis-regulatory module is of competitive nature.
Both 𝐴 and 𝑅 compete to bind over the same binding sites. We assume that both TFs
have equivalent binding and unbinding kinetic constants. Let’s assume also that the
promoter is governed by a majority rule, but with the difference, that a bound repressor
has a stronger influence than the activator, hence such rule can be defined as

ℎb𝑚 =
⎧⎪⎨
⎪⎩

1; if |𝑏𝑚+| > |𝑏𝑚−|,
−1; if |𝑏𝑚+| ≤ |𝑏𝑚−|.

(.)

We compare the response of the system obtained with Alg. ., with the response
obtained with a classic SSA from Alg. ..
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The classic SSA should perform the following binding and unbinding reactions

𝑝𝑟 + 𝐴
𝑘⇌
𝑘

𝑝𝑟𝐴, 𝑝𝑟 + 𝐴
𝑘⇌
𝑘

𝑝𝑟𝐴,

𝑝𝑟 + 𝑅
𝑘⇌
𝑘

𝑝𝑟𝑅, 𝑝𝑟 + 𝑅
𝑘⇌
𝑘

𝑝𝑟𝑅,

𝑝𝑟𝐴 + 𝐴
𝑘⇌
𝑘

𝑝𝑟𝐴𝐴, 𝑝𝑟𝐴 + 𝐴
𝑘⇌
𝑘

𝑝𝑟𝐴𝐴,

𝑝𝑟𝑅 + 𝐴
𝑘⇌
𝑘

𝑝𝑟𝐴𝑅, 𝑝𝑟𝑅 + 𝐴
𝑘⇌
𝑘

𝑝𝑟𝑅𝐴,

𝑝𝑟𝐴 + 𝑅
𝑘⇌
𝑘

𝑝𝑟𝑅𝐴, 𝑝𝑟𝐴 + 𝑅
𝑘⇌
𝑘

𝑝𝑟𝐴𝑅,

𝑝𝑟𝑅 + 𝑅
𝑘⇌
𝑘

𝑝𝑟𝑅𝑅, 𝑝𝑟𝑅 + 𝑅
𝑘⇌
𝑘

𝑝𝑟𝑅𝑅.

With the notation 𝑝𝑟𝑏𝑏 we denote each of the 3 = 9 possible state of the promoter,
where only those in which no repressor is bound should be consider active (according
to the rule ℎ).

Whether the DMSSA creates one binding matrix B of size 𝑐 ⋅ 2, where 𝑐 is the copy
number of the promoter, for representing the dynamics of the two binding sites, the
classic SSA has to deal with 12 binding and unbinding reactions and with three more
slow reactions, involving the transcription reaction from all the possible active states
of the promoter, according to the majority rule ℎ

𝑝𝑟
𝑘⎯⎯⎯⎯→ 𝑚𝑅𝑁𝐴 + 𝑝𝑟,

𝑝𝑟𝐴
𝑘⎯⎯⎯⎯→ 𝑚𝑅𝑁𝐴 + 𝑝𝑟𝐴,

𝑝𝑟𝐴
𝑘⎯⎯⎯⎯→ 𝑚𝑅𝑁𝐴 + 𝑝𝑟𝐴,

𝑝𝑟𝐴𝐴
𝑘⎯⎯⎯⎯→ 𝑚𝑅𝑁𝐴 + 𝑝𝑟𝐴𝐴.
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Table .
The kinetic parameters of the model described with reaction from Eq. (.) and Eq. (.).

constant value description

𝑘 10 𝑀−𝑠− TF binding
𝑘 10 𝑠− TF unbinding
𝑘 0.018 𝑠− transcription
𝑘 0.043 𝑠− transcription
𝑘 0.002 𝑠− protein degradation
𝑘− 0.001 𝑠− mRNA degradation

For practicality, we have not considered promoter leakage. However, we can consider
the promoter with two empty binding sites as active.

The initial concentrations for the activator 𝐴 and repressor 𝑅 are set to 2000 mole-
cules (which is approximately 1.66 𝜇𝑀 in a HEK cell with a volume of ≈ 2 ⋅
10−𝑑𝑚 []) and maintain constant thorough the simulation. The plasmid copy
number, i.e. the initial concentration for the promoter of the gene 𝑃 is set to 100
copies. The kinetic parameters of the model are listed in Tab. .. We assume the
dissociation constant 𝐾𝑑 being in the micro molar region, and with a high value of
𝑘, the unbinding constant 𝑘 can be therefore calculated as per 𝑘 = 𝐾𝑑 ⋅ 𝑘.
All the other parameters are reference values, that can be obtain from Eq. (.), Eq.
(.) and Eq. (.) by choosing sampled values from Tab. ., Tab. . and assuming
a translation-elongation rate of 40 𝑎.𝑎./𝑠. Also we assume that transcription is driven
by the RNAPII. Note the difference in magnitude between the binding/unbinding
kinetic constants and all the other parameters.

The simulation responses for the protein 𝑃 from the DMSSA and the SSA are de-
picted in Fig. .. The mean percentage error of the DMSSA’s mean trajectory from
the mean trajectory of the SSA is roughly 6%.

In order to statistically verify the validity of the DMSSA, we compare the simulation
runs of both the SSA and the DMSSA for the output response of the protein 𝑃. We
use a strategy that was adopted already in [], where the virtual fast system �̂�𝑓(𝑡),

This is a scenario where also an inhibited promoter may allow (occasionally) the RNAP to initiate the
transcription, allowing the mRNA to be transcribed.



  Modelling GRN with complex cis-regulatory modules Mattia Petroni

Figure .
The first  of the ,
SSA and DMSSA re-
sponses obtained from the
simulations for the protein
𝑃. The plot in red shows
the range of the DMSSA
trajectories, while the plot
in blue shows the trajecto-
ries obtained from simple
SSA runs. The continuous
and the dotted lines in
grey represent the mean
values of all the ,
trajectories for the SSA and
the DMSSA respectively.
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described in section A.., was compared to the fast system𝑋(𝑡) at partial equilibrium.
Here authors used the frequency distributions of multiple SSA simulation runs, sam-
pled at different times, to show that at partial equilibrium, the two processes �̂�𝑓(𝑡)
and 𝑋(𝑡) are equivalent.

We performed , runs for both the SSA and DMSSA, and we obtained the
frequency distributions of the output response protein 𝑃, from each method at times
1ℎ, 2ℎ and 4ℎ. Frequencies are computed over  bins on the interval ranging from
the minimum to the maximum sampled value at the chosen time over all the simulation
responses. The obtained frequency distributions are plotted in Fig. .. From Fig. .
it is already clear, that both SSA and DMSSA return the same response. Note, that the
, runs of both SSA and DMSSA were performed in parallel with the aid of 
concurrent threads, for which the SSA took more than three days, while the DMSSA
needed roughly eleven hours to complete the simulations (almost seven times faster
than the SSA).

To statistically validate the equivalence of both the methods, we performed a two-
sample Kolmogorov-Smirnov test (KS-test) over all the three frequency distributions.

We divided the range of sampled values in  subintervals. The frequency distributions (or histogram) are
then computed based on how many samples fall in each subinterval.
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Figure .
A comparison of the two
frequency distributions
of the SSA and DMSSA
responses obtained from
, simulation runs.
The samples where cap-
tured at three different
times: ℎ, ℎ and ℎ
and classified in  bins
with equal width. At time
𝑡 = ℎ, all the simulation
responses show that the
protein P is still increasing
in concentration towards
the steady state. At times
ℎ and ℎ the simulations
responses reached already
the steady state, hence the
two frequency distributions
coincide.

The test statistic used in the KS-test is defined as

𝐷𝑛 ,𝑛 = sup𝑥
�̂�(𝑥) − �̂�(𝑥) , (.)

where �̂�(𝑥) and �̂�(𝑥) denote the two empirical distributions functions, of the two
frequencies vectors 𝑥 and 𝑥 that we want to compare, 𝑛 and 𝑛 denote the size of
the two samples, i.e. the vectors length, and sup stands for the supremum function.
In our case 𝑛 = 𝑛, which equals the number of bins (100).

The KS-test presupposes as a null hypothesis𝐻 that the two frequencies vectors 𝑥
and 𝑥 are sampled from the same distribution. The test rejects the null hypothesis, if

𝐷𝑛 ,𝑛 > 𝑐(𝛼)√𝑁, (.)

where𝑁 = 𝑛+𝑛
𝑛𝑛 , 𝛼 is the significance level and 𝑐(𝛼) =√−


 ln

𝛼
 . We set 𝛼 = 0.01,

and hence 𝑐(𝛼)√𝑁 = 0.23 and the results of the KS-tests are the following:
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𝐷 𝐷 > 0.23 𝑝 − 𝑣𝑎𝑙𝑢𝑒 𝑝 ≤ 𝛼 reject 𝐻?
𝑡 = 1ℎ 0.04 no 1.0 no no
𝑡 = 2ℎ 0.03 no 1.0 no no
𝑡 = 4ℎ 0.06 no 0.99 no no

The p-value in all the three tests is always greater than 𝛼, which confirms the null
hypothesis to be non-rejectable. Since the test statistic𝐷 is lower than the critical value
𝑐(𝛼)√𝑁 = 0.23 at each time point, we can convene that the frequency distributions
of the trajectories computed from the SSA and DMSSA are likely drawn from the
same distribution and hence statistically equivalent. The test was performed with the
Matlab® tool kstest [].





Sensitivity analysis in systems
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Lt. Cmdr. Matt T. Sherman: My responsibility is this boat, and to get her
out of here I’d even make a pact with the devil.

Lt. J.G. Nicholas Holden That’s where I come in.
Lt. Cmdr. Matt T. Sherman: That’s right.

Operation Petticoat, 

Mathematical and computational models are usually affected by some levels of un-
certainty, that can be due to a variety of reasons: unknown parameter values and un-
certain model inputs, unpredicted influence of a parameter in the model outputs, but
also poor confidence of the modeller in the model design. The sensitivity analysis is the
study of the uncertainty of the model outputs, based on the uncertainty of the model
inputs []. We say that a model is “sensitive” to a particular input (or parameter)
when a small change in its value deeply affects the value of the output (or outputs). In
order to evaluate and estimate such effects, sensitivity analysis has developed a wide
range of methods and techniques.

Sensitivity analysis provides powerful methods to uncover the insights of dynamical
models when the response of the system cannot be easily described as a simple function
of the inputs. Moreover, sensitivity analysis can be tied to model validations in order to
provide an estimation of the model uncertainty. Ultimately, the sensitivity analysis can
guide experimental design and execution, in the sense that, the most sensitive model
inputs are potential candidates for further experimental investigation [].

Sensitivity analysis can also be used to assess the robustness of a biological system.
Robust biological systems are insensitive to input and environmental perturbations,
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hence they may enhance their response effectiveness no matter how noisy conditions
are present during the experimental application (or in the natural environment).

Hereafter we will briefly review the methods and techniques that are prevalently
used in the field of system and synthetic biology for performing the sensitivity analysis
[].

. Sensitivity analysis methods

Sensitivity analysis can be divided in two subcategories: local sensitivity analysis and
global sensitivity analysis. Local sensitivity analysis refers to analytical approaches that
are capable to measure and assess the variations of the model output, regarding small
variations of one model input parameter at a time. Generally these variations are re-
ferred to a localized region around a specific base point. Global sensitivity analysis
instead refers to numerical and statistical approaches, used to assess the variations of
the model output, in light of large perturbations of multiple model inputs.

. Local sensitivity analysis

A common definition of the local sensitivity is based on the sensitivity coefficients,
which are the first order partial derivatives of the model output function with respect
to specific inputs:

Definition .: The sensitivity coefficient 𝑆 of a model output function 𝑦 of the
input parameter 𝑥𝑖 is defined as the partial derivative of the function over the pa-
rameter:

𝑆(𝑥𝑖) =
𝜕𝑦(𝑥, 𝑥, … , 𝑥𝑖, … , 𝑥𝑛)

𝜕𝑥𝑖

= lim
𝑥𝑖→

𝑦(𝑥, 𝑥, … , 𝑥𝑖 + Δ𝑥𝑖, … , 𝑥𝑛) − 𝑦(𝑥, 𝑥, … , 𝑥𝑖, … , 𝑥𝑛)
Δ𝑥𝑖

.
(.)

By definition then local sensitivity provides an estimated value of how much an input
parameter affects the model response output around a local point in the parameter

The inputs of the model that are of interest in the sensitivity analysis are often referred as input parameters.
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space []. Two of the most used local sensitivity analysis approaches that are based
on Def. . are the following:

Finite difference approximation: The most simple approximation of the partial
derivative from Def. . is by choosing a small value of Δ𝑥𝑖 and compute the
sensitivity coefficients as

𝑆(𝑥𝑖) ≈
𝑜(𝑥, 𝑥, … , 𝑥𝑖 + Δ𝑥𝑖, … , 𝑥𝑛) − 𝑜(𝑥, 𝑥, … , 𝑥𝑖, … , 𝑥𝑛)

Δ𝑥𝑖
.

Here the quality of estimation depends solely on the choice of value Δ𝑥𝑖.

Metabolic control analysis: Metabolic control analysis (MCA) is a type of sensi-
tivity analysis specifically developed to study the influence of input parameters
in large metabolic pathways. Essentially it quantifies this influence with a sensi-
tivity coefficient 𝐶 defined as

𝐶 =
𝜕ln 𝑦
𝜕ln (𝑥) , (.)

where 𝑥 and 𝑦 are an input and an output of the model, respectively. The method
has been prevalently used on different models of metabolic pathways and net-
works.

We refer to [] for a complete review of local sensitivity analysis techniques. Local
sensitivity analysis approaches are able to capture and estimate only the uncertainty of
the outputs with respect to the model inputs, in a localized region of the parameter
space. Often, however, it is required to address an estimation of this uncertainty for a
larger region in the parameter space. Global sensitivity analysis approaches are able to
cope with such a challenge and they provide a plethora of techniques to compute the
sensitivity of model parameters globally.

. Global sensitivity analysis

In the last two decades, several computational techniques were developed for perform-
ing global sensitivity analysis on dynamical models. The majority of these approaches
has strong statistical foundations, meaning that they try to ensure a statistical indepen-
dence between the design of the experiment and the model itself. Roughly, the global
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sensitivity analysis needs to investigate and to assess how large variations (or perturba-
tions) in the input parameters affect the output of the model. This could be translated
as “try to change the inputs by any possible value of the parameter space, and observe
the output response”, which literally means to sample indiscriminately the entire pa-
rameter space (which tends to be huge also for smaller models). This is a common
practice of the so called one-at-a-time (OAT) approaches, which the Morris method is
a typical representative. In this context, the study of perturbation of all possible values
of the model parameters becomes crucial. Therefore the majority of approaches has
to face the problem of parameter sampling. A review of all the different techniques
and methods used for global sensitivity analysis is beyond the scope of this disserta-
tion, hence we refer to [, , ] for a complete overview of the most popular
approaches.

Hereafter we briefly review the Morris screening experiment, which is, due to its
simplicity, one of the most largely used approach for estimating the global parameter
sensitivities in systems biology models.

.. The Morris method

As a screening design technique, the experiment proposed by Morris [], allows to
rank the input parameters in order of importance [], according to their sensitivity
values. The Morris method, also known as the Morris screening experiment (MSE), is
an OAT approach, that allows to determine which input parameter of the model has
one of the following types of effects on the model outputs:

negligible,

additive or linear,

non-linear or having interaction with other parameters.

The method is defined as follows. Let x be the set (vector) of all the 𝑘 input parameters
of the model, i.e.

x = (𝑥, 𝑥, … , 𝑥𝑘).
Not all global sensitivity analysis techniques are based on this presumption. See [] for more informa-

tion.
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Each input parameter is defined as a value (also called level) sampled from its reference
interval with 𝑝 possible discrete values

0,
1

𝑝 − 1 ,
2

𝑝 − 1 ,… ,
𝑝 − 2
𝑝 − 1 , 1 , (.)

where the value 0 and 1 refer to the normalized minimum and maximum values that
the input parameter can take. Therefore an interval with 𝑝 levels is a linearly divided
region of the input parameter space with 𝑝 discrete values. If the interval spans over
multiple orders of magnitude, then it should be divided in 𝑝 logarithmically spaced
points. For such intervals, the definition adopted in Eq. (.) is instead rewritten as

10, 10

𝑝− , 10


𝑝− , … , 10

𝑝−
𝑝− , 10 , (.)

which can be normalized, if necessary to the range [0, 1]. In practice the sampled
parameters value are then rescaled to their “real” values (non-normalized).

In order to assess how much the 𝑖-th input parameter affects the system output,
Morris suggests to compute the so-called elementary effects. By denoting with x + Δ𝑖
the change in the vector

[𝑥, … , 𝑥𝑖−, 𝑥𝑖 + Δ, 𝑥𝑖+, … , 𝑥𝑘] , (.)

then an elementary effect is the ratio

𝑑𝑖(x) =
𝑦(x + Δ𝑖) − 𝑦(x)

Δ , (.)

where Δ is a predefined multiple of 
𝑝− and the function 𝑦(x) is the system output

function, i.e. the system response function. The value 𝑥𝑖+Δmust lie inside the interval
of Eq. (.) (or Eq. (.)). If the value 𝑥𝑖 + Δ overflows the interval, then 𝑥𝑖 − Δ is
computed. Saltelli et al. [] suggest to always set 𝑝 as an even integer.

Note that the distribution of each elementary effect 𝐹𝑖 from a random sample of 𝑘
input parameters, in which values are randomly chosen from the interval in Eq. (.)
(or Eq. (.)) is a simple permutation with repetition, but with the limitation of 𝑥𝑖±Δ
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still being inside the interval. By setting

Δ = 𝑎
𝑝 − 1 (.)

and by drawing a table of all the values from the interval in Eq. (.) (as columns) and
all the values of the offset 𝑎 (ranging from 1 to 𝑝 − 1 as rows), it is straightforward to
compute the total number of elements for each 𝐹𝑖 as 𝑝𝑘− 𝑝 − Δ(𝑝 − 1).

The method requires to randomly sample the parameters space 𝑟-times, obtaining
thus 𝑟-different samples of x, upon which 𝑟- elementary effects are computed for each
input parameter. This can be done by creating the random trajectory generator matrix
(RTGM) R∗, which is a 𝑟 ⋅ 𝑘 matrix containing 𝑟 randomly sampled vectors x.

The method of Morris provides two sensitivity measures for assessing the influence
of the input parameters to the outputs, namely 𝜇𝑖 and 𝜎𝑖. The first is the mean of
elementary effects of the 𝑖-th input parameter over all the 𝑟 samples, while the second
is its standard deviation. Formally

𝜇𝑖 =
∑𝑟
𝑗= 𝑑𝑖𝑗
𝑟 , (.)

𝜎𝑖 = √

∑𝑟
𝑗=(𝑑𝑖𝑗 − 𝜇𝑖)

𝑟 . (.)

The first measure 𝜇𝑖 allows to rank the input parameter by importance (i.e. which
inputs affects the output most), while 𝜎𝑖 provides insights of which input parameter
has

a non-linear effect over the model or

any sort of interaction among other parameters.

For instance, a low 𝜎𝑖 indicates a similar value of the elementary effects, meaning that
the effect of the 𝑖-th input parameter is independent of the values taken by other param-
eters. On the other hand a high value of 𝜎𝑖 may indicate, that the elementary effects
are strongly dependent on the choice of the values of the other parameters [].

The measure 𝜇𝑖 has been later enhanced by Campolongo et al. [, ], which
proposed the measure 𝜇∗𝑖 as the mean of absolute values of elementary effects. This
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prevents the occurrence of opposite signs in the values of 𝑑𝑖 and hence it allows to order
the input parameters by an absolute overall influence on the output. This measure can
be formalized as

𝜇∗𝑖 =
∑𝑟
𝑗= |𝑑𝑖𝑗|
𝑟 . (.)

Both measures 𝜇𝑖 and 𝜇∗𝑖 (and therefore also 𝜎𝑖) are highly dependent on the value of
𝑟. This parameter should be large enough to ensure an equal probability of sampling.
However, it has been demonstrated in practice, that 𝑟 does not need to be too large
(authors in [] demonstrated good results with 𝑟 = 10). The value 𝑟 defines the row-
size of the matrix R∗, which is used as a source for input parameter samples. R∗ can
be constructed by a Latin Hypercube Sampling or by an orthogonal sampling strategy
(see section .).

Each row of R∗ provides one sample of x. From each row of R∗ a matrix B∗ of size
(𝑘 + 1) ⋅ 𝑘, called the orientation matrix, can be constructed as follows:

. Take a row from R∗ and place it as the first row in the matrix B∗.

. The 𝑙-th row of B∗ is created by copying the (𝑙 − 1)-th row and by augmenting
(perturbing) its (𝑙 − 1)-th element randomly by +Δ or −Δ.

. Repeat the step  for the row 𝑙 + 1 until the (𝑘 + 1)-th row is formed. This is
the row in which the last element of the initial row taken from R∗ is modified.

The main property of B∗ is that any two adjacent rows differs exactly by one element,
and this difference is exactly Δ. Therefore B∗ can provide the samples for computing
one elementary effect per input parameter, by taking any two adjacent rows from B∗.
The orientation matrix B∗ defines a trajectory in the parameters space (see [] for
schematics and for additional examples). The matrix R∗ hence provides 𝑟 different
orientation matrices B∗ and therefore 𝑟 different trajectories in the parameters space.

Usually a set of matrices D∗, called the signs matrices, are constructed together with
the orientation matrices. The matrixD∗ is a 𝑘-dimensional diagonal matrix that defines
the sign whether the Δ value should be added or subtracted to the input parameter
value, so the parameter’s change will still be inside the domain interval, i.e. the diagonal
values of D∗ are either +1 or −1, see Ex. . for more details. The use of matrices
R∗, B∗ and D∗ simplify the design and ensure a high economy value of the overall
experiment, as will be discussed later.
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Example .: Let be x the input vector of size 𝑘 = , and let be Δ = 0.5. Let all the
input parameter be defined in the interval [0, 1], and let be 𝑟 = 2. Given R∗:

R∗ =
⎡
⎢⎢⎢⎣
0.2 0.3 0.6
0.1 0.7 0.4

⎤
⎥⎥⎥⎦ ,

B∗
 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.2 0.3 0.6
0.7 0.3 0.6
0.7 0.8 0.6
0.7 0.8 0.1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, B∗

 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.1 0.7 0.4
0.6 0.7 0.4
0.6 0.2 0.4
0.6 0.2 0.9

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

D∗
 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 0 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, D∗

 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 −1 0
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

The sensitivity measures can be then computed by constructing 𝑟 different orientation
matrices and computing 𝑟 ⋅ 𝑘 elementary effects 𝑑𝑖.

One drawback of the definition of Eq. (.) is that a small value for Δmay cause an
unexpected large elementary effect for the input parameter under scrutiny, and hence
an unexpected high sensitivity apportioned to it. Such shortcoming can be overcome
by normalizing the elementary effects as suggested in the work of Sin and Gernaey
[], in which the value 𝑑𝑖 is multiplied by a ratio of standard deviations of the inputs
and outputs. In short

𝑑𝑖(x) =
𝑦(𝑥, … , 𝑥𝑖−, 𝑥𝑖 + Δ, 𝑥𝑖+, … , 𝑥𝑘) − 𝑦(x)

Δ
𝜎𝑥𝑖
𝜎𝑦𝑖
, (.)

where 𝜎𝑥𝑖 and 𝜎𝑦𝑖 are the standard deviation of the inputs 𝑥𝑖 and the outputs 𝑦𝑖, re-
spectively. This strategy is useful especially for comparing the elementary effects on
different outputs [, ].

Another important aspect concerning all the screening techniques is the economy of
the designed experiments. The economy of a screening experiment is defined as the
number of elementary effects that need to be computed by the experiment divided
by the number of necessary experimental runs of the model that are required by the
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definition (e.g. Eq. (.)) to produce them []. This means that in a general case
a total of 𝑟 ⋅ 𝑘 elementary effects need to be calculated, from 2𝑟𝑘 experimental runs,
which gives an economy of 0.5. But in the MSE the economy of the experiment, due
to the creation of the orientation matrices B∗, can increase to 𝑘

𝑘+ .

.. Other global sensitivity analysis approaches

There are several techniques developed to extract global sensitivities coefficients from
systems and synthetic biology mathematical models. They can be categorized in two
groups as listed in Tab. ..

Table .
Some of the variance and non-variance approaches for performing global sensitivity analysis in systems and synthetic biology
models [].

non-variance based

Morris method

multi-parametric sensitivity analysis

partial rank correlation coefficient analysis

weighted average of local sensitivities

variance based

Sobol sensitivity analysis method

Fourier amplitude sensitivity test (commonly known as
FAST)

random sampling high-dimensional model representation
(RS-HDMR)

Although there is no “general” method for performing the sensitivity analysis for
any custom model in systems and synthetic biology, authors in [, , ] suggest,
that the choice of “which method to use and when”, should be based on the following
criteria []:

. the computational cost of running the model,

. the number of input parameters and

. features of the model (e.g. linearity).
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The first constraint is probably the most influential regarding the choice of technique.
For global sensitivity analysis, variance-based method are known to be computationally
expensive, because of the need to perform a simulation run of the model multiple times.
For a large number of input parameters non-variance methods are therefore preferred.

. Parameter sampling

Global sensitivity analysis approaches are highly dependent on how well the parameters’
space is sampled. In the original work of Morris a random sampling suffices for creating
𝑟 samples of the input parameter vector x [, ]. Authors in [] have provided
an enhanced way to deal with the efficacy of sampling, by choosing only the samples
that provide the maximum dispersion in the parameter space. In this context two
sampling techniques are largely adopted:

the latin hypercube sampling and

the orthogonal sampling.

Latin hypercube sampling (LHS) is a simple method for sampling multidimensional
variables. Given a vector of 𝑘 parameters, each of which is defined inside an interval of
𝑚 discrete values (e.g. as in Eq. (.)), the task is to randomly choose a set of 𝑘-values,
one from each parameters’ interval, by assuring a high uniformity across all the param-
eters dimensions. This can be achieved by choosing the samples from the parameters
hyperplane, so neither two or more samples would lie on the same hyperplane axis.
Such hyperplane is called Latin hypercube. For instance the hyperplane generated by
solely two parameters is a two dimensional grid, where the samples are chosen in way
so there would be only one sample on each row and column (see Fig. .(a)). Such two
dimensional grid is known as a Latin square, from which the generalized term Latin
hypercube derives.

With the Latin hypercube one is able to reduce the correlation between samples over
the entire parameter space, that may occur from a random sampling. LHS ensures a
sufficient level of sparsity between samples. The shortcoming of this strategy is that
it could sometimes produce high correlated samples within local (smaller) subspaces,
e.g. in the two dimensional space, the samples could be picked by simply choosing all
the diagonal values on the grid. Since most designed experiments demand uncorrelated
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Figure .
An illustrative example
of two dimensional grids
and the sampling of
two parameters (red
dots) []. (a) A Latin
hypercube constructed for
two parameters, having
both the same range of
values. (b) Orthogonal
sampling, with three
subspaces per dimension.
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samples, not only over the entire parameter space, but also within smaller subspaces, it
is often preferable to use other strategies, such as the orthogonal sampling.

Orthogonal sampling is a sampling improvement, that additionally decreases the
correlation between samples, by ensuring the Latin square property also for smaller
closed subspaces. For a two dimensional grid, such subspaces are smaller squares, which
contain exactly one sample (see Fig. .(b)).

The orthogonal sampling is a preferable choice when large number of parameters
and larger intervals need to be sampled. The main drawback of the orthogonal sam-
pling against the Latin hypercube sampling is its computational complexity, which is
exponential with the number of subspaces. We refer to [, ] for more insights
and technicalities for constructing orthogonal and Latin hypercubes.

The Latin hypercube and the orthogonal sampling are not the only approaches used
in systems biology models for sampling the parameters spaces. The Gaussian sampling
and the Monte Carlo search can also be adopted for such task [].
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Chief Mechanic’s Mate Sam Tostin: I’m a religious man, Captain, and I believe
we’ll get through if the Good Lord puts His
mind to it. Of course, He’ll have to give us
His undivided attention.

Operation Petticoat, 

In order to understand the role of multiple TFBSs in the cis-regulatory modules,
we propose to perform the global sensitivity analysis on the results of stochastic multi-
scale simulations executed by DMSSA. Here we would like to understand and assess
how much the variation in the number of TFBSs affects the system response, by using
different metrics.

. Sensitivity analysis of stochastic models

To perform a global sensitivity analysis on a stochastic model, one should take into
consideration its computational definition and its complexity. In the work presented
in [, –], authors have shown that sensitivity analysis approaches can be suc-
cessfully applied to known stochastic models in systems biology. A short review of
such approaches can be found in [, ]). Several software packages, that perform
stochastic sensitivity analysis for chemical reaction networks have been also developed
(see for example [, ]). The sensitivity analysis of stochastic models can provide
good estimates for grading the overall robustness of stochastic models. Our methodol-
ogy aims to analyse stochastic models that exhibit the multi-scale condition. The lack
of methodologies for performing sensitivity analysis for such systems and the increas-
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ing need for such techniques in systems and synthetic biology, has triggered a notable
effort in recent years to fill this gap.

. Sensitivity analysis of multi-scale stochastic models

The basic approach for the sensitivity analysis of multi-scale stochastic models is to
evaluate the parameter sensitivities for the slow-scale system, while the fast-scale system
is considered to be in a steady state. The parameter sensitivities can be then computed
in the same way as for single scale systems.

This is the most largely adopted technique (see [, ] for more details). Gupta
and Khammash formally prove that in certain conditions the parameter sensitivities
evaluated for the reduced (single scale) model (based on the technique presented in
[]) equal the sensitivities obtained for original (multi-scale) model [].

However, our main concern in the approaches using the reduction of the fast system,
similarly as for the ssSSA previously in chapter , is that it would be difficult, if not
impossible, to apply such reduction to a large stochastic multi-scale reaction network
containing as many binding reactions as in Eq. (.).

Our aim here is to show that the parameter sensitivities of gene regulatory networks
with multiple non-cooperative TFBSs can be evaluated by relying on extensive simula-
tions via the DMSSA. In order to achieve that, we propose to use the Morris method
from chapter  with few minor expedients.

. The response function of the Morris method

The output of DMSSA is the discrete-time evolution of the system state

𝑋 = 𝑦, 𝑦, … , 𝑦𝑗, … , 𝑦𝑁  .

Let’s observe only one discrete-time output of the DMSSA, i.e. the 𝑗-th species concen-
tration, which we will denote as 𝑦𝑗[𝑛] or simply as 𝑦[𝑛] and let’s denote with 𝑦x[𝑛] the
same output obtained from the DMSSA with the input factors set x. Let’s also denote
with 𝑦x+𝑖 [𝑛] the same output, obtained from the DMSSA with the input factors setx,
having the 𝑖-th parameter changed by Δ, as per Eq. (.). The Morris method is based
on the computation of elementary effects via Eq. (.), in which the model response
function 𝑦(x) provides a single scalar time-independent value. The same elementary
effects cannot be computed, if the output sequence 𝑦[𝑛] is used in Eq. (.) instead of
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𝑦(x). In this scenario the vector 𝑦x[𝑛′] cannot be subtracted from 𝑦x+𝑖 [𝑛″], unless
the two discrete-time vectors are defined over the same discrete times, i.e. 𝑛′ = 𝑛″.
To allow such subtraction, we have to re-compute, i.e. interpolate the two vectors se-
quences of points over the same (and possible equidistant) discrete time points. This is
analogous to the problem of approximating a discrete time series of unequally spaced
observations. The Euler numerical integration approach with a constant time step 𝛿𝑡 is
one of the easiest way to implement such interpolation. As such the elementary effects
𝑑𝑖, for each of the model’s parameters, become a discrete-time sequences 𝑑𝑖[𝑛].

In order to avoid the time dependency completely, a representative value of the
discrete-time output 𝑦[𝑛] has to be chosen. A possible candidate is the expected value

𝔼 𝑦[𝑛]  = 1
𝑁

𝑁−

𝑛=

𝑦[𝑛] = 𝑦[𝑛] = 𝑦, (.)

where𝑁 is the length of the output response 𝑦[𝑛]. The value 𝑦 is simply the time series
average of the model output. The utilization of such average value is suggested in the
works of Rathinam [] and Sheppard []. Previous works [] suggested instead
to avoid time dependency by performing the principal component analyses (PCA) over
all the model output responses. This is a good strategy, if one has to deal with a large
number of different model outputs with multiple dimensions ( in the case of the
model of glucose homoeostasis analysed in []). However, with the DMSSA, we
usually deal with just few model outputs responses, i.e. the output reporter proteins
of GRNs. The PCA gives no additional benefits than the simple expected value, if it
is performed over just few single-dimensioned output responses. Nevertheless a PCA
implementation over all the time points needed by the Morris experiment, would be
computationally expensive.

Instead, the average of the model output 𝑦 provides a robust approximation of the
model response in a scenario where the output is stationary through time. However,
for oscillatory behaviours, the value of 𝑦 does not adequately represent the response
function, as we will later explain in section ... For such scenario, we propose to
use the period of the principal frequency of the model output 𝑦 as a replacement for 𝑦.
Other alternatives rely on the Fourier coefficients of the Fourier series approximation,
that fits the time points of the model output response 𝑦, as suggested in []. The
details about this latter approach are presented in section A...
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Although the model responses of particular output proteins are commonly used for
determining the parameter sensitivities, the information regarding the importance and
the effect that multiple binding sites can have over the model outputs, can be biased by
several intermediate uncertainties that are present between the beginning TF regulation
and the final product of translation – the output protein. In order to decrease such bias
and to provide additional insights in the sensitivity of the gene regulation controlled
by cis-regulatory modules containing multiple non-cooperative TFBSs, we propose a
new measure to be used as a replacement of 𝑦(x) in Eq. (.) and Eq. (.), i.e. a TF
binding gradient.

.. The TF binding gradient

The TF binding gradient of the 𝑖-th copy of the 𝑚-th promoter, denoted by 𝑔𝑚(𝑡), is
defined as

𝑔𝑚,𝑖(𝑡) =
𝑛𝑚

𝑗=
𝑏𝑚𝑖,𝑗(𝑡), (.)

where 𝑏𝑚𝑖,𝑗(𝑡) is the binding site value from Eq. (.) and 𝑛𝑚 is the number of TFBSs
on the𝑚-th promoter of the GRN. Summing up all the gradients for all the promoter
copies, we obtain

𝑔𝑚(𝑡) =
𝑐𝑚

𝑖=
𝑔𝑚,𝑖(𝑡) =

𝑐𝑚

𝑖=

𝑛𝑚

𝑗=
𝑏𝑚𝑖,𝑗(𝑡). (.)

A positive value of 𝑔𝑚(𝑡) tells us, that on the promoters of𝑚-th type in the GRN, there
are currently bound more activators than repressors. This can indicate a global active
state of the 𝑚-th promoter. A negative value of 𝑔𝑚(𝑡) instead tells us, that promoters
are inhibited. A value of 0 can indicate two things: either all the binding sites are empty
or the total number of bound activators equals the total number of bound repressors.

The value 𝑔𝑚(𝑡) is limited by the structural parameters 𝑐𝑚 and 𝑛𝑚. The maximal
positive value of 𝑔𝑚(𝑡) is 𝑐𝑚× 𝑛𝑚, which means that all the binding sites in all the
copies of the 𝑚-th promoter in the GRN are occupied by the activators, while the
maximal negative value −𝑐𝑚× 𝑛𝑚 means that all the binding sites in all the copies of
the𝑚-th promoter in the GRN are occupied by the repressors. The value 𝑔𝑚(𝑡) can be
thus normalized in percentages inside the range [-, +].

As for the output response 𝑦[𝑛], the time evolution of the binding sites dynamics
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can be represented by the discrete-time sequence

𝑔𝑚[𝑛] = 𝑔𝑚(𝑡), 𝑔𝑚(𝑡), …  . (.)

The time evolution of the binding gradient can provide excellent representation of the
TFs binding dynamics inside the GRN, from which is possible to establish a good
metric for apportion the uncertainty to the input parameters, regarding the influence
of TF binding activity on the 𝑚-th promoter. We propose to use the binding gradient
as a replacement of the model response 𝑦[𝑛] for calculation of the elementary effects.
We can adopt the expected value of the gradient 𝑔𝑚[𝑛] to cancel the time dependency
as

𝔼𝑔𝑚[𝑛] =
1
𝑁

𝑁−

𝑛=

𝑔𝑚[𝑛] = 𝑔𝑚[𝑛] = 𝑔𝑚. (.)

The average binding gradient 𝑔𝑚 tells us the mean percentage of activation (or repres-
sion) of the 𝑚-th promoter through the entire simulation time.

In order to simplify the notation we will assume that only one type of promoter
(i.e.𝑚 = 1) with multiple TFBSs is observed as a gradient output of DMSSA. We can
therefore write 𝑔𝑚[𝑛] as 𝑔[𝑛] and 𝑔𝑚[𝑛] as 𝑔𝑚[𝑛] or 𝑔.

.. Adapted Morris elementary effects

A single output sequence 𝑦𝑗[𝑛] is not statistically representative in stochastic simula-
tions. Hence, the computation of the elementary effects in the Morris method via a
single trajectory of the DMSSA will lead to unreliable results for parameters sensitiv-
ities. In order to overcome this shortcoming, multiple runs of the DMSSA must be
performed to obtain a statistically valid representation of the model behaviour.

By repeating the simulation for obtaining 𝑦[𝑛] 𝑀-times we obtain the matrix

Y =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑦[𝑛]
𝑦[𝑛]
⋮

𝑦𝑀[𝑛𝑀]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 𝑦𝑖[𝑛𝑖]𝑀×𝑁 , (.)

where𝑁 is the number of response samples (points) and 𝑛𝑖, 𝑖 = 1…𝑀 refers to the𝑀
different discrete-time series of unequally spaced points on which the model outputs
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are defined. If the number of runs 𝑀 is large enough, then the average response of
these multiple runs can be instead considered as a statistically representative measure
for the model response. Similarly we can obtain the matrix G, which provides 𝑀
instances of the binding gradient 𝑔 as

G =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑔[𝑛]
𝑔[𝑛]
⋮

𝑔𝑀[𝑛𝑀]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (.)

The average mean response

We propose to include into the computation of the elementary effects, multiple sim-
ulation runs, obtained with the same input parameters. We can construct a vector of
expected values

𝔼 (Y) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑦[𝑛]
𝑦[𝑛]
⋮

𝑦𝑀[𝑛𝑀]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= Y, (.)

i.e. a vector containing the mean value of each output response of the matrix Y. The
average mean of Y is a scalar

𝑠𝑦(x) = 𝔼 Y =
1
𝑀

𝑀

𝑖=
𝑦𝑖[𝑛𝑖], (.)

where the averages 𝑦[𝑛𝑖] are computed over the outputs obtained from the simulations
of DMSSA with the input factors x. The value 𝑠𝑦(x) is a time independent statistic
which tells us what is the expected average of the output response over multiple simula-
tion runs. Such statistic can be directly applied to the computation of the elementary
effects as

𝑑𝑠𝑦𝑖 (x) =
𝑠𝑦(x + Δ𝑖) − 𝑠𝑦(x)

Δ . (.)

The elementary effects provided in such form, provide a robust and time independent
value for computing the overall parameters sensitivities over the 𝑟 trajectories required
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by the Morris approach. The two sensitivities metrics 𝜇∗𝑖 and 𝜎𝑖 are therefore

𝜇∗𝑖 𝑠𝑦 =
1
𝑟

𝑟

𝑙=
|𝑑𝑠𝑦𝑖 (x𝑙)|,

𝜎𝑖 𝑠𝑦 = √
∑𝑟
𝑙= 𝑑

𝑠𝑦
𝑖 (x𝑙) − 𝜇𝑖



𝑟 ,

(.)

where

𝜇𝑖 𝑠𝑦 =
1
𝑟

𝑟

𝑙=
𝑑𝑠𝑦𝑖 (x𝑙).

Similarly we can compute the elementary effects and the parameter sensitivities,
through the binding gradient 𝑔[𝑛]. By removing its time-dependency with the ex-
pected value of the matrix G, we obtain

𝔼 (G) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑔[𝑛]
𝑔[𝑛]
⋮

𝑔𝑀[𝑛𝑀]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=G, (.)

which is a matrix of binding gradients averages, obtained from multiple simulation
runs with the same input parameters x. The average mean of G is

𝑠𝑔(x) = 𝔼 G =
1
𝑀

𝑀

𝑖=
𝑔𝑖[𝑛𝑖]. (.)

As 𝑠𝑦, also 𝑠𝑔 is a time independent statistic and therefore it can be directly used to
compute the elementary effects as

𝑑𝑠𝑔𝑖 (x) =
𝑠𝑔(𝑥, … , 𝑥𝑖−, 𝑥𝑖 + Δ, 𝑥𝑖+, … , 𝑥𝑘) − 𝑠𝑔(x)

Δ , (.)
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by which we can express the parameter sensitivities 𝜇∗𝑖 and 𝜎𝑖 as

𝜇∗𝑖 𝑠𝑔 =
1
𝑟

𝑟

𝑙=
|𝑑𝑠𝑔𝑖 (x𝑙)|,

𝜎𝑖 𝑠𝑔 = √
∑𝑟
𝑙= 𝑑

𝑠𝑔
𝑖 (x𝑙) − 𝜇𝑖



𝑟 ,

(.)

where

𝜇𝑖 𝑠𝑔 =
1
𝑟

𝑟

𝑙=
𝑑𝑠𝑔𝑖 (x𝑙).

Both 𝑠𝑦 and 𝑠𝑔 accurately describe the model response and can be both used to compute
the elementary effects in the Morris approach.

.. Oscillatory response

The main shortcoming of the parameter sensitivities computed with 𝑠𝑦 and 𝑠𝑔 is that
they can be considered reliable only, if the model response 𝑦 and the binding gradi-
ent 𝑔 are exhibiting a non-oscillatory behaviour. This can be shown in the following
example.

Example .: Consider the case in which in Eq. (.) 𝑦(x + Δ𝑖) oscillates similarly
as a sinusoid function, while the signal 𝑦(x) very quickly reaches a steady state. It
can occur that both these signals can have the same mean value 𝑦. In such scenario
the elementary effect computed via Eq. (.) will equal to zero, determining a low
sensitivity value for the parameter 𝑥𝑖 and neglecting the fact that the two functions
are qualitatively very different.

To address this issue we propose to compute the elementary effects with the aid of the
discrete Fourier transform (DFT) by providing different representative values for the
model response 𝑦 and the binding gradient 𝑔:

. the average of the principal frequency of the model responses in Y,

. the average of the principal frequency of the binding gradients in G,

. the average of the principal period of the model responses in Y,



  Sensitivity analysis of complex cis-regulation Mattia Petroni

. the average of the principal period of the binding gradients in G,

. the average of the principal amplitude of the model responses in Y and

. the average of the principal amplitude of the binding gradients in G.

The definitions of these representative values are presented in the next section.

The average of the principal frequency, period and amplitude

Let’s consider an oscillatory output response signal 𝑦[𝑛] of 𝑁 samples with the main
period 𝑁. Hence we can write 𝑦[𝑛] = 𝑦 [𝑛 + 𝑁], where the main frequency is
defined as 1/𝑁. In practice however, the value 𝑁 is usually unknown and the main
frequency often refers to the frequency with the highest amplitude in the spectrum. The
simplest way to estimate the period𝑁, and the main frequencies, is by computing the
frequency spectrum of the signal 𝑦[𝑛]. The DFT is the most common tool to compute
the spectrum, as

ℱ (𝑦) =

⎧⎪⎪⎨
⎪⎪⎩𝑋𝑘 =

𝑁−

𝑛=

𝑦[𝑛]e−
𝜋𝑖𝑘𝑛
𝑁 , 𝑘 = 0,… ,𝑁 − 1

⎫⎪⎪⎬
⎪⎪⎭ , (.)

where 𝑋𝑘 is the 𝑘-th component (i.e. the 𝑘-th frequency) of the amplitude spectrum.
The frequency with the highest amplitude in the signal is given by

𝐹 = argmax
𝑘

|𝑋𝑘|
2𝜋
𝑁 , (.)

where

|𝑋𝑘| = √ℜ (𝑋𝑘)
 + ℑ (𝑋𝑘),

and the highest amplitude is given by

𝐴𝑚𝑎𝑥 = max𝑘 |𝑋𝑘|. (.)

The period 𝑃 of 𝐹 is defined as

𝑃 =
1

𝐹
. (.)
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Before performing the DFT, which can be easily and efficiently implemented via the
fast Fourier transform (FFT) algorithm, it is often beneficial to normalize the input sig-
nal 𝑦[𝑛] in order to cancel the DC term from the signal spectrum, i.e. 𝑋 = ∑𝑁−

𝑖= 𝑥𝑖.
This can be done simply by observing 𝑦[𝑛]−𝑦[𝑛]. Such pre-normalization (also known
as detrending) is useful to avoid peak frequencies at zero Hz. Furthermore it is also ben-
eficial to interpolate the discrete output 𝑦[𝑛] over equally spaced time points, namely
t𝑒𝑞 before DFT. The spectral analysis described above can be performed for both the
model output response 𝑦[𝑛] and the binding gradient 𝑔[𝑛]. Let’s denote with ℱ (Y)
the DFT performed on each row of the matrix Y, i.e.

ℱ (Y) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ℱ 𝑦(x, t)
ℱ 𝑦(x, t)

⋮
ℱ 𝑦𝑀(x, t𝑀)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (.)

The frequencies with the highest amplitude and their periods are therefore computed
as

𝐹(Y) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝐹
𝐹
⋮

𝐹𝑀

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, 𝑃(Y) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑃
𝑃
⋮

𝑃𝑀

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, 𝐴(Y) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝐴
𝐴
⋮

𝐴𝑀

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (.)

The average maximum frequency, amplitude and period over all the 𝑀 simulations,
performed with the same input factors x, are denoted with 𝑓𝑦(x) and 𝑝𝑦(x) respec-
tively, and defined as

𝑓𝑦(x) = 𝔼𝐹(Y) =
1
𝑀

𝑀

𝑖=
𝐹𝑖 , (.)

𝑝𝑦(x) = 𝔼𝑃(Y) =
1
𝑀

𝑀

𝑖=
𝑃𝑖 , (.)

𝑎𝑦(x) = 𝔼𝐴(Y) =
1
𝑀

𝑀

𝑖=
𝐴𝑖 . (.)
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𝑓𝑦(x), 𝑝𝑦(x) and 𝑎𝑦(x) provide a reliable alternative to the scalar 𝑠𝑦 for performing
the elementary effects 𝑑𝑖 in a scenario, where the responses in Y have an oscillatory
behaviour. E.g. using 𝑓𝑦(x), the elementary effects can be computed as

𝑑𝑓𝑦𝑖 (x) =
𝑓𝑦(𝑥, … , 𝑥𝑖−, 𝑥𝑖 + Δ, 𝑥𝑖+, … , 𝑥𝑘) − 𝑓𝑦(x)

Δ . (.)

The related parameter sensitivities 𝜇∗𝑖 and 𝜎𝑖 are therefore

𝜇∗𝑖 𝑓𝑦 =
1
𝑟

𝑟

𝑙=
|𝑑𝑓𝑦𝑖 (x𝑙)|,

𝜎𝑖 𝑓𝑦 =


⃓⃓
⃓
⎷

∑𝑟
𝑙= 𝑑

𝑓𝑦
𝑖 (x𝑙) − 𝜇𝑖



𝑟 ,

(.)

where

𝜇𝑖 𝑓𝑦 =
1
𝑟

𝑟

𝑙=
𝑑𝑓𝑦𝑖 (x𝑙).

Equivalently it is possible to express the parameter sensitivities 𝜇∗𝑖 𝑝𝑦 and 𝜎𝑖 𝑝𝑦
from the measure 𝑝𝑦(x), and 𝜇∗𝑖 𝑎𝑦 and 𝜎𝑖 𝑎𝑦 from the measure 𝑎𝑦(x).

The same equations, for the output response 𝑦, can be expressed for the binding
gradient 𝑔. Shortly, by performing the DFT over the matrix G, we obtain a similar
matrix ℱ (G), from which we can compute the maximum frequencies, with their
relative maximum amplitudes, and the maximum periods for all the 𝑀 simulations
runs in G. It follows, that we can express the averages 𝑓𝑔. 𝑝𝑔 and 𝑎𝑔 similarly as per Eq.
(.) and Eq. (.), respectively. This allows to compute the parameter sensitivities
𝜇∗𝑖 𝑓𝑔, 𝜇∗𝑖 𝑝𝑔, 𝜇∗𝑖 𝑎𝑔, 𝜎𝑖 𝑓𝑔, 𝜎𝑖 𝑝𝑔 and 𝜎𝑖 𝑎𝑔, similarly as per Eq. (.).

The use of the sensitivity measures 𝜇∗𝑖 𝑝𝑦 and 𝜎𝑖 𝑝𝑦 is significant only, if the
output signal exhibits periodicity. In fact they provide a time independent measure for
computing robustly the elementary effects in the scenario where both the functions
𝑦(x + Δ𝑖) and 𝑦(x) from Eq. (.) oscillate. However, for the scenario described in
Ex. ., the computation of the elementary effects via 𝑓𝑦, 𝑝𝑦 or 𝑎𝑦 (and same for 𝑓𝑔,
𝑝𝑔 or 𝑎𝑔) will not be reliable, because of the estimation of the main frequency over a
non-oscillating signal.

The elementary effect computed in the scenario described in Ex. . should be there-
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fore omitted from the computation of the sensitivities 𝜇∗𝑖 𝑠𝑦 and 𝜎𝑖 𝑠𝑦 (or 𝜇∗𝑖 𝑝𝑦
and 𝜎𝑖 𝑝𝑦). Hence, a system for periodicity detection has to be deployed to aid the
Morris method to identify such possible scenarios.

Detection of periodicity in the model output

The detection of periodicity in the model outputs can be performed with the method
of Wichert et al. []. Having a signal 𝑦[𝑛] with a power density spectrum 𝐼(𝜔)
(i.e. periodogram), Wichert et al. suggest to identify the periodicity of the signal with
the aid of the Fisher 𝑔-statistic and by applying the methodology presented in [],
in order to control the expected proportion of the occurring false positive detections.

Having a signal 𝑦[𝑛] being affected by stochastic noise, the periodogram 𝐼(𝜔) is
given by

𝐼(𝜔) = 1
𝑁 |𝑌𝑘|

, 𝑘 = 0, 1, … ,𝑁 − 1, (.)

where the 𝑌𝑘 is the DFT of 𝑦[𝑛] of length 𝑁 . 𝐼(𝜔) can be rewritten as

𝐼(𝜔) = 1
𝑁 

𝑁−

𝑛=

𝑦[𝑛] e−
𝜋𝑖𝑘𝑛
𝑁 



. (.)

The Fisher 𝑔-statistic is the value

𝑔 = max𝑙 𝐼(𝜔𝑙)
∑𝑁ℎ
𝑙= 𝐼(𝜔𝑙)

, (.)

which has the distribution

𝑃(𝑔 > 𝑥) =
𝐿


𝑙=

(−1)𝑙−
𝑁ℎ

𝑙 
(1 − 𝑥 𝑙)𝑁ℎ−, (.)

where 𝐿 is the largest integer less than 
𝑥 and 𝑁ℎ = 𝑁− . High value of 𝑔 means that

there is a significant periodicity present in the signal. Low value of 𝑔 instead, means
that the signal does not show periodicity [].

The null hypothesis of the Fisher’s test statistic assumes that the observed signal is not
periodic (no distinctive peaks in the signal’s periodogram). To test the periodicity, the
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p-value for the observed value 𝑥 (e.g. .) has to be computed according to Eq. (.).
If the p-value is lower than the significant level 𝑞 (., . or .), then the null
hypothesis can be rejected, and therefore we can say, that the signal 𝑦[𝑛] oscillates.

This Fisher’s test can be applied for multiple testing. Having the matrix Y from Eq.
(.), with 𝑀 instances of the stochastic signal 𝑦[𝑛] generated from the same model
output, we can compute 𝑀 periodograms and thus 𝑀 𝑔-values. By sorting their p-
values from Eq. (.) in ascending order, giving 𝑝 < 𝑝 < ⋯ < 𝑝𝑀 and their
corresponding signals 𝑦, 𝑦, … , 𝑦𝑀, Wichert et al. suggest to use the following proce-
dure, which minimize the occurrence of false positive detections (see [] for more
details):

. find the largest index 𝑗 for which holds 𝑝𝑗 ≤ 𝑗
𝑀𝑞,

. reject the null hypothesis for all the 𝑦𝑖, 𝑖 = 1, 2, … , 𝑗.

With this procedure the detection of periodicity can be integrated in the Morris
method, providing as such a robust mechanism that allows the computation of the
elementary effects from the measures 𝑝𝑦, 𝑝𝑔, 𝑓𝑦, 𝑓𝑔, 𝑎𝑦 and 𝑎𝑔 when the output signal
𝑦(x) and its perturbation 𝑦(x + Δ𝑖) show periodicity.

The ratio
𝜌 = 𝑗

𝑀 (.)

provides a valuable information about the oscillatory behaviour of response functions
in Y. A response 𝑦[𝑛] can be thought as a periodic signal, if the value of 𝜌, performed
over 𝑀 repetitions of 𝑦[𝑛], is greater than a threshold (usually set to ). This infor-
mation can be integrated into the computation of the elementary effects. Given the
two matrices Y and Y𝑖 , where Y contains 𝑀 responses of 𝑦(x) and Y𝑖 contains
𝑀 responses of 𝑦(x +Δ𝑖), the ratios 𝜌 for both the matrices are denoted as 𝜌(Y) and
𝜌(Y𝑖 ). The elementary effects based on 𝑝𝑦 (or 𝑝𝑔, 𝑓𝑦, 𝑓𝑔, 𝑎𝑦 and 𝑎𝑔) can be thus
computed as

𝑑𝑝𝑦𝑖 (x) =

𝑝𝑦(x+𝑖)
𝜌(Y𝑖 )

− 𝑝𝑦(x)
𝜌(Y)

Δ . (.)

In a scenario of Ex. ., the value of one of the two responses 𝜌(Y) or 𝜌(Y𝑖 ) can be
zero, therefore Eq. (.) will provide an infinite elementary effect. An infinite absolute
value of 𝑑𝑝𝑦𝑖 means that at least one of the two responses 𝑝𝑦(x + Δ𝑖) and 𝑝𝑦(x) does
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not exhibit periodicity (which means that there is high qualitative difference between
the two responses and hence a high sensitivity to the parameter 𝑥𝑖 perturbed by Δ𝑖).
A zero absolute value of 𝑑𝑝𝑦𝑖 (x) instead means two things: both responses 𝑝𝑦(x + Δ𝑖)
and 𝑝𝑦(x) converge to the same value (which means that there is no influence to the
output of the system when the parameter 𝑥𝑖 is perturbed by Δ𝑖) or both responses do
not oscillate (both 𝑝𝑦(x+𝑖)

𝜌(Y𝑖 )
and 𝑝𝑦(x)

𝜌(Y) tend to infinite). The latter scenario must be

therefore omitted from the computation of 𝜇∗. In such occasion the elementary effect
𝑑𝑠𝑦 can be used instead.
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Lt. Watson: Sir, Mr Holden is on his way back.
Lt. Cmdr. Matt T. Sherman: War is hell, Mr Watson!

Operation Petticoat, 

To illustrate the sensitivity analysis methodology introduced in chapter , we in-
vestigate two different models of GRNs containing multiple non-cooperative TFBSs
in their promoters cis-regulatory regions: the Epstein-Barr virus (EBV) genetic switch
and a synthetic oscillator based on SGRNs. The latter is considered an essential device
for building logic computational structures in living cells. We apply the sensitivity
analysis to the EBV model to determine the most influential input parameters of the
model, while in the oscillator model, we exploited the results of the sensitivity analysis
to investigate further the influence that these parameters, and especially the number of
binding sites in the cis-regulatory modules, have on the model robustness.

. The Epstein-Barr virus genetic switch

The Epstein-Barr virus (EBV) is widely spread in the entire adult population [].
This virus infection has been linked to an increased risk of cancer development and
recently, a notable effort to prevent this infection has been achieved []. The EBV
is one of the most studied viruses and the majority of its related diseases have already
been discovered []. The genome of this virus comprises  base pairs and it
can be found inside the nucleus of infected B-lymphocytes. Like other viruses the EBV
exhibits two different states, a proliferating (active) and a latent (resting) state. Roughly
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speaking, when the virus is in latent state, the cell – the B-lymphocyte – behaves nor-
mally and the virus genome duplicates together with the cell in the lysogenic cycle.
When the virus is in the proliferating state (or lytic state), the cell membrane decays,
the virus spreads outside the cell, it begins to duplicate in a very large number and
it becomes highly infective for neighbour cells. The switch between these two states
depends on the activity of two promoters, Qp and Cp, which drive the transcription
of two coding regions in the virus genome, the ebna and the ebna- respectively. A
high Cp promoter activity indicates a high expression of the ebna coding sequence,
which translates into the change towards the lytic state, while a high Qp promoter ac-
tivity indicates a high expression of the ebna- gene, which instead implies a change
to the lysogenic (resting) state. It is known that the activity of these two promoters is
mutually exclusive, which implies a switching behaviour. However, both Cp and Qp
promoters are responsible of a more complex gene regulation []. The key compo-
nent in this mutually exclusive mechanism is the Cp promoter’s cis-regulatory module,
which is composed of  clustered binding sites, known as the Family of Repeats (FR).

ebna 1-6 gene

EBNA1

ebna 1 gene

EBNA1 dimer

Cp promoter

Qp promoter

Family of Repeats

Oct-2/Grg/TLE

Figure .
A simple scheme of the
gene regulatory network
responsible for the reg-
ulation of the switch-
ing mechanism in the
Epstein-Barr virus infected
B-lymphocytes [].
Physically, both the cod-
ing sequences of ebna-
and ebna lies one behind
the other inside the virus
genome, i.e. the virus’
DNA genome vector.

Two different TFs compete to bind over this cis-regulatory module: a dimer TF,
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composed of two Epstein-Barr Nuclear Antigen- (EBNA) molecules (one of the
gene products of the genes regulated by the Cp and Qp promoters), which acts as
powerful activator on the FR region, and the Oct+Grg/TLE TF, an octamer power-
ful repressor of the Cp promoter. A simplified scheme of this regulatory mechanism is
shown in Fig. .. We refer to [, , ] for a more detailed overview of the com-
plex gene regulation of these two promoters, although the dynamics of transcription
regulation, i.e. the switching mechanism depicted in Fig. . that is responsible for the
proliferating and resting state of the virus, can be represented (although oversimplified)
as follows. The TF Oct+Grg/TLE binds to its octamer binding sites inside the FR
region [] and acts as an inhibitor, which causes the repression of the Cp promoter.
The EBNA can on the other hand activate the Cp promoter by binding on the same
binding sites in the FR region. The EBNA acts as an activator for the CP promoter,
but also as a repressor, when is bound on the two TFBSs in the Qp promoter region.
EBNA inhibits the transcription of the gene product that is being regulated by the Qp
promoter, i.e. the EBNA protein itself. But also it increases the expression of itself,
by activating the Cp promoter. The EBNA hence has a negative feedback control via
the Qp promoter and a positive feedback via the Cp promoter.

During the Cp promoter activation, the ebna- gene is transcribed into a long
mRNA strand, which, among other nuclear antigenes, encodes the  amino acid
long EBNA protein [, ]. This EBNA protein is involved in a dimerization
process, since the DNA-TF binding over the FR requires a dimeric TF structure [,
]. The EBNA dimer can highly accelerate the transcription of the ebna- gene.
This gene regulation results in a positive feedback, which occur during the lytic state.
The Qp promoter instead provides a more tenuous expression of the ebna gene, since
its activity cannot be enhanced by activators. This results in a low EBNA protein
concentrations, which in turn provides a weak negative feedback. To trigger the switch
between the activities of the Cp and Qp promoter, it is necessary to provide a high
concentration of an external signal, which is in this case the Oct+Grg/TLE protein
complex. Our task is to construct a stochastic model for describing as precisely as
possible the dynamics of the EBV switch. It is obvious, that the use of the ordinary
SSA approach would fail to describe the system according to Eq. (.), since the FR
region only, gives us more than  billion different binding and unbinding reactions to
simulate using the Alg. .. The main parameters of the model are shown in Tab. ..

More precisely ... different binding and unbinding reactions.



Computational methodology for enhanced sensitivity analysis of gene regulatory networks 

Table .
Parameters used in the Epstein-Barr virus genetic switch model.

parameter value reference

Nuclear volume () . ∗ − . []

 half-life 𝜏/𝑚𝑅𝑁𝐴
 hr []

 amino acid length  −  [, , ]

 −  coding sequence length (strain B-
HHV- from Human herpesvirus )

.a kb []

 - FR binding dissociation constant 𝐾𝑑𝐸𝐹𝑅  ∗ − 𝑀 [, ]

 transcription rate  / []

 translation rate  / []

 half-life 𝜏/
 −  hr [, ]

 dimerization rate 𝐾𝑑𝐸 −𝑀 []

 - Qp dissociation constant 𝐾𝑑𝑄 . 𝜇𝑀 [, ]

 + / - FR dissociation constant 𝐾𝑑𝑂𝐹𝑅 . − .𝑛𝑀 [, ]

aThis length is calculated from the sum of amino acids lengths of all the coded proteins of the ebna- gene,
i.e.  (EBNA-) +  (EBNA-) +  (EBNA-) +  (EBNA-) +  (EBNA-) +  (EBNA-).

We exploited the DMSSA, described in chapter  for simulating the behaviour of
the genetic switch depicted in Fig. .. The model of the EBV can be described with
the fast reactions listed in Tab. . and with the slow reactions listed in Tab. .. These
reactions represent a minimum-reaction model of the EBV switch, based on reactions
from Def. ..

We performed several simulation runs with ParMSSA (a multi-scale stochastic sim-
ulation engine described thoroughly in appendix A.) by varying the initial conditions
such as the number of promoters per cell (promoters copy number) and the main pa-
rameters given in Tab. .. The reference values of all the parameters were set to the
same same values used in []. The results are depicted in Fig. ..

.. The system response to the external signal Oct-+Grg/TLE

We modelled the FR region with the aid of the binding matrix B with a reference size
of  promoters ×  binding sites (a copy number of  Cp promoters per cell). The
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Table .
Fast reactions in the EBV switch model. The kinetic constants of each reactions were obtained by fixing the unbinding rate
constants 𝑘 , 𝑘 and 𝑘 (i.e. the 𝑘 constants) to a reference value (. 𝑠−) and then computing the binding rates 𝑘 , 𝑘
and 𝑘 (i.e. the 𝑘 constants) by applying the dissociation constant 𝐾𝑑 to the equation 𝑘 = 𝑘/𝐾𝑑 as shown in section
... The dissociation constants for the EBNA and Oct+Grg/TLE are shown in Tab. .. Here  states for the
EBNA dimer and  for the Oct+Grg/TLE inhibitor complex.  and  represent the two EBV promoters, − and
− their inhibited version, and + the activated state of the Cp promoter.

fast reactions type 

 + 
⎯⎯→ + Cp promoter activation . ∗  𝑀−𝑠−

+
⎯⎯→  +  Cp - EBNA dissociation . 𝑠−

 + 
⎯⎯→ − Cp promoter inhibition . ∗  𝑀−𝑠−

−
⎯⎯→  +  Cp - Oct dissociation . 𝑠−

 + 
⎯⎯→ − Qp promoter inhibition . ∗  𝑀−𝑠−

−
⎯⎯→  +  Qp - EBNA dissociation . 𝑠−

maximum simulation time was set to  days, in order to perform a direct comparison
with the model presented in []. We set the reaction rates of both fast and slow
reactions, to the same value as found in the reviewed literature (see Tab. .). The
activation rule used for the Cp promoter was defined as follows: the promoter is being
activated when at least eight EBNAdimers TFs are bound to the FR region []. We
performed several simulations and the results are presented in Fig. ..

After we set the reference model with the reference parameters values from Tab. .,
we perturb the Epstein-Barr genetic switch model, by altering the level of the external
signal Oct+Grg/TLE, in accordance with the previous modelling strategy proposed by
Werner et al. in []. We observed a poor genetic switch behaviour, when the model
was altered with an insufficient amount of Oct+Grg/TLE. A successful on-off switch
between the two viral states in the EBV was observed with a level of Oct+Grg/TLE
of at least  molecules induced after a simulation time of  days (see Fig. .
(d)).

In Fig. . (b), the promoter binding gradient shows that the bounded repressors
Oct+Grg/TLE in the FR region do not have sufficient influence to inhibit the Cp
promoter for a longer period of time. Yet, by increasing the amount of Oct+Grg-
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Table .
Slow reactions in the EBV switch model. The transcription rates  and  were obtained via Eq. (.), assuming a
rate limiting step for transcription elongation only. For the ebna- gene we applied the following values: a gene length of 
amino acids and a transcription rate of  bp/s, as per Tab. .. For the ebna gene we assume a length of  amino acids and
the same transcription rate of  bp/s. Similarly for translation we adopt a rate limiting step from Eq. (.), with a translation
rate of  aa/s as per Tab. . for both the transcripts:  of the ebna- and  of the ebna. We applied the
same strategy for calculating the binding and unbinding kinetic constants in Tab. ., for computing the EBNA dimerization
constant, by using the value 𝐾𝑑𝐸 from Tab. .. All the degradation rates constants,  ,  and  , were
computed by using the inverse equation of Eq. (.) with the half-life values provided from Tab. ..

slow reactions type 

Cp+
⎯⎯⎯⎯⎯⎯→ + + Cp transcription . 𝑠−


⎯⎯⎯⎯⎯→  + Qp transcription . 𝑠−


⎯⎯⎯⎯⎯→  +  mRNA translation . 𝑠−


⎯⎯⎯⎯→  +  mRNA translation . 𝑠−

 + 
⎯⎯⎯⎯→   dimerization . ∗ − 𝑀− 𝑠−


⎯⎯⎯→  +   dimer dissociation − 𝑠−



⎯⎯⎯⎯⎯⎯⎯⎯⎯→ ∅ mRNA decay . ∗ − 𝑠−



⎯⎯⎯⎯⎯⎯⎯⎯⎯→ ∅ mRNA decay . ∗ − 𝑠−



⎯⎯⎯⎯⎯→ ∅ EBNA decay . ∗ − 𝑠−



⎯⎯⎯⎯⎯⎯→ ∅ EBNA dimer decay . ∗ − 𝑠−



⎯⎯⎯⎯⎯→ ∅ Oct decay . ∗ − 𝑠−

/TLE in the cell, and therefore augmenting the transition step of the Oct+Grg/TLE,
the repression of the Cp promoter become increasingly stronger, as shown in (d) (f )
and (h). A full inhibition, with a gradient value reaching a negative value of  for
a longer period (see (g) and (h)), is achieved with a high level of Oct+Grg/TLE in the
range of , molecules, which equals approximately 4.6𝜇𝑀 concentration in the
infected cell.
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Figure .
The Epstein-Barr virus
genetic switch triggered
by different Oct+Grg-
/TLE levels: (a) 
molecules, (c) 
molecules, (e) 
molecules and (g) 
molecules. All responses
were obtained from 
parallel simulation runs
for each Oct+Grg/TLE
level. The dotted lines
show the average levels of
the EBNA- dimer and
the external signal Oct-
+Grg/TLE. (b), (d), (f )
and (h) show instead the
Cp promoter’ activation
gradients 𝑔, previously
described in chapter , over
the FR region, for the same
simulations. Responses
and activation gradients
were sampled every 
DMSSA points, i.e. with
a sampling frequency of
. ⋅ − Hz.
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.. Sensitivity analysis

In order to assess the effects of parameters’ perturbations on the switch, we performed
the sensitivity analysis based on the Morris method, with the enhancements proposed
in chapter . By computing the elementary effects over the model responses and over
the binding gradient of the Cp promoter we were able to identify the most important
parameters of the EBV genetic switch model.
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We decided to compute the parameter sensitivities of the following fundamental
parameters:

. the dimerization dissociation constant 𝐾𝑑𝐸,

. the EBNA half-life 𝜏/
,

. the EBNA dimer half-life 𝜏/
,

. the Oct+Grg/TLE half-life 𝜏/
and

. the Cp promoter copy number 𝑐𝐶𝑝.

The first four parameters directly affect the kinetic constants of the degradation and
dimerization reactions in the slow scale of the model, while the last parameter affects
the size of the binding site matrix B, representing the FR regions in the virus genome.

Given the number of levels 𝑝 = 10, we defined the values’ range for each of the
above parameters. These intervals are listed in Tab. ..

Table .
The values range of each parameter in the EBV model used to perform the sensitivity analysis.

parameter min max interval type

𝐾𝑑𝐸 − − logarithmic

𝜏/
.  logarithmic

𝜏/
.  logarithmic

𝜏/
  logarithmic

𝑐𝐶𝑝   linear

The interval value were defined with orthogonal sampling, i.e. one of the first step of
the MSE implemented in ParMSSA (see section A..). The results of the sampling are
the matrix R∗ (see section ..) and 𝑟 different orientation matrices B∗. We carried
out the MSE, by using the DMSSA as the core simulation engine. With ParMSSA
we executed 𝑀 parallel simulations with the same set of sampled parameters for each

This equals the number of total virus genome vectors present inside the infected B-lymphocyte.
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Figure .
The parameter sensitivities
obtained from the output
response using the average
mean 𝑠𝑦 of the EBNA (a)
and the average mean 𝑠𝑔
of the binding gradient of
the Cp promoter (b).  is
the dissociation constant
𝐾𝑑𝐸 for the EBNA
dimerization,  and 
are the half-life of the
EBNA dimer and EBNA
respectively,  is the Oct-
+Grg/TLE half-life and 
is the Cp promoter copy
number.
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row of the orientation matrices B∗. Here the number 𝑀 stands for the number of
OpenCL CPU-based computing units that are available on the computing platform
that is running ParMSSA. In our case 𝑀 = 48. Hence, being 𝑁𝑝 the number of
parameters analysed by the MSE, a total of (𝑁𝑝 + 1) ⋅ 𝑟 ⋅ 𝑀 = 2304 simulations were
required for performing the Morris sensitivity analysis.

The MSE was carried out by ParMSSA, which set the DMSSA to record two types of
responses: the response levels of the EBNA dimer, denoted with 𝑦, and the response
of the binding gradient of the Cp promoter (i.e. the overall binding gradient of the
FR region), denoted with 𝑔. By performing 𝑀 parallel simulations, we obtained 𝑀
responses for 𝑦, thus creating the matrix Y, as per Eq. (.), and 𝑀 responses for 𝑔,
thus creating the matrix G, as per Eq. (.), for each row of the orientation matrices
B∗. Over these two outputs we computed the elementary effects as per Eq. (.), by
using the expected value of the EBNA average response, namely 𝑠𝑦 and the average
binding gradient 𝑠𝑔 of the Cp promoter, defined as per Eq. (.) and Eq. (.) respec-
tively. The results of the sensitivity analysis of the EBV switch model are depicted in
Fig. ..

Since no oscillatory behaviours were detected in the model output responses, no
elementary effects were computed with the aid of the representative values 𝑓𝑦, 𝑝𝑦 and
𝑎𝑦 from Eq. (.), Eq. (.) and Eq. (.), respectively (or similarly with the values
𝑓𝑔, 𝑝𝑔 and 𝑎𝑔).

The absolute mean and the standard deviation of the elementary effects were ob-
tained over 𝑟= different trajectories in the parameter space. The number of levels 𝑝
was set to  and the offset 𝑎 from Eq. (.) was set to , given thus a value of Δ = /.
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Such values for 𝑟, 𝑝 and Δ are commonly suggested in literature []. The obtained
elementary effects 𝑑𝑖 were normalized according to Eq. (.).

Fig. .(a) shows which parameters affect the most the average value of the model
output EBNA. Fig. . (b) shows instead which parameter affects the most the average
of the Cp promoter binding gradient.

Fig. . shows that the main parameters, that affect the output concentration of
EBNA the most, are the half-life of the EBNA dimer (𝑘), the half-life of the Oct-
+Grg/TLE repressor (𝑘) and the Cp promoter copy number (𝑘). These three param-
eters show relatively large mean 𝜇∗ and large standard deviation 𝜎 in comparison to
the other parameters. A non-zero value of 𝜇∗ means that the parameter has a non-
neglecting overall influence on the output, while a high value of 𝜎 can be generally
interpreted as a non-linear effect on the model output. A large 𝜎 also tells us that the
influence of the parameter on the output is dependent also on the interactions with
other parameters. To put in other words, the influence of the parameter on the output,
with respect to other parameters cannot be considered as independent.

The EBNA dimer and the Oct+Grg/TLE repressor half-life can be thought as the
two main values that mainly control the behaviour of the output of the EBV switch.
The degradation reactions already intuitively play a key role in the regulation of the
output concentrations. Sensitivity analysis performed in Fig. . shows that the model
is sensitive to the change occurring in the speed of degradation. Another important
conclusion that we can extrapolate from the same results is that the initial concentra-
tion, i.e. the initial amount of the genetic material of the virus, does affect the response
of the model at non-neglecting level. Which is a also a confirmation of the fact that
the level of virus activity in the B-lymphocyte during the lytic state is proportional to
the initial size of the virus infection.

The Epstein-Barr virus genetic switch shows a very robust behaviour, since it is able
to achieve remarkable resistance to the external signal Oct+Grg/TLE, thanks to both
a negative and positive feedback motif. Our stochastic simulations performed with
ParMSSA and the sensitivity analysis based on the Morris method confirmed these
statements. Although our reaction model is quite generic for describing the complex
dynamics that occur in the EBV, our simulations are still in accordance with previously
reported work by Werner et al. [].
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. A synthetic genetic oscillator

Synthetic genetic oscillators are among the main achievements of synthetic biology
[]. By assembling a negative feedback circuit, such as one from Fig. ., it is pos-
sible to obtain oscillations in the concentration of each TF of the circuit. Here we
are interested to model a similar SGRN, where each element is composed of a cis-
regulatory module containing multiple non-cooperative TFBSs. An example of such
circuit is depicted in Fig. .. This circuit can be constructed by using TFs based on
TALE []. The scheme from Fig. . also shows a possible snapshot of the system in a

Figure .
A synthetic genetic oscil-
lator scheme base on the
repressilator circuit from
[]. The circuit is com-
posed of three synthetic
genes encoding three dif-
ferent TALE-based TFs:
TALA , TALB and TALC .
Each of them is transcrip-
tionally regulated by mul-
tiple TALE-TFBSs, over
which, the same TFs can
bind non-cooperatively.

TAL

TALA

geneA

B

geneB

geneC

TALC

particular state, where the geneB is inhibited by the numerous TALC TFs bound on its
multiple non-cooperative TFBSs. Such inhibition results in a poor presence of TALB

TFs, which triggers the expression of the geneA. The products of geneA, the TALATFs,
eventually bind the cis-regulatory module of the geneC, which is currently expressing
the TALC TFs. The TALE TFs are assumed to have attached a repressor functional
domain, such as KRAB (see section ..), i.e. a macromolecule that has a powerful
inhibition effect over the gene’s promoter. The binding dynamics of such repressor is

Here it is important to emphasize that such design is only suitable for eukaryotic hosts.
The gene inhibition through TF repressors based on the KRAB functional domain is not that straight-

forward. In fact, the KRAB repression affects the chromatin structure, thus disabling the RNAP ability to
bind over the constitutive promoter. Usually such inhibition is very strong even, if there is a singular KRAB
based TF bound to one of the available TFBS. This property reminds the singular rule, that was introduced
in chapter . Instead of a KRAB functional domain, we investigated an hypothetical TALE-TF that can bind
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depicted in Fig. . (c). We refer to [] for more details about the specifics of TALE
TFs. Here we denote with TAL the complex repressor formed by the TALE binding
domain and a strong repressor’s functional domain.

Each TALE repressor protein (TALA, TALB and TALC), is the product of its re-
spective gene, which is regulated by a cluster of non-cooperative TFBSs controlling a
constitutive promoter. Each promoter of the circuit can be found in one of the two
possible states: active or repressed. On each of TFBS the remaining types of TF can
bind non-cooperatively and inhibit the expression of the gene. E.g. the product of
the geneB, i.e. the TALB, can bind on the cis-regulatory module of the gene geneA and
inhibit its expression. If no products of the geneA are present, i.e. the TALA TFs, then
no inhibition will occur on the cis-regulatory module of geneC, which in turn means
that its expression will results in a high presence of the TALC TFs. TALC proteins
eventually bind on the multiple non-cooperative TFBSs of the geneB and inhibit the
expression of the geneB, which results in a poor presence of TALB TFs. In such oc-
casion the geneA will eventually express itself, and the entire switching process will be
repeated.

Table .
The parameters of the repressilator model.

symbol parameter value reference

𝐾𝑑 TALE-DNA dissociation constant . −  𝑛𝑀 assumed range []

𝑣𝑡𝑟𝑠𝑐 transcription elongation speed  −  𝑏𝑝/𝑠 []

𝑣𝑡𝑟𝑠𝑙 transcription elongation speed  −  𝑏𝑝/𝑠 []

𝐿𝑇𝐴𝐿𝐸 TALE genes average length ≈ . 𝑘𝑏 ( 𝑘𝐷𝑎) []

𝑡 
 𝑇𝐴𝐿

TALE half-life  −  ℎ𝑟 []

𝑡 
 𝑚𝑅𝑁𝐴

TALE’s mRNA half-life  −  ℎ𝑟 assumed value from []

We construct a model of the GRN depicted in Fig. ., based on the multi-scale
nature of such system, i.e. the presence of multiple non-cooperative TFBSs. We used
4 binding sites for each targeted TF to each of the cis-regulatory module of the TALE
genes.

non-cooperatively to its TFBS and act as a “roadblock”-type repressor.
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Table .
Fast reactions in the repressilator model. The binding and unbinding rate 𝑘 and 𝑘 were obtained by simply set the 𝑘
constant to a reference value of  𝑠− (a typical value for TF-DNA unbinding []), and then compute 𝑘 as 𝑘/𝐾𝑑 .

fast reactions type 

 + 
𝑘⎯⎯⎯⎯→ − DNA-TF repressor binding . ⋅  𝑀−𝑠−

−
𝑘⎯⎯⎯⎯→  +  DNA-TF repressor unbinding . ⋅  𝑠−

 + 
𝑘⎯⎯⎯⎯→ − DNA-TF repressor binding . ⋅  𝑀−𝑠−

−
𝑘⎯⎯⎯⎯→  +  DNA-TF repressor unbinding . ⋅  𝑠−

 + 
𝑘⎯⎯⎯⎯→ − DNA-TF repressor binding . ⋅  𝑀−𝑠−

−
𝑘⎯⎯⎯⎯→  +  DNA-TF repressor unbinding . ⋅  𝑠−

We therefore defined a similar two-scaled reaction system as for the EBV model in
the previous section, based on Def. .. The main parameters of the model are listed
in Tab. .. The fast reactions of the system are defined in Tab. ., while the slow
reactions are shown in Tab. ..

All the three TALE TFs, are roughly of the same length (2.7 kb). Hence they may
exhibit the same slow kinetics for transcription, translation and degradation, which
means that they may share the same kinetic constants. This is of course a simplifi-
cation, however this presumption allows to make the model as simple as possible for
performing the stochastic simulations faster.

The fast reactions are similarly sharing the same kinetics, due to the similar DNA-
binding dynamics of all the three TALE TFs. In other words they all share the same
reaction kinetics for the TF-DNA binding and unbinding, as per Def. ..

An example of the response of this SGRN, i.e. the oscillation in the concentration
of the three TFs, is shown in Fig. . (a). The concentration of each TF oscillates with
a period that can span from  to  hours. The main frequencies of these oscillations
are the same for all the three components of the repressilator, as shown in the frequency
spectrum of the responses, see Fig. . (c).

Fig. . (b) shows the binding gradient plot for all the three genes of the model. As
predicted, we observed an oscillatory change in the value of each binding gradient. The
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Table .
Slow reactions in the repressilator model. The transcription rate constant 𝑘 can be computed from Eq. (.) by including
only the elongation factor, i.e. 𝑘 = 𝑣𝑡𝑟𝑠𝑐/𝐿𝑇𝐴𝐿𝐸 . The translation rate 𝑘 can be similarly computed from Eq. (.) as
𝑘 = 𝑣𝑡𝑟𝑠𝑙/𝐿𝑇𝐴𝐿𝐸 . Here we implied that the length of the mRNA transcripts is of the same length of the TALE gene. The
degradation rates 𝑘− and 𝑘 were derived from Eq. (.).

slow reactions type 


𝑘⎯⎯⎯⎯⎯→  +  gene transcription . ⋅ − 𝑠−


𝑘⎯⎯⎯⎯⎯→  +  gene transcription . ⋅ − 𝑠−


𝑘⎯⎯⎯⎯⎯→  +  gene transcription . ⋅ − 𝑠−



𝑘−
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯→ ∅ mRNA degradation . ⋅ − 𝑠−



𝑘−
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯→ ∅ mRNA degradation . ⋅ − 𝑠−



𝑘−
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯→ ∅ mRNA degradation . ⋅ − 𝑠−



𝑘⎯⎯⎯⎯⎯→  +  mRNA translation . ⋅ − 𝑠−



𝑘⎯⎯⎯⎯⎯→  +  mRNA translation . ⋅ − 𝑠−



𝑘⎯⎯⎯⎯⎯→  +  mRNA translation . ⋅ − 𝑠−


𝑘−
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯→ ∅  degradation . ⋅ − 𝑠−


𝑘−
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯→ ∅  degradation . ⋅ − 𝑠−


𝑘−
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯→ ∅  degradation . ⋅ − 𝑠−

free TFs are able to quickly bind on the multiple binding sites of each cis-regulatory
module, due to the low value of the dissociation constant (in the nM region), thus
providing a fast saturation of the binding site cluster. This resulted in a total ()
repression of the TALE genes. Also, as predicted, we observed slower TF unbinding
events, leaving a gradual but increasing number of free binding sites. As such the bind-
ing gradients reached the  limit, thus allowing the TALE genes to be expressed.

The response of the repressilator is remarkably robust, despite the fluctuation in
the parameters values that can be apportioned by the designer. To understand how
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Figure .
An example of repressilator
response trajectory (a),
the binding gradient plot
for the cis-regulatory
module of the geneA
(b) and the response’s
frequency spectrum (c), of
a simple simulation run
of the multi-scale model
defined with reactions
from Tab. . and Tab. ..
Each TALE gene of the
model contains  binding
sites for the targeted
TFs. The simulation run
was set for testing the
singular activation rule.
The dissociation constant
𝐾𝑑 was set to  𝑛𝑀, the
transcription elongation
speed 𝑣𝑡𝑟𝑠𝑐 to  𝑏𝑝/𝑠,
the translation elongation
speed 𝑣𝑡𝑟𝑠𝑙 to  𝑎𝑎/𝑠, the
mRNA half-life to  ℎ𝑟
and the TALE half-life to
 ℎ𝑟.
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such fluctuations can affect the model response, we performed the sensitivity analysis
proposed in chapter  with the aid of ParMSSA.

.. Sensitivity analysis

By performing the Morris sensitivity analysis with the elementary effects described in
chapter , we can provide different parameter sensitivity values, that can be used to
assess the global robustness of the repressilator. Each parameter sensitivity can directly
refer to the amount of influence that the parameter has on the model outputs on aver-
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age. Larger the influence is, less robust is the model against the change in the parameter
value. The parameters sensitivities, can help to facilitate further investigation, i.e. to
identify which parameters drive the response of the repressilator to an unwanted be-
haviour. This can be invaluable in a scenario where only computational models can be
used to represent the system.

Table .
The values range of each parameter in the TALE repressilator model used to perform the sensitivity analysis.

parameter symbol min max interval type reference

TALE half-life 𝜏/
 𝑚𝑖𝑛  ℎ𝑟 logarithmic [, ]

mRNA half-life 𝜏/
 𝑚𝑖𝑛  ℎ𝑟 logarithmic []

geneA copy  𝑐𝐴   linear [, ]

TALA  TFBS 𝑛𝐴   linear set by design

In order to perform the Morris sensitivity analysis of the repressilator circuit, we se-
lected four basic parameters of the model, which could be also physically perturbed in a
real environment. These parameters are the proteins’ and mRNAs’ half-lives, the genes
copy numbers and the number of binding sites in the genes’ cis-regulatory modules.
The values ranges for each of these parameters are shown in Tab. ..

As in the case study of the EBV genetic switch, we selected (observed) just two out-
puts of the model: the TALA concentration (𝑦) and the binding gradient of the geneA

(𝑔), on which the parameter sensitivities were computed. Additionally to the measures
used in the EBV model for computing the elementary effects, i.e. the average responses
𝑠𝑦 and 𝑠𝑔, we used also the average principal period in the model response’s frequency
spectrum and the average of the maximum amplitude of the principal frequency of the
response, computed over multiple repetitions. The obtained elementary effects 𝑑𝑖 were
normalized according to Eq. (.).

The sensitivity analysis of the model defined with reactions depicted in Tab. . and
Tab. ., was carried out with ParMSSA, by applying (by default) the singular activation
rule to all the promoters of the repressilator. The results are shown in Fig. .. The
value 𝑟 of the matrix R∗ was set to . The parameter intervals were divided in 𝑝 = 10
sub-spaces. The entire sensitivity analysis took approximately . days for computing
all the (𝑁𝑝+1) ⋅𝑟 ⋅𝑀 = 5⋅30 ⋅48 = 7200 required simulations needed to calculate the
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Figure .
The parameter sensitivities
of the repressilator circuit.
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half-life, 𝑘 is the copy number of the geneA (the initial amount), and 𝑘 is the number of non-cooperative

TFBSs of geneA.

parameter sensitivities, i.e. 𝜇∗ and 𝜎, which are shown in Fig. .. Fig. . (a) shows the
𝜎(𝑠𝑦) vs 𝜇∗(𝑠𝑦) graph of the elementary effects computed with the average responses
𝑠𝑦. By observing the average of the absolute value of the elementary effects and their
standard deviations, we can see that the input parameters 𝑘 and 𝑘, i.e. the TFs’ and
mRNAs’ average half-life, have the largest influence on the model output responses,
i.e. on the concentration of the output signal TALA as well as on the binding gradient
of the geneA. The two parameter sensitivities 𝜎(𝑠𝑦) and 𝜇∗(𝑠𝑦) of the parameter 𝑘
tell us, that the value of the TFs’ half-life strongly influence the output value of the
model, i.e. the concentration of the TFs. This is in accordance with our intuitive
interpretation of the dynamics of GRNs: TFs are produced by the gene expression
process and they are consumed by the degradation process. Fast or slow degradation
will strongly affect the concentration of the free TFs in the cell. The value of the half-
life defines the kinetic constant of the degradation reaction, as per Eq. (.). The
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Morris sensitivity analysis shows that the repressilator model response is affected by
the perturbations in the degradation speed, i.e. by a change in the value of the TFs
half-life. The parameter sensitivity 𝜎(𝑠𝑦) however, tells us, that the TFs half-life has
also a large “spread”, i.e. the effect of this input parameter on the model output is non-
linear, which means, that the parameter 𝑘 can affect profoundly the model output
TALA, even with a small perturbation in its value. The same conclusion can be derived
by observing the sensitivity values of the elementary effects obtained with the values
𝜎(𝑝𝑦) and 𝜇∗(𝑝𝑦), i.e. the standard deviation and the mean of the elementary effects
obtained with the period of the main component in the frequency spectrum of the
model response TALA.

A similar conclusion can be derived from the parameter sensitivities obtained by the
binding gradient of the geneA. The parameters with the highest influence are the TFs
and mRNA half-lives involved in the degradation process.

Fig. . was obtained by considering only the singular inhibition rule, since, as we
will show in the next section, no oscillations were detected in the model response of
the repressilator, if is driven by the all-or-none or the additive inhibition rule. The
computation of the elementary effects using the average principal period 𝑝𝑦 and the
average principal amplitude 𝑎𝑦 were carried out solely for those scenarios in which both
𝑝𝑦(x) and 𝑝𝑦(x + Δ𝑖) (or 𝑎𝑦(x) and 𝑎𝑦(x + Δ𝑖)) exhibit oscillations (non oscillatory
responses were discarded).

Equipped with this findings, we began investigating further the influence of mul-
tiple TFBSs to the repressilator response. We then analysed the applicability of the
parameter sensitivity of the TALE half-life as a metric for estimating the robustness of
the model response’ oscillations.

.. Multiple transcription factors binding sites implications

We proposed an experiment in which two groups of simulations were performed. In
the first configuration the TFs half-life was set to a default referenced value of  hr (in
accordance with Tab. .). In the second configuration, the same half-life was set to a
much lower value, i.e. , min, which oversteps the boundaries, albeit slightly, of the
interval used in the sensitivity analysis (see .). We performed three simulations over

Lowering the half-life means to increase the protein degradation rate. Increasing (or decreasing) the speed
of the protein degradation physically, is not a trivial task. However, there are few techniques in molecular
biology capable of changing the rate of degradation through the use of specific proteases, as described in [].
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Figure .
Simulations responses of
three different activation
rules, i.e. additive, all-or-
none and singular. The
simulations were carried
on the model from Fig. .
with a different number of
TFBSs in the cis-regulatory
module of all the three
TALE genes. The half-
life of the model output
proteins is set to  hr.
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both configurations, each time by applying a different activation rule and each time by
applying a new value for the number of TFBS to place in each cis-regulatory module
of the circuit. Such experiment provides a broad overview and a direct comparison
between the oscillatory scenarios of the repressilator. We applied the following three
inhibition rules:

. additive,

. all-or-none and
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. singular.

Let’s denote with 𝑓𝑈 (0, 1) the random function 𝑓, which returns an equally distributed
random number in the interval . And let b be a row (the binding vector) of the system
binding site matrix. The rules listed above have been previously described in chapter 
as activation rules and in the case of the repressilator can be formalized as follows:

ℎ𝑎𝑑𝑑b =
⎧⎪⎨
⎪⎩
1; if |𝑏𝑚+| = 0 ∧ |𝑏𝑚−| = 0
𝑎; otherwise

, (.)

ℎ𝑎𝑜𝑛b =
⎧⎪⎨
⎪⎩
−1; if |𝑏𝑚−| = 𝑛
1; otherwise

, (.)

ℎ𝑠𝑖𝑛b =
⎧⎪⎨
⎪⎩
−1; if |𝑏𝑚−| > 0
1; otherwise

, (.)

where

𝑎 =
⎧⎪⎨
⎪⎩
−1; if 𝑓𝑈 (0,1) < |𝑏𝑚− |

𝑛
1; otherwise

.

We did not observed any periodicity in the model responses under the additive and all-
or-none rule. The oscillations were detected only when the TAL repression was driven
with the singular rule.

The results of the first group of simulations are shown in Fig. .. Fig. .(a-h) show
the outputs TALA responses obtained with different numbers of TFBSs in each TALE’s
gene of the repressilator model. One can observe that, with the exception of Fig. .(a),
on every configuration the singular rule exhibits oscillations robustly. The repressilator
model that comprises only one TFBS does not exhibit any oscillations in the outputs.
This was also confirmed by the frequency spectrum of Fig. .(a) (not shown). We
suppose that the main reason for this discrepancy is the lack of non-linearity in the
reaction system of Def. . as also described in []. By augmenting the non-linearity,
or by increasing the time delay between the reactions of transcription (or translation)
of each repressor and the binding of the respective repressor to its binding sites (see
[]), we speculate that the model would eventually oscillate.

We noticed that the frequency of the oscillations decreases with the increase of the
number of available TFBS. The frequency spectrum (not shown) confirmed this trend.
The periods of the frequency components with the higher amplitudes are shown in
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Figure .
Simulations responses of
three different activation
rules, i.e. additive, all-
or-none and singular.
The simulations were
carried on the model from
Fig. . with a different
number of TFBSs in the
cis-regulatory module of
all the three TALE genes.
The procedure of Wichert
for detecting oscillations
described in section ..,
detected periodicity in the
responses obtained with
more (or equal) than 
TFBSs.
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Fig. ..
In the second group of simulations we ran the same parameter configurations, as in

the previous group, with the only difference that, this time we perturbed the system
with its most sensitive parameter 𝜏/

. The results are shown in Fig. .. The per-
turbation has been carried out by simply decreasing the value of 𝜏/

to , min,
which translates to a faster degradation by two orders of magnitude. We observed that
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Table .
A comparison of the oscillation main periods (in hours) of the repressilator response function, obtained from the simulations
performed with the reference parameters values (i.e. slow degradation) and with a fast degradation rate (i.e. fast degradation)
under the singular repression rule. Very low frequencies are achieved by the response function, if higher numbers of non-
cooperative binding sites are used in the cis-regulatory module of promoters. Shortest periods are achieved by the response
function in the case of having a fast degradation rate, especially if higher numbers of non-cooperative TFBSs are placed in the
cis-regulatory module.

b. sites periodicity (slow degrad.) periodicity (fast degrad.)

 no no

 . partial

 . partial

 . .

 . .

 . .

 . .

 . .

also in this scenario the system exhibits oscillations.
Fig. .(a) shows that also in this case, a single TFBS is insufficient to regulate the

gene inhibition properly, as the concentration of TALE proteins do not oscillate. A
partial oscillation was detected in the simulation with two and three available TFBSs,
see Fig. .(b) and (c). In all other cases, the oscillations resulted to be up to  fold
faster than the oscillations obtained with the reference value of 𝜏/

(see Tab. .).
Also in this scenario, the frequency of oscillation decreases with the increase of available
TFBS.

We suspect that this decreasing frequency effect (or increasing periodicity), is due to
an intense activity of TFs in proximity of the cis-regulatory module of each gene in the
circuit. Having a greater number of bound TFs (because of an increased number of
TFBSs), means that there are less free floating TFs. Multiple TFBSs protect bound TFs
from degradation and hence their concentration is less susceptible to drop quickly, thus
increasing the period of oscillations. We did not investigate the possibility of allowing
the degradation of bound TFs, since it would require a modification of Def. ..
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.. Robustness estimation

After performing these two groups of simulations, we tackled the challenge of esti-
mating the sensitivity of the oscillations as a function of the number of TFBS. Such
sensitivity estimation can be used as a valid metric for validating the robustness of the
oscillations. We designed a Morris screening experiment in which the elementary ef-

Figure .
Robustness analysis of the
repressilator circuit.
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The sensitivity analysis of the repressilator circuit based on the parameter 𝜏/
for eight different numbers

of TFBSs: , , , , , ,  and  in the cis-regulatory module of geneA, geneB and geneC, according to

the singular inhibition rule of Eq. (.). (a), (b) and (c) show respectively the parameter sensitivity 𝜇∗(𝑠𝑦),

obtained from the average response, (b) the parameter sensitivity 𝜇∗(𝑝𝑦), obtained from the principal period

and (c) the parameter sensitivity 𝜇∗(𝑎𝑦), obtained from the average amplitude of the principal frequency of

the TALA protein response. (d), (e) and (f ) show respectively the parameter sensitivity 𝜇∗(𝑠𝑔), obtained from

the mean value of the binding gradient, the parameter sensitivity 𝜇∗(𝑝𝑔), obtained from the principal period

and the parameter sensitivity 𝜇∗(𝑎𝑔), obtained from the average amplitude of the principal frequency of the

binding gradient response of geneA. All sensitivities values are depicted with their  confidence interval.

fects of the reference model of the repressilator are computed solely for the parameter
𝜏/

. This experiment was performed over eight different numbers of TFBSs: , ,
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, , , ,  and . We began by setting the same configuration of the model as
used to obtain the response depicted in Fig. .(a). Then we computed eight elemen-
tary effects from the Morris experiment by perturbing only the 𝜏/

parameter (i.e. a
matrix R∗ of eight different orthogonal samples of 𝜏/

is constructed for such task).

We computed next 𝜇∗(𝑠𝑦), 𝜎(𝑠𝑦), 𝜇∗(𝑠𝑔) and 𝜎(𝑠𝑔). We repeat this procedure only for
the singular inhibition rule and over all the eight models, differing from each other by
, , , , , ,  and  binding sites. The results are shown in Fig. .. In this
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Figure .
Ratio of oscillatory pat-
terns in the robustness
analysis experiment.

experiment the obtained elementary effects 𝑑𝑖 were not normalized according to Eq.
(.), since the standard deviation of the input factors 𝜎𝑥𝑖, due to the analysis of only
one parameter, is always zero, which hence produces null elementary effects. However,
they were computed via Eq. (.), so the oscillatory ratio was included (the values of
ratio are shown in Fig. .).

Fig. . shows the results of the Morris sensitivity analysis for the 𝜏/
parameter.

We performed six different computations of the sensitivity based on the mean response,
the principal period and the mean amplitude of the principal frequency, from both the
response of the TALA protein and the binding gradient of geneA. The sensitivity based
on the half-life, as a value of the model’s sensitivity appears to be non-linear and mono-
tone with the number of TFBSs. This can be alternatively interpreted as the robustness
of the model decreasing with the number of TFBSs. Although the sensitivities based

The ParMSSA engine is limited to  TFBSs per promoter, due to implementation constraints.
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on the binding gradient show that no prominent influence is provided by the incre-
ment of TFBSs (i.e. the sensitivity is almost linear), a high number of TFBSs has still
a profound effect in the response of the TALA protein (same for TALB and TALC).
Despite that these sensitivities do not decrease with the number of binding site, the
periodicity and the stability of the oscillations do, as shown in Tab. .. This can be
interpreted as the tunability of the parameters increases with the number of TFBSs.

Since the sensitivities were computed solely for the responses that exhibit period-
icity and since the matrix R∗ was set to produce only  different trajectories, many
elementary effects have relatively high standard deviation. However, the results shown
in Fig. . can help the SGRNs designer to determine the optimal design and structure
of the SGRNs, based on the requirements for a particular frequency selection.
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Lt. Cmdr. Matt T. Sherman: To paraphrase Mr. Churchill: ’Never have so
few stolen so much from so many.’

Operation Petticoat, 

In this dissertation we developed an approach for performing stochastic simulations
of GRNs containing promoters with multiple non-cooperative TFBSs. Such GRNs
are difficult to modelled stochastically with current approaches, because of the high
number of reactions that need to be accounted. We also developed a methodology for
performing the sensitivity analysis of such systems efficiently, despite the challenging
computational complexity.

We applied our approach to the Epstein-Barr genetic switch model and to the ge-
netic oscillator, known as repressilator. These two models contain a relatively high
number of non-cooperative TFBSs, making their stochastic modelling particularly dif-
ficult to perform with the classical techniques. We showed that the application of our
approach to such models is straightforward and, due to the parallel implementation of
the algorithm DMSSA, the results can be obtained quickly.

We showed that the number of non-cooperative TFBSs inside the cis-regulatory
modules of promoters plays an important role in the tuning of the main frequency of
oscillations in the repressilator circuit.

The necessity of providing accurate modelling of biological systems, has stimulated
the development of the stochastic modelling also for the most complex and challenging
systems.
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. The main contributions of the dissertation

We achieved the following two contributions:

We developed a new multi-scale stochastic simulation algorithm called DMSSA
capable to cope with the stiffness and with the large combinatorial complexity
of chemically reacting systems of GRNs that contain multiple non-cooperative
transcription factors binding sites. We exploit the simplicity of the stochas-
tic simulation algorithm for performing accurate simulations of such complex
GRNs, achieving unprecedented success. We included the algorithm inside a
parallel simulation engine called ParMSSA, built for simulating complex systems
and synthetic biology models of GRNs with any feasible number of binding sites.
The validity of the method was proved on a simple multi-scale reaction model
and compare with the results obtained by a less effective SSA.

We established a methodology for tackling the sensitivity analysis of stochastic
multi-scale models, based on the Morris method. The state-of-the-art sensitiv-
ity analysis approaches lack the capability to investigate stochastic multi-scale
models. By establishing our methodology we filled this gap, and we showed
how this methodology can be applied to both systems and synthetic biology
models. By providing a parallel engine for performing multiple instances of the
stochastic simulations with DMSSA we encourage the utilization of the Morris
screening experiment also for the computationally more demanding stochastic
simulations.

. Future research directions

The results obtained with the DMSSA on the repressilator circuit should be properly
assessed and compared also with experimental results. A physical implementation of
the circuit depicted in Fig. . is within the reach of any synthetic biology laboratory,
see the similar constructs implemented by Lebar and Jerala in [].

We think that our DMSSA approach presented in this thesis, coupled with the sen-
sitivity analysis of the enhanced Morris method, should find several interesting appli-
cations in systems and synthetic biology, since it allows manageable computational
complexity of stochastic simulations of GRNs containing multiple non-cooperative
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TFBSs. This approach should be used wherever the stiff property of a chemically re-
action network would prevent the use of a classical simulation approach (as with SSA)
for performing stochastic simulation of the system.

The results of our sensitivity analysis methodology can be exploited in future pro-
cesses of the design of logic structures, based on SGRNs with multiple non-cooperative
TFBSs. With the obtained parameters sensitivities it is possible not only to identify the
most important parameters, but also to provide a rough estimation of the robustness
of the multi-scale models of GRNs. Such information can be used to construct robust
metrics to improve the quality of the design of biological systems with information
processing capabilities.

The model definition of the reaction networks that the DMSSA uses, does not con-
sider any intermediate step that occurs between the processes of gene regulation and
expression. For instance in eukaryotes, once it is formed, the 𝑚𝑅𝑁𝐴 must reach the
ribosome in the cytosol. This can be viewed as a time-delay step that occurs between
the reactions of transcription and translation. The SSA, and as well the DMSSA can
cover this shortcoming by including an additional reaction between these two reactions.
Such approach should be implemented when the delay heavily affects the rate-limiting
step of both transcription and translation. In our models we assume that this delay is
at least an order of magnitude smaller than the total transcription or translation time.
We refer to [] for additional information about an example of implementation of
the delayed-SSA, that can cope with such delays, and that might affect the correctness
of the conventional SSA.

The DMSSA is limited regarding the representation of the possible DNA bind-
ing dynamics. The DMSSA was developed to simulate mainly the dynamics of non-
cooperative binding. An important improvement would be to allow the DMSSA to
tackle also cooperative binding.

Computationally, the DMSSA can be further improved by using, instead of the
classical SSA, a different variant of the SSA, or even better, one of the possible approx-
imation technique (such as the 𝜏-leaping) as the simulation engine for both the scales.
The nested SSA in fact can theoretically be replaced by any of its variants (tau-leaping,
etc).
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. Final remarks

It is now time to unveil what our trio of objects (the bacteria, the fish hook and the
lonely tree in an empty field) has in common.

When we observe a lonely tree, which is totally devoid of any autonomous and coor-
dinated movement, growing alone on an arid and brittle field, which is an environment
that at first glance seems less inclined to accommodate the development of plants, we
will probably get surprised and we would not probably stop asking the question: ”How
did it do?”. The answer of course is adaptation, but as being pedantic scientists, we
would probably dive into the research of the main cause that allows the tree to grow in
such hostile place. Besides, we can all agree upon the fact, that the ability to adapt to
an environment is inherent in the organisms not only of the kingdom Plantae but also
for Animalia.

The evolution can be seen as a decrease in the values of the sensitivity of the organ-
ism, that favours the adaptation in an environment, which at first was less prone to
the development of the observed living being. Smaller the sensitivity is, greater the
robustness of the organism would be against a hostile environment. The environmen-
tal conditions define the limits of the sensitivity values   of each living being. Sudden
changes (or big perturbation) in the environment properties may lead to an increased
sensitivity response of the biological system, causing possible serious damage to the
organism itself. The tree for instance will only grow as much as the wind, that usually
blow on this field, will allow, meaning that, if the tree would grow too high then, with
a sudden change of the wind speed over the reference interval, the tree’s branches or
the main trunk will break, posing as such a critical survival risk to the organism. The
evolution would therefore “adjust” the maximum tree high for the next generations
of trees growing in that region of space according to the reference values of the wind
speed. If such adjustment will not be possible, then the existence of the tree (and any
of its future descendants) would be questioned. Otherwise, the tree would adapt to
the adverse conditions by developing a higher robustness, i.e. decreasing its sensitivity,
to the environmental perturbations.

In a broaden view we can say that both the bacterium and the lonely tree in the
arid field are two striking examples of adaptation of living organisms to hostile envi-
ronmental conditions. The tree’s branches bend when it is hit by the wind, while the
bacterium uses chemotaxis to escape or react to a strong change in the environmental
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conditions. Both such behaviours of the organisms can be specified through paramet-
ric values   that can be framed inside specific intervals. An off-the-shelf value may result
in a poor adaptation, for example, it could lead to a fatal event inside bacterium for its
metabolism.

The sensitivity of a tree may be represented as its tolerance to the bending according
to the force of the wind. This value is hence imposed externally by the environment.
In the bacterium, however, sensitivity can be attributed to multiple factors, both exter-
nal and internal, which makes the bacterium a challenging model for performing the
sensitivity analysis.

The fishing hook instead represents an example of inanimate object, which cannot
adapt to environmental changes. Its ability to withstand strong forces depends entirely
on its design and manufacture. Hence, the sensitivity of this object can be entirely
attributed to the quality of its construction. The larger the force that the hook will be
able to support, the lower its sensitivity will be, ergo, more robust the hook will be. The
sensitivity is therefore inversely proportional to the robustness. It can be determined by
the maximum force we think the hook will have to endure. This force clearly represents
an external event and can be similarly measured as the force of the wind that bends the
branches of the tree.

Hence yes, a high robustness towards the environment is one of the key elements
that all the objects of our trio have in common.
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A. Multi-scale stochastic simulation techniques

Here we review the three simulation techniques mentioned in chapter  that currently
represent the state-of-the-art approaches for stochastic multi-scale modelling and sim-
ulation of GRNs.

A.. Slow-scale stochastic simulation algorithm

Authors in [] developed the slow-scale stochastic simulation algorithm (ssSSA) in order
to tackle the stiffness in chemically reacting systems of the type defined in Def. ..
The ssSSA is an improvement of the SSA from Alg. . and is closely related to the
QSSA. In short, the ssSSA, given a system defined as in Def. ., introduces a new
virtual fast process �̂�𝑓(𝑡), which is composed of the same species of 𝑋𝑓(𝑡), but evolves
solely from the fast reactions (i.e. with all the slow reactions turned off). Since the
dynamics of 𝑋𝑓(𝑡) depends from both 𝑋𝑓(𝑡) and 𝑋𝑠(𝑡), we cannot represent 𝑋𝑓(𝑡) as
a Markovian process, but sure we can for �̂�𝑓(𝑡), which means that its time evolution
is governed by the master equation

𝜕�̂�(𝑥𝑓 , 𝑡 | 𝑥, 𝑡)
𝜕𝑡 =

𝑀𝑓


𝑗=
𝑎𝑓𝑗 (𝑥𝑓 − 𝜈

𝑓
𝑗 , 𝑥𝑠)�̂�(𝑥𝑓 − 𝜈

𝑓
𝑗 , 𝑡|𝑥, 𝑡) − 𝑎

𝑓
𝑗 (𝑥𝑓 , 𝑥𝑠)�̂�(𝑥𝑓 , 𝑡|𝑥, 𝑡),

(A.)
in which �̂�(𝑥𝑓 , 𝑡|𝑥, 𝑡) = 𝑃𝑟 �̂�𝑓(𝑡) = 𝑥𝑓 |𝑋(𝑡) = 𝑥. Moreover, being the stiffness
defined as the multiple-time scale dynamics of the reacting system comprising both
fast and slow reactions, in which the fast reactions are stable, the process �̂�𝑓(𝑡) has to
meet the following requirements, called the stiffness conditions:

Condition A.: In the stable process �̂�𝑓(𝑡)

∃ �̂�(𝑥𝑓 ,∞|𝑥) ∶ lim𝑡→∞
�̂�(𝑥𝑓 , 𝑡|𝑥, 𝑡) ≡ �̂�(𝑥𝑓 ,∞|𝑥),

where �̂�(𝑥𝑓 ,∞|𝑥) is a time independent probability function of the process �̂�𝑓(∞)
when it equals the state 𝑥𝑓 , given the initial state 𝑥.
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Condition A.: The relaxation time ̂𝑡𝑓𝑟𝑒𝑙𝑎𝑥 of �̂�𝑓(𝑡) to its asymptotic form �̂�𝑓(∞)
should be small in comparison to the average expected time 𝑡𝑠 in which a slow
reaction will occur, i.e.

̂𝑡𝑓𝑟𝑒𝑙𝑎𝑥 ≪ 𝑡𝑠.

The integration of the two time scale processes 𝑋𝑓(𝑡) and 𝑋𝑠(𝑡) rises the question of
how propensity functions behave in a scenario, where 𝑋𝑓(𝑡) quickly converge to its
asymptotic state in a time frame that is short compared to the time 𝑡𝑠, in which a
slow reaction will occur. In other words, we would like to calculate the propensity
functions, if the process 𝑋𝑓(𝑡) is replaced with �̂�𝑓(𝑡). Authors in [] proposed, that
if the conditions Cond. A. and Cond. A. are met, then it is possible to define the
slow-scale approximation []:

Definition A.: Let be a system from . in the state (𝑥𝑓 , 𝑥𝑠) at a time 𝑡, and let
denote with ̂𝑡𝑓𝑟𝑒𝑙𝑎𝑥 the relaxation time of the stable fast process �̂�𝑓(𝑡) and with 𝑡𝑠 the
average expected time to the next slow reaction. It is possible then to prove, that it
exists such time increment Δ𝑠, for which it holds

̂𝑡𝑓𝑟𝑒𝑙𝑎𝑥 ≪ Δ𝑠 ≪ 𝑡𝑠, (A.)

i.e. Δ𝑠 is very large compared to ̂𝑡𝑓𝑟𝑒𝑙𝑎𝑥 and very small compared to 𝑡𝑠, whereas the
probability that one reaction 𝑅𝑠𝑗 will occur in the next time interval [𝑡, 𝑡 + Δ𝑠) can

be approximated with 𝑎𝑠𝑗 (𝑥𝑠; 𝑥𝑓)Δ𝑠, where

𝑎𝑠𝑗 (𝑥𝑠; 𝑥𝑓) = 
𝑥𝑓′
�̂�(𝑥𝑓′ ,∞|𝑥𝑓 , 𝑥𝑠) 𝑎𝑠𝑗 (𝑥𝑓

′ , 𝑥𝑠), (A.)

in which �̂�(𝑥𝑓′ ,∞|𝑥𝑓 , 𝑥𝑠) is the probability that �̂�𝑓(∞) = 𝑥𝑓′ , given that 𝑋(𝑡) =
(𝑥𝑓 , 𝑥𝑠).

The Eq. (A.) is often referred as the slow-scale propensity function for the reaction chan-
nel 𝑅𝑠𝑗 . Eq. (A.) calculates the 𝑗-th slow propensity function by simply averaging all
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the 𝑗-th slow propensities over all fast variables in �̂�𝑓(𝑡). The Def. A. is the basis for
the ssSSA:

Algorithm A.

The slow-scale stochastic simulation algorithm (ssSSA).

Input: a model from the Def. ..

Output: the model responses 𝑥 = 𝑥𝑠 over time 𝑡.

procedure ssSSA

. Identify the virtual fast system �̂�𝑓 (𝑡) and compute its stationary probability
function �̂�(𝑥𝑓′ ,∞|𝑥𝑓 , 𝑥𝑠). Initialize the initial state 𝑡 = 𝑡, 𝑥𝑓 = 𝑥

𝑓
 and 𝑥𝑠 = 𝑥𝑠.

. Determine all the propensities values 𝑎𝑠𝑗 (𝑥𝑠, 𝑥𝑓 ) according to Eq. (A.).

. Compute 𝑎𝑠(𝑥𝑠; 𝑥𝑓 ) = ∑
𝑀𝑠
𝑗− 𝑎

𝑠
𝑗 (𝑥𝑠; 𝑥𝑓 ).

. Monte Carlo step: sample two random numbers 𝑟 and 𝑟 from the interval (, ]
and compute 𝜏 and the index 𝑗 as:

𝜏 = 
𝑎𝑠(𝑥𝑠; 𝑥𝑓 )

 

𝑟
 ,


𝑗

⎧⎪⎪⎨
⎪⎪⎩

𝑗

𝑘=

𝑎𝑠𝑘(𝑥𝑠; 𝑥𝑓 ) ≥ 𝑟𝑎𝑠(𝑥𝑠; 𝑥𝑓 )

⎫⎪⎪⎬
⎪⎪⎭ .

. Increase the time step 𝑡 ← 𝑡 + 𝜏 and update the system states:

𝑥𝑠𝑖 ← 𝑥𝑠𝑖 + 𝜈𝑠𝑠𝑖𝑗 , (𝑖 = ,…𝑁𝑠), (A.)

𝑥𝑓𝑖 ← 𝑥𝑓𝑖 + 𝜈
𝑓𝑠
𝑖𝑗 , (𝑖 = ,…𝑁𝑓 ), (A.)

𝑥𝑓 ← sample from �̂�(𝑥𝑓′ ,∞|𝑥𝑓 , 𝑥𝑠). (A.)

. Record the current pair 𝑋(𝑡) = (𝑥𝑓 , 𝑥𝑠) with 𝑡 and go back to step  if 𝑡 < 𝑡𝑚𝑎𝑥.

end procedure

It is clearly visible, that the Alg. A. is an extension of Alg. ..
The main problem of Alg. A. is that the probability function �̂�(𝑥𝑓 ,∞|𝑥) is difficult

to compute. One way to obtain an exact calculation is to estimate the asymptotic
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behaviour of �̂�(𝑥𝑓 , 𝑡|𝑥, 𝑡), which equals to set

𝜕�̂�(𝑥𝑓 , 𝑡 | 𝑥, 𝑡)
𝜕𝑡 = 0, (A.)

from Eq. (A.), as we get

0 =
𝑀𝑓


𝑗=
𝑎𝑓𝑗 (𝑥𝑓 − 𝜈

𝑓
𝑗 , 𝑥𝑠)�̂�(𝑥𝑓 − 𝜈

𝑓
𝑗 ,∞|𝑥) − 𝑎

𝑓
𝑗 (𝑥𝑓 , 𝑥𝑠)�̂�(𝑥𝑓 ,∞|𝑥), (A.)

which gives a set of algebraic equations, that can be solved much easier than the set
of differential equations generated by Eq. (A.). If the solution of Eq. (A.) cannot be
easily computed because of the size of the system, then an approximation is required.
The probability function �̂�(𝑥𝑓 ,∞|𝑥) is fundamental for the Alg. A., because it is
needed to both calculate the propensities and to update the fast system in Eq. (A.).
Authors in [] show that, it is possible to perform all these operations by knowing
only the first moments of �̂�(𝑥𝑓 ,∞|𝑥).

Authors in [] also show, that the calculation of the slow-scale propensities
𝑎𝑠𝑗 (𝑥𝑠; 𝑥𝑓) in step  can be done straightforwardly. For instance, consider a slow re-
action in which only slow species occur. In such scenario 𝑎𝑠𝑗 (𝑥) is obviously not depen-

dent from 𝑥𝑓 and hence 𝑎𝑠𝑗 (𝑥𝑠; 𝑥𝑓) = 𝑎𝑠𝑗 (𝑥𝑠). The remaining four reactions that can
occur are the following:

𝑆𝑓𝑖
𝑐𝑠𝑗
⎯⎯⎯→ … 𝑎𝑠𝑗 (𝑥) = 𝑐𝑠𝑗𝑥

𝑓
𝑖 , 𝑎𝑠𝑗 (𝑥𝑠; 𝑥𝑓 ) = 𝑐𝑠𝑗 ⟨�̂�

𝑓
𝑖 (∞)⟩, (A.a)

𝑆𝑓𝑖 + 𝑆𝑠𝑖′
𝑐𝑠𝑗
⎯⎯⎯→ … 𝑎𝑠𝑗 (𝑥) = 𝑐𝑠𝑗𝑥

𝑓
𝑖 𝑥𝑠𝑖′ 𝑎𝑠𝑗 (𝑥𝑠; 𝑥𝑓 ) = 𝑐𝑠𝑗𝑥𝑠𝑖′ ⟨�̂�

𝑓
𝑖 (∞)⟩ (A.b)

𝑆𝑓𝑖 + 𝑆
𝑓
𝑖

𝑐𝑠𝑗
⎯⎯⎯→ … 𝑎𝑠𝑗 (𝑥) = 𝑐𝑠𝑗𝑥

𝑓
𝑖 (𝑥

𝑓
𝑖 − ) 𝑎𝑠𝑗 (𝑥𝑠; 𝑥𝑓 ) =


 𝑐

𝑠
𝑗 ⟨�̂�

𝑓
𝑖 (∞) �̂�

𝑓
𝑖 (∞) − ⟩ (A.c)

𝑆𝑓𝑖 + 𝑆
𝑓
𝑖′

𝑐𝑠𝑗
⎯⎯⎯→ … 𝑎𝑠𝑗 (𝑥) = 𝑐𝑠𝑗𝑥

𝑓
𝑖 𝑥

𝑓
𝑖′ 𝑎𝑠𝑗 (𝑥𝑠; 𝑥𝑓 ) = 𝑐𝑠𝑗 ⟨�̂�

𝑓
𝑖 (∞)�̂�

𝑓
𝑖′ (∞)⟩, 𝑖 ≠ 𝑖′, (A.d)

where the average notation ⟨⟩ (see []) is defined as

⟨𝑓(�̂�𝑓
𝑖 (∞))⟩ = 

𝑥𝑓′
�̂�(𝑥𝑓′ ,∞|𝑥𝑓 , 𝑥𝑠)𝑓(𝑥𝑓′ ).
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We refer to the original paper for a more exhaustive description of the steps that lead
to the Alg. A., together with few examples illustrating the steps involving the identi-
fication of �̂�𝑓(𝑡) and the estimation of the first moments of �̂�(𝑥𝑓 ,∞|𝑥).

It is important to remember, that if the system does not met either A. or A., then it
means that the fast reactions affect the system in a way, that it cannot be approximated
as a simple stationary Markov process. In this case the slow-scale approximation should
rather be replaced by the common SSA, as authors in [] strongly emphasize.

A.. Multi-scale stochastic simulation algorithm

The MSSA has been developed along the ssSSA and it appears first in []. MSSA has
a lot in common with the ssSSA, starting with the same definition of the stiff chemi-
cally reacting system given in Def. .. The MSSA assumes that the stochastic partial
equilibrium is quickly reached in the virtual fast process �̂�𝑓(𝑡). Such equilibrium is
told to be partial because it is confined in the time scale of �̂�𝑓(𝑡). In this assumption,
two aspects are considered:

. �̂�𝑓(𝑡) eventually reaches the final equilibrium state �̂�𝑓(∞), with a distribution,
that is not affected by the occurrence of fast reactions, rather than the slow reac-
tions.

. The transient or relaxing time 𝜏𝑟𝑒𝑙𝑎𝑥 (or relaxation period), in which the process
�̂�𝑓(𝑡) converges to �̂�𝑓(∞), is negligible, if compared to the time in which a
slow reaction should occur. When the partial equilibrium is reached, then will
hold

�̂�𝑓(𝑡) ≈ �̂�𝑓(𝑡 + 𝜏𝑟𝑒𝑙𝑎𝑥) ≈ �̂�𝑓(∞), (A.)

where both �̂�𝑓(𝑡) and �̂�𝑓(𝑡 + 𝜏𝑟𝑒𝑙𝑎𝑥) can be thought as independent random
variables.

These two aspects are in a way equivalent to the ssSSA conditions from Cond. A.
and Cond. A.. MSSA is conceptually similar to the ssSSA. It begins by defining the
following:

This statement can be easily proved by plotting the histogram of a simple process 𝑋(𝑡), from multiple
runs of the ordinary SSA, at different values of 𝑡 and then compare it to the histogram of the system at the
equilibrium, i.e. �̂�(∞).
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𝑃𝑠(𝜏|𝑥𝑓 , 𝑥𝑠, 𝑡), which is the probability that no slow reaction will occur in the
time interval [𝑡, 𝑡 + 𝜏], if 𝑋(𝑡) = (𝑥𝑓 , 𝑥𝑠), and

𝑎𝑠(𝑋) = 𝑎𝑠(𝑥𝑓 , 𝑥𝑠) = ∑
𝑀
𝑗= 𝑎

𝑠
𝑗 (𝑥𝑓 , 𝑥𝑠).

MSSA chooses such time 𝜏 so that no slow reactions will occur. This allows the fast
process𝑋𝑓(𝑡) to be replaced by the virtual �̂�𝑓(𝑡). If at this time the process𝑋𝑓(𝑡) is at
a specific state 𝑥𝑓′ , i.e. 𝑋𝑓(𝜏) = 𝑥𝑓′ then we can define the probability of at least one
reaction occurring in the next infinitesimal time interval [𝜏, 𝜏 + d𝜏] as 𝑎𝑠(𝑥𝑓

′ , 𝑥𝑠)d𝜏.
Its total probability can be defined as

𝐸(𝑎𝑠(𝑋𝑓(𝜏), 𝑥𝑠)|𝑥𝑓 , 𝑥𝑠)d𝜏 = 
𝑥𝑓′
𝑃(𝑋𝑓(𝜏) = 𝑥𝑓′ |𝑥𝑓 , 𝑥𝑠) ⋅ 𝑎𝑠(𝑥𝑓

′ , 𝑥𝑠)d𝜏, (A.)

where 𝐸(𝑎𝑠(𝑋𝑓 , 𝑥𝑠)|𝑥𝑓 , 𝑥𝑠) denotes the conditional mean of the slow propensity func-
tions over all the fast states 𝑥𝑓′ (or equivalently over all the fast reactions), if 𝑋(𝑡) =
(𝑥𝑓 , 𝑥𝑠). Here, the notation of the total probability with the mean 𝐸(𝑎𝑠(𝑋𝑓 , 𝑥𝑠)|𝑥𝑓 , 𝑥𝑠)
is intentional. 𝑃(𝑋𝑓(𝜏) = 𝑥𝑓′ |𝑥𝑓 , 𝑥𝑠) instead denotes the conditional probability of
the fast process 𝑋𝑓(𝑡) being in the state 𝑥𝑓′ , as well if 𝑋(𝑡) = (𝑥𝑓 , 𝑥𝑠).

Similarly as in the case of the original SSA, it is possible to define the probability
𝑃𝑠(𝜏|𝑥𝑓 , 𝑥𝑠, 𝑡) with the aim of an infinitesimal equation. Consider the scenario in
which in the next infinitesimal time interval [𝜏, 𝜏 + d𝜏] at most one slow reaction can
occur. This means that the total probability that no slow reaction will occur, in the
time frame [𝑡 + 𝜏, 𝑡 + 𝜏 + d𝜏], i.e. 𝑃𝑠(𝜏 + d𝜏|𝑥𝑓 , 𝑥𝑠, 𝑡), is given by the product of the
probability that no slow reaction has occurred till the beginning of this time interval,
and the probability that no slow reaction will occur in the time frame [𝜏, 𝜏 + d𝜏]:

𝑃𝑠(𝜏 + d𝜏|𝑥𝑓 , 𝑥𝑠, 𝑡) = 𝑃𝑠(𝜏|𝑥𝑓 , 𝑥𝑠, 𝑡) ⋅ 1 − 𝐸(𝑎𝑠(𝑋𝑓(𝜏), 𝑥𝑠)|𝑥𝑓 , 𝑥𝑠)d𝜏 . (A.)

Eq. (A.) can be solved similarly as in Eq. (.) as follows:
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𝑃𝑠(𝜏 + d𝜏|𝑥𝑓 , 𝑥𝑠, 𝑡) − 𝑃𝑠(𝜏|𝑥𝑓 , 𝑥𝑠, 𝑡)
d𝑡 = −𝐸(𝑎𝑠(𝑋𝑓(𝜏), 𝑥𝑠)|𝑥𝑓 , 𝑥𝑠) 𝑃𝑠(𝜏|𝑥𝑓 , 𝑥𝑠, 𝑡)

�̇�𝑠(𝜏|𝑥𝑓 , 𝑥𝑠, 𝑡)
𝑃𝑠(𝜏|𝑥𝑓 , 𝑥𝑠, 𝑡)

= −𝐸(𝑎𝑠(𝑋𝑓(𝜏), 𝑥𝑠)|𝑥𝑓 , 𝑥𝑠)

ln 𝑃𝑠(𝜏|𝑥𝑓 , 𝑥𝑠, 𝑡) = −
𝑡+𝜏

𝑡
𝐸(𝑎𝑠(𝑋𝑓(𝜇), 𝑥𝑠)|𝑥𝑓 , 𝑥𝑠)d𝜇

𝑃𝑠(𝜏|𝑥𝑓 , 𝑥𝑠, 𝑡) = e
−∫𝑡+𝜏

𝑡
𝐸(𝑎𝑠(𝑋𝑓 (𝜇),𝑥𝑠)|𝑥𝑓 ,𝑥𝑠)𝜇.

(A.)

By defining the probability density function 𝑝(𝜏, 𝑗|𝑥𝑓 , 𝑥𝑠, 𝑡), the expression

𝑝(𝜏, 𝑗|𝑥𝑓 , 𝑥𝑠, 𝑡)d𝜏

denotes the probability that a slow reaction 𝑅𝑠𝑗 will occur in the next infinitesimal time
interval [𝑡 + 𝜏, 𝑡 + 𝜏 + d𝜏], given 𝑋(𝑡) = (𝑥𝑓 , 𝑥𝑠). Hence it is possible to write

𝑝(𝜏, 𝑗|𝑥𝑓 , 𝑥𝑠, 𝑡) = 𝐸(𝑎𝑠𝑗 (𝑋𝑓(𝜏), 𝑥𝑠)|𝑥𝑓 , 𝑥𝑠) ⋅ 𝑃𝑠(𝜏|𝑥𝑓 , 𝑥𝑠, 𝑡). (A.)

If the stochastic partial equilibrium assumption is applied to Eq. (A.), i.e. 𝜏 <<
𝜏𝑟𝑒𝑙𝑎𝑥 and 𝑋𝑓(𝜏) ≈ �̂�𝑓(∞), Eq. (A.) leads to

𝑝(𝜏, 𝑗|𝑥𝑓 , 𝑥𝑠, 𝑡) = 𝐸(𝑎𝑠𝑗 (�̂�𝑓(∞), 𝑥𝑠)|𝑥𝑓 , 𝑥𝑠) ⋅ e−𝜏𝐸(𝑎𝑠(�̂�𝑓 (∞),𝑥𝑠)|𝑥𝑓 ,𝑥𝑠). (A.)

The MSSA is based on Eq. (A.), by applying the stochastic partial equilibrium to the
fast process �̂�𝑓(𝑡). The notation above could be simplified as

𝑎𝑠𝑗 (𝑥𝑠) = 𝐸(𝑎𝑠𝑗 (�̂�𝑓(∞), 𝑥𝑠)|𝑥𝑓 , 𝑥𝑠),

𝑎𝑠(𝑥𝑠) =
𝑀

𝑗=
𝑎𝑠𝑗 (𝑥𝑠),

𝑃(𝜏|𝑥𝑓 , 𝑥𝑠, 𝑡) = e−𝑎
𝑠
(𝑥𝑠)𝜏

(A.)

The algorithm proposed by Cao et al. in [] is depicted in Alg. A..
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Algorithm A.

The multi-scale stochastic simulation algorithm (MSSA) with the stochastic partial equilib-
rium assumption.

Input: a model from the Def. ..

Output: the model responses 𝑥 = 𝑥𝑠 over time 𝑡.

procedure mSSA

. Apply the stochastic partial equilibrium assumption to 𝑋𝑓 (𝑡) and compute �̂�𝑓 (∞).

. Determine all the propensities values 𝑎𝑠𝑗 (𝑥𝑠) and 𝑎𝑠(𝑥𝑠) according to Eq. (A.), for
all 𝑗 = ,… ,𝑀𝑠.

. Monte Carlo step: sample two random numbers 𝑟 and 𝑟 from the interval (, ]
and compute 𝜏 and the index 𝑗 of the next slow reaction to fire, as

𝜏 = 
𝑎𝑠(𝑥𝑠)

 

𝑟
 ,


𝑗

⎧⎪⎪⎨
⎪⎪⎩

𝑗

𝑘=

𝑎𝑠𝑘(𝑥𝑠) ≥ 𝑟𝑎
𝑠
(𝑥𝑠)

⎫⎪⎪⎬
⎪⎪⎭ .

. Record 𝑋(𝑡) and increase the time step 𝑡 ← 𝑡 + 𝜏. Update the system states
𝑥 = 𝑥 + 𝜈𝑗 and go back to step  if 𝑡 < 𝑡𝑚𝑎𝑥.

end procedure

The most difficult task of Alg. A. is step . In order to compute the stochastic partial
equilibrium of the virtual fast process �̂�𝑓 , one has to isolate the fast reactions first and
solve the equilibrium and conservation law equations for the fast reacting system. We
leave the technicalities of derivation of these equations, as well as examples, to [].
On the other hand the propensity functions can be calculated in the same way as in
Eq. (A.).

MSSA can fill the gap of hybrid methods, when the species population are small in
both the reactions time scales, as thoroughly argumented in []. As well as the ssSSA,
also MSSA notably improve the overall performance of the stochastic simulation for
stiff chemically reacting systems.
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A.. Nested stochastic simulation algorithm

The third computational approach that deserved to be shortly described is the nSSA
[]. The nSSA has been developed precisely to resemble the multi-scale dynamics of
chemically reacting systems by simulating, in each separating time scale, the reactions
of the system, without any a priori assumptions about the analytic form of the rate
functions.

The nSSA proposed by E et al. in [] differs substantially from the two previous
described algorithms, i.e. the ssSSA and MSSA proposed by Cao et al. , since the input
model of nSSA does not require to differentiate the species as the slow and fast variables,
but only the reactions, i.e. 𝑅𝑠 = (𝑎𝑠, 𝜈𝑠) and 𝑅𝑓 = (𝑎𝑓 , 𝜈𝑓). The two groups of
reactions are distinguished solely from the propensity functions 𝑎𝑗(𝑥) having different
magnitudes, i.e.

𝑎𝑠(𝑥) = 𝑎𝑠(𝑥), … , 𝑎𝑠𝑀𝑠
 = 𝒪 (1),

𝑎𝑓(𝑥) = 𝑎𝑓 (𝑥), … , 𝑎
𝑓
𝑀𝑓
 = 𝒪 (1/𝜖),

(A.)

where 𝜖 ≪ 1 and the𝒪 notation denotes the size in magnitudes in dimensionless unit.
The nSSA, instead of approximate the process 𝑋(𝑡) with the virtual system �̂�𝑓(𝑡) as

in ssSSA and MSSA, which basically allows to omit entirely the simulation of the fast
reactions, it performs a normal SSA for the slow reactions, while running an inner SSA
for a short time 𝑇𝑓 to compute the fast variables for each step of the outer SSA. The
inner SSA performs the fast reactions 𝑅𝑓(𝑎𝑓 , 𝜈𝑓) only and it is ran in𝑁-independent

replicas. These replicas are then used to average the slow propensities �̃�𝑠𝑗 (𝑥) as

�̃�𝑠𝑗 =
1
𝑁

𝑁

𝑘=

1
𝑇𝑓


𝑇+𝑇𝑓

𝑇
𝑎𝑠𝑗 (𝑥

𝑓
𝑘 (𝜏))d𝜏, (A.)

in which 𝑥𝑘 is the 𝑘-th auxiliary fast process, identical to the virtual fast process �̂�𝑓 , as
defined in the ssSSA and MSSA. The full algorithm is depicted in Alg. A..

Algorithm A.

The nested stochastic simulation algorithm (nSSA).

Here 𝑁 does not denote the same 𝑁 as the number of different chemical species in Def. ..
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Input: a model from the Def. ..

Output: the model responses 𝑥 = 𝑥𝑠 over time 𝑡.

procedure nSSA

. Identify the fast and the slow propensity functions from 𝑅𝑠 = (𝑎𝑠, 𝜈𝑠) and
𝑅𝑓 = (𝑎𝑓 , 𝜈𝑓 ) as in Eq. (A.). Identify the auxiliary fast process 𝑥𝑓 . And set the
current state to the initial state 𝑥.

. Create 𝑁 different “inner” SSA instances of the fast process 𝑥𝑓 from the current
state.

. Run the 𝑁-replicas of the “Inner” SSA for the fast process.

. Determine all the propensities values �̃�𝑠𝑗 according to Eq. (A.), for all
𝑗 = ,… ,𝑀𝑠.

. “Outer” SSA: run one step of the SSA for the slow reactions with the modified slow
propensities �̃�𝑠𝑗 .

. Record the state 𝑥 and increase the time step 𝑡 ← 𝑡 + 𝜏. Update the system states
𝑥 = 𝑥 + 𝜈𝑗 and go back to step  if 𝑡 < 𝑡𝑚𝑎𝑥.

end procedure

The main problem of the Alg. A. is the step . To determine the temporal aver-
ages, one must select such time 𝑇𝑓 and such repetition number 𝑁 in order to provide
meaningful approximation of the quasi-equilibrium that needs to be reached in the
fast auxiliary process 𝑥𝑓 . Authors in [] show that the propensities �̃�𝑠𝑗 , estimated
from Eq. (A.), can very well converge to the average rates, with respect to the quasi-
equilibrium denote by 𝜇𝑦(𝑥) and computed as

𝑎𝑦 = 
𝑥∈𝑋

𝑎𝑗(𝑥)𝜇𝑦(𝑥)

where 𝑦 denotes the slow observable (variable) and 𝑋 is the space of all possible states
𝑥, if 𝑇𝑓 and 𝑁 are chosen based on the relation

𝑁 =
𝑇𝑓
𝜖 = 1

𝜆 , (A.)

for which 𝜆 denotes the error tolerance. We refer to the original paper [] as well
as in the arguments summarized in [, ] for more details regarding the nSSA
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formulation, as well as the full estimation of the time complexity of the Alg. A..
The nSSA has many common foundations with the ssSSA, primarily sharing the

two stiffness conditions. However, the similarity regarding the generality of the nSSA
approach, has been a topic of debate in a correspondence between authors of [, ]
and authors of [], occurred as a sequence of comments over the same papers (see
[] and [] for further details).

A. Additional notes

A.. Alternative parameter sensitivities definitions

Here we give a more detail presentation of the alternative response value measures
used in the Morris elementary effects for computing the parameter sensitivities that we
introduced in section ... More specifically, we present here an alternative measure,
based on the Fourier coefficients of the Fourier series, which is used to approximate
the output signal of the model, in the scenario where it shows an oscillatory behaviour.

A.. The Fourier series approximation

With a Fourier series function approximation one can provide a time independent value
for the response function 𝑦[𝑛] used to compute the elementary effects. One can use
the estimates of the first components of the discrete Fourier series (DFS) approximation
of 𝑦(x), as suggested in []. Such methodology can be also integrated with other
structural properties of the nonlinear or oscillatory response function, such as the main
frequency, the local extrema [] and the phase [].

The Fourier series of 𝑦(x) can be computed as

𝑦(𝑡) ≈ ℱ𝑁 (𝑡) =
𝑎
2 +

𝑁

𝑛=

(𝑎𝑛 cos(𝑛𝜔𝑡) + 𝑏𝑛 sin(𝑛𝜔𝑡)) , (A.)

where𝑁 is the number of desired harmonics (a maximum of  are allowed in Matlab®),
𝜔 = 𝜋

𝑇
, 𝑇 is the base period of the function 𝑦, and where the coefficients 𝑎𝑛 and 𝑏𝑛
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are defined as

𝑎𝑛 =
2
𝑇


𝑡+𝑇

𝑡
𝑦(𝑡) cos(𝑛𝜔𝑡) d𝑡

𝑏𝑛 =
2
𝑇


𝑡+𝑇

𝑡
𝑦(𝑡) sin(𝑛𝜔𝑡) d𝑡

(A.)

In a scenario where the function 𝑦 is a discrete time signal 𝑦[𝑛], the Fourier series from
Eq. (A.) can be rewritten as

𝑦[𝑛] ≈ 𝑥[𝑛] =
𝑁−

𝑘=

𝑎𝑘e 𝑖𝑘𝜔𝑛, (A.)

in which the coefficients 𝑎𝑘 are defined as

𝑎𝑘 =
1
𝑁

𝑁−

𝑛=

𝑥[𝑛]e−𝑖𝑘𝜔𝑛. (A.)

where 𝑖 is the imaginary unit √−1. By using a model response representation as per Eq.
(A.) or Eq. (A.) it is possible to apply the Morris method even for non-monotonic
responses, as we will show in the next sections.

A.. The average and the median of Fourier coefficients

The average of the principal frequency 𝑓𝑦(x) (and so the average amplitude 𝑎𝑦(x) and
the average period 𝑝𝑦(x)) of the response 𝑦 provides a robust scalar value for assessing
the elementary effects in a scenario where the function 𝑦 behaves in an oscillatory
manner. However, there might be some occasions in which the function 𝑦 may not
necessarily exhibit a full period of oscillation during the entire simulation time frame.
In such scenario, the average frequency approach may fail to describe correctly the
nature of the function 𝑦. In order to overcome this shortcoming we propose instead to
perform a Fourier series approximation of the function 𝑦, and refer to the coefficients
𝑎𝑛 and 𝑏𝑛 as possible alternatives for the scalar value representing the response function
𝑦.

Let’s considered to be ℱ𝑁𝑠 (𝑦) the Fourier series approximation of the output re-



 A Appendices Mattia Petroni

sponse 𝑦[𝑛], i.e.

𝑦[𝑛] ≈ ℱ𝑁𝑠 (𝑦) =
𝑎
2 +

𝑁𝑠

𝑙=
(𝑎𝑛 cos(𝑙𝜔𝑛) + 𝑏𝑛 sin(𝑙𝜔𝑛)) , (A.)

similarly as in Eq. (A.). By applying Eq. (A.) over the matrix Y we obtain

ℱ𝑁𝑠 (Y) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ℱ𝑁𝑠 (𝑦)
ℱ𝑁𝑠 (𝑦)

⋮
ℱ𝑁𝑠 (𝑦𝑀)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (A.)

By computing the matrix ℱ𝑁𝑠 , we can derive a matrix containing all the Fourier coef-
ficients 𝑎𝑛, 𝑏𝑛 and 𝜔 of all the 𝑀 responses

Cℱ (Y) = Cℱ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑎, 𝑎, … 𝑎𝑁𝑠 , 𝑏, … 𝑏𝑁𝑠 , 𝜔
𝑎, 𝑎, … 𝑎𝑁𝑠 , 𝑏, … 𝑏𝑁𝑠 , 𝜔

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

𝑎,𝑀 𝑎,𝑀 … 𝑎𝑁𝑠 ,𝑀 𝑏,𝑀 … 𝑏𝑁𝑠 ,𝑀 𝜔𝑀

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (A.)

The average values of Cℱ are denoted by

Cℱ = 𝑎, 𝑎, … 𝑎𝑁𝑠 , 𝑏, … 𝑏𝑁𝑠 , 𝜔 , (A.)

while the median value of Cℱ are

�̂�ℱ = �̂�, �̂�, … �̂�𝑁𝑠 , �̂�, … �̂�𝑁𝑠 , �̂� , (A.)

where

𝑎𝑗 =
1
𝑀

𝑀

𝑘=

𝑎𝑗,𝑘, 𝑗 = 0..𝑁𝑠, (A.)
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𝑏𝑗 =
1
𝑀

𝑀

𝑘=

𝑏𝑗,𝑘, 𝑗 = 1..𝑁𝑠, (A.)

𝜔 = 1
𝑀

𝑀

𝑘=

𝜔𝑘, (A.)

and

�̂�𝑗 =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

𝑐𝑗,𝑘 where 𝑘 = 𝑀− , if 𝑀 is odd


 𝑐𝑗,𝑘′ + 𝑐𝑗,𝑘″ where 𝑘′ = 𝑀 , 𝑘

″ = 𝑀 + 1, if 𝑀 is even

(A.)

where 𝑐𝑗 is one of the following value: 𝑎𝑗, 𝑏𝑗 or 𝜔. We can use any of the values in
Cℱ or in �̂�ℱ as an alternative value to the average of the principal frequencies 𝑓𝑦(x)
for computing the elementary effects as per Eq. (.). Therefore, by computing the
elementary effects

𝑑
Cℱ (Y(x))
𝑖 =

Cℱ (Y(x+𝑖)) −Cℱ (Y(x))
Δ (A.)

and

𝑑�̂�ℱ (Y(x))
𝑖 =

�̂�ℱ (Y(x+𝑖)) − �̂�ℱ (Y(x))
Δ , (A.)

we can obtain the parameter sensitivities for the 𝑖-th input of the model, for each of
the Fourier series coefficient, as

𝜇∗𝑖 Cℱ  =
1
𝑟

𝑟

𝑙=
𝑑

Cℱ Y(x𝑙 )
𝑖 ,

𝜎𝑖 Cℱ  =


⃓
⃓
⃓⃓

⎷

∑𝑟
𝑙=

⎛
⎜⎜⎜⎜⎝𝑑

Cℱ Y(x𝑙 )
𝑖 − 𝜇𝑖

⎞
⎟⎟⎟⎟⎠



𝑟 ,

(A.)
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where

𝜇𝑖 =
1
𝑟

𝑟

𝑙=
𝑑
Cℱ Y(x𝑙 )
𝑖 .

The same statistics can be obtained with the median values �̂�ℱ as

𝜇∗𝑖 �̂�ℱ  =
1
𝑟

𝑟

𝑙=
𝑑
�̂�ℱ Y(x𝑙 )
𝑖 ,

𝜎𝑖 �̂�ℱ  =


⃓
⃓
⃓
⎷

∑𝑟
𝑙= 𝑑

�̂�ℱ Y(x𝑙 )
𝑖 − 𝜇𝑖



𝑟 ,

(A.)

where

𝜇𝑖 =
1
𝑟

𝑟

𝑙=
𝑑
�̂�ℱ Y(x𝑙 )
𝑖 .

These statistics are vectors of the form:

𝜇∗𝑖 Cℱ (Y) = 𝜇∗𝑖 (𝑎) , 𝜇∗𝑖 (𝑎) , … , 𝜇∗𝑖 𝑎𝑁𝑠 , 𝜇
∗
𝑖 𝑏 , … , 𝜇∗𝑖 𝑏𝑁𝑠 , 𝜇

∗
𝑖 (𝜔) ,

𝜎𝑖 Cℱ (Y) = 𝜎𝑖 (𝑎) , 𝜎𝑖 (𝑎) , … , 𝜎𝑖 𝑎𝑁𝑠 , 𝜎𝑖 𝑏 , … , 𝜎𝑖 𝑏𝑁𝑠 , 𝜎𝑖 (𝜔) ,

𝜇∗𝑖 �̂�ℱ (Y) = 𝜇∗𝑖 (�̂�) , 𝜇∗𝑖 (�̂�) , … , 𝜇∗𝑖 �̂�𝑁𝑠 , 𝜇
∗
𝑖 �̂� , … , 𝜇∗𝑖 �̂�𝑁𝑠 , 𝜇

∗
𝑖 (�̂�) ,

𝜎𝑖 �̂�ℱ (Y) = 𝜎𝑖 (�̂�) , 𝜎𝑖 (�̂�) , … , 𝜎𝑖 �̂�𝑁𝑠 , 𝜎𝑖 �̂� , … , 𝜎𝑖 �̂�𝑁𝑠 , 𝜎𝑖 (�̂�) .

Being 𝑎 the leading coefficient of the Fourier series, then an obvious choice for pa-
rameter sensitivities, would be the statistics:

𝜇∗𝑖 (𝑎) , 𝜎𝑖 (𝑎) and 𝜇∗𝑖 (�̂�) , 𝜎𝑖 (�̂�) . (A.)

The main benefit of such approach is that we can efficiently deal also with model out-
put responses that exhibits only a partial oscillatory behaviour. In such scenarios the
main component of the frequency spectrum, will not be a reliable representative scalar
value of the response function. The Fourier series approximation however, will be
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able to fit accurately the discrete-time points of the output response function. Having
available both the mean and median statistics, as representative scalars of the model
response function, allows to avoid the possible bias that can be generated from the
computation of the means in Eq. (A.). It can occur a scenario where a Fourier series
coefficient differs from the others 𝑀 − 1 coefficients in the same column, by several
orders of magnitude. Such large deviation is known as a skewed value. The mean of
these coefficients would be therefore heavily biased by this value. The median value
instead helps us to avoid the influence of such skewed value by providing instead an-
other value that represents more solidly the most typical occurring coefficient in the
Fourier series approximations of the matrix Y. Furthermore, the same Fourier series
approximations that we derived for the matrix Y, can be also applied for the binding
gradients responses defined within the matrix G from Eq. (.).

A. ParMSSA: a simulator engine for parallel multi-scale stochas-
tic simulations and sensitivity analysis

The sensitivity analysis based on the Morris experiment usually requires several evalua-
tions of the model response for different sets of input parameters. When a deterministic
simulations are applied to obtain the response of the model [], the computational
expensiveness of the Morris sensitivity analysis is bounded by:

the size of the parameters space, that has to be sampled in order to evaluate the
elementary effects, and by

the expensiveness of the model simulation.

Stochastic analysis requires to perform multiple simulation runs of the same configura-
tions, in order to construct a probability distribution of the chemical master equation
(CME). It is vital to ensure that the stochastic algorithm returns the model’s response
quickly, so:

one can perform multiple simulations runs faster, making the results statistically
significant,

the Morris method can perform the sensitivity analysis efficiently and in a rea-
sonable amount of time.
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Since both the SSA and the DMSSA are notoriously hard to parallelise, we explore the
possibility to perform multiple independent simulations at once, by exploiting coarse-
grained parallelism in modern computer hardware.

A.. Accelerating stochastic simulations

The use of parallel programming for performing large number of stochastic simula-
tions in systems biology is not new and several successful attempts can be found in
the literature [–]. In fact, parallelisation has become a standard practice as a
way to speed-up the simulations in systems biology. In the last decade three different
computer platforms were exploited for this task: the computer cluster, the multi-core
CPU , and the many-core general purpose graphic processing unit (GPGPU).

For each of them, several application programming interfaces (APIs) were developed,
mostly for the C and C++ languages, in order to make the integration with already
existing code easier. These APIs usually offer a high level of abstraction, so the de-
velopers do not need to know the basic machine operations that lie behind the API.
However in some parallel platforms, a certain user control is often required, such as in
the case of the computer cluster, where the communication between the machines has
to be properly configured. This and other problems have lead to the development of
protocols for data communication in distributed memory systems.

Parallelisation for computer clusters

In a computer cluster, Message Passing Interface (MPI) is commonly used to exploit
the processing power of multiple computer systems at the same time [, ]. The
MPI is a de-facto standard used for communication between parallel jobs running on
a distributed machine or cluster. It is based on the message passing technique for
asynchronous data communication. The C/C++ implementation of this standard pro-
vides an API which enables in-program communication between multiple simulation
instances scattered throughout the cluster. With MPI one can target each computer
in the cluster to perform one or more parallel instances of the task. With the MPI,
multiple simulations can be performed on a distributed system, which may contain

However we may accelerate the DMSSA by accelerating the SSA core by using faster methods than DM.
For instance, significant improvements can be achieved by using the logarithmic direct method (LDM) or the
tau-leaping method instead.
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from a dozen to hundred of machines [–]. We refer to [] for a more detail
overview and examples of the MPI programming.

Parallelisation for multi-core systems

In the multi-core system one can exploit the ability to simultaneously perform as many
simulations as is the number of cores that are available in the CPU. The API that is
suited for this task is called Open Multi-Processing (OpenMP), which is today one of
the most largely used API for exploiting parallel computation in multi-core systems.
OpenMP provides an efficient way of utilization of multiple cores of modern proces-
sors. More specifically it helps to parallelise loops and blocks of code which may share
specific memory contents. More details about OpenMP specifications and program-
ming can be found in [, ]. In systems biology one may find OpenMP useful
in the context of accelerating those parts of the simulation that can be parallelised
[, ]. Tian et al. show that the OpenMP can be exploited to perform multiple
SSA steps at once and hence reduce the computation expensiveness of running multiple
stochastic simulations [].

Nowadays it is common to combine both OpenMP and MPI together in a hybrid
fashion [, ]. This provides a powerful technique to improve the computation on
a cluster, since each run can further exploit multi-core architecture via OpenMP. Such
optimizations can be indeed applied to improve performances in stochastic simulations
[] as well as in a variety of systems biology models [, ].

Parallelisation for GPGPU and many-core accelerators

The third computer system that can be exploited for parallelisation tasks is the gen-
eral purpose graphic processing unit (GPGPU). A modern GPGPU is usually composed
of several multi-processors. Each one contains tens (or hundreds) of small process-
ing units, optimized for single instruction multiple data (SIMD) processing (see the
schematic examples in []). The first examples of this architecture were developed
in the early ’, mainly for the need to accelerate the graphical pipeline used for
rendering three dimensional (D) objects in the context of computer graphics.

By using specific APIs, this computing resource can be used for general purpose com-
puting. The two most widely used APIs for GPGPU programming are: the Nvidia’s

Compute Unified Device Architecture (CUDA™) [] and Open Computing Language

Nvidia© is one of the major GPU manufacturer.
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(OpenCL™) []. Both APIs contain programming libraries that help developers to
build parallel applications capable to exploit both fine and coarse-grain parallelisation
on GPGPUs. Parallel applications built with CUDA or OpenCL can make use of sev-
eral hundred of parallel threads that can perform an identical task, usually called kernels,
over a great amount of data (as in the SIMD processing). Therefore, algorithms suited
for a SIMD architecture can benefit from a GPGPU implementation. Even though
performance benchmarks commonly reward CUDA as a slightly faster API [], both
APIs are regarded as equivalent standards for parallel programming. However program-
ming with GPGPU usually requires deep knowledge of the hardware specifics, espe-
cially the memory hierarchy. In fact, one of the main things that the developers must
be aware of, is that they should minimize the memory access when using the data stored
in the device’s main memory. A single access to the main memory usually results in
big latencies. This creates a lag, which can diminish the performance benefits of the
GPGPU parallelism []. Moreover, mastering the GPGPU programming usually
requires time, since there are several differences in the way algorithms are developed
for GPGPU in respect to the common CPUs (see examples in []). Anyway, the
effort made for programming GPGPU usually pays off and today this has become a de
facto standard for accelerating computation in a wide range of scientific fields []. In
systems biology the GPGPUs provide a suitable platform for accelerating simulations
[].

A similar computer system that is largely used for parallel computing, with similar
SIMD computation properties, is the many-core accelerator, such as the Intel© Xeon
Phi™ [–] which has become a powerful computing platform used for a wide
range of massive scientific computations []. Here we refer to [] for an overview
of the algorithms suited for SIMD architectures and to [] for a recent comparisons
of scientific applications running on the many-core and GPGPU systems.

The GPGPUs and the many-core accelerators can be extensively used to perform
massive stochastic simulations. Li and Petzold [], Komarov and D’Souza []
and Nobile et al. [] show that multiple runs of stochastic simulations can be effi-
ciently implemented on a GPGPU, either using SSA or 𝜏-leaping algorithm. However
all of the current SSA and 𝜏-leaping implementations for the GPGPU are made for
single scale simulations only, and since the memory on the GPGPU usually can ac-
commodate limited model sizes, the cost for performing large size SSA simulations

The device’s main memory is usually referred as the global memory.



Computational methodology for enhanced sensitivity analysis of gene regulatory networks 

on a GPGPU can be very high. In the case of DMSSA this cost increases even more.
DMSSA requires nested SSA simulations, in order to calculate the concentration of
chemical species involved in the fast reactions. These concentrations are then applied
to the species engaging in the slow reactions of the outermost SSA. Implementing such
nested procedure in a single kernel, may result in a poorly optimized SIMD program,
and hence a low exploitation of the GPGPU parallelism is expected. Therefore, such
implementation is much more suitable for a multi-core CPU platform.

For the purpose of multiple multi-scale stochastic simulations evaluation, we de-
velop a simulator engine named ParMSSA in which the DMSSA algorithm is imple-
mented on an OpenCL platform, which performs multiple simulations in parallel. The
ParMSSA was built to target the multi-core CPU platforms in order to exploit the ben-
efits of today fast multi-core processors.

A.. The ParMSSA engine

We developed ParMSSA, short for parallel multi-scale stochastic simulation algorithm,
a command line OpenCL engine written in C++, aimed for performing parallel sto-
chastic simulations of gene regulatory networks that contain multiple non-cooperative
TFBSs.

We decided to opt for OpenCL because of its portability to all types of parallel archi-
tectures: multi-core CPUs, GPGPUs and computing accelerators. However, writing
an optimal OpenCL code, that will optimally run and exploit all the beneficial prop-
erties in all three parallel systems, is a hard task. Each of these parallel systems has a
different memory organization that requires different type of optimizations.
ParMSSA contains a simulation engine which implements the DMSSA on a single

OpenCL kernel. This kernel can be executed in parallel over multiple processing cores.
Moreover, ParMSSA can also perform the Morris sensitivity analysis described in chap-
ter , which requires to perform a large amount of simulations in order to calculate the
elementary effects.

Implementation

ParMSSA is an object oriented application, built with the aim to be the foundation of
a modular simulation framework for multi-scale systems and synthetic biology models.
The engine implements the following functionalities:

a model descriptor,
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the DMSSA engine and

the Morris screening experiment (MSE).

The first functionality is responsible to parse the input data and to provide the necessary
data structures to the DMSSA engine. The DMSSA engine provides a framework for
performing large multi-scale simulations in parallel. The MSE instead consists of a set
of functionalities aimed to ease the execution of the Morris sensitivity analysis.

Model descriptor

The model descriptor roughly consists of two mark-up language parsers that enable
external user definitions of the model input data needed by ParMSSA to perform the
stochastic simulations. A parser is available for importing and exporting the model
data formatted with SBML (Systems Biology Markup Language) or YAML (Yet-Another
Markup Language) format. Making the engine compliant with the SBML standard by
using its API [, ], guarantees portability of model definition and description
between already existing tools, such as Matlab® Simbiology [] and Copasi [].
The input data formatting and model definitions, as well as a quick starting guide of
the ParMSSA are fully documented in section A..

DMSSA engine

The second functionality and the core of the ParMSSA engine is the DMSSA, which is
implemented as an OpenCL kernel, and therefore able to be executed on any OpenCL
platform. DMSSA engine is used both for independent model simulations and for
performing model’s evaluations in the Morris screening experiment.

The OpenCL kernel is optimized for running on multi-core CPUs or on many-core
accelerators. The kernel itself is an example of coarse-grain parallelisation, because
of the intrinsic independence of multiple DMSSA simulations. However, the opti-
mization for GPGPU resulted to be impractical, due to the DMSSA data structures’
requirements for large space of global memory with fast random access. Some of the
main data structures, such as the binding-site matrix, were successfully optimized in

http://sbml.org/Software/libSBML/docs/cpp-api/
A full list of SBML compliant softwares is available at: http://sbml.org/SBML_Software_Guide/

SBML_Software_Summary

http://sbml.org/Software/libSBML/docs/cpp-api/
http://sbml.org/SBML_Software_Guide/SBML_Software_Summary
http://sbml.org/SBML_Software_Guide/SBML_Software_Summary
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order to minimize the data structure size in the device main memory. Also, the binding-
site operations were optimized and reduced as fast bitwise shift logical operations, thus
increasing the speed of the inner SSA, i.e. the bseSSA. The OpenCL implementation
of DMSSA can highly benefit from caching and automatic vectorization — the first
property is already available in all modern general purpose CPUs, whereas the auto-
matic vectorization is a powerful functionality available in high-end compilers. Some
suitable platforms for ParMSSA are therefore multi-core CPUs and many-core accel-
erators, such as the Intel© Xeon™ Phi.

The OpenCL kernel relies on a variety of data structures that have to be defined
and initialized in the main memory before the kernel can be fired. For this task the
C++ framework, built around the OpenCL kernel, contains a data interface adapter,
called MssaEngineDataAdapter, which provides an efficient translation of the model
data into a class of ordered data structures that fit all the requirements of the OpenCL
kernel arguments. When these engine data structures are defined also the initial values
of all the species and parameter vectors are assigned. At the same time the engine
also retrieves the parameters and constraints, such as the maximum number of parallel
threads that the user defined and provided in the configuration file.

When the kernel is fired for multiple simulation instances, each thread accesses its
own part (or a copy) of the data structures. This is a typical property of the OpenCL
programming. The memory concurrent access provided by the OpenCL runtime
ensures that these accesses can be executed independently. This means that, when
an argument in the Alg. . is a vector, in the OpenCL kernel implementation the
same argument should be a vector of vectors, i.e. a matrix. Each thread is therefore
designed to access one vector (column) per matrix, independently of other threads.
This of course is necessary when a thread needs to change the content of its vector.
For data structures that are read only, there is no need to enlarge the vector arguments
to matrices. The DMSSA’s slow and fast parameters vectors k𝑠 and k𝑓 are typical

One of the advantages of running OpenCL on multi-core CPUs is the availability of the in-host-memory
buffer allocation via the OpenCL directive CL_MEM_USE_HOST_PTR, which allows besides all, direct data struc-
tures sharing between the kernel and the host’s code in the same physical memory.

The same statement also holds for CUDA programming.
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examples:

k𝑠 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑘𝑠
𝑘𝑠
⋮
𝑘𝑠𝑚𝑠

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⊺

, k𝑓 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑘𝑓
𝑘𝑓
⋮
𝑘𝑓𝑚𝑓

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⊺

. (A.)

Both parameter vectors values are shared between all the OpenCL threads, due to the
concurrent access that OpenCL runtime provides for constant data structures in the
OpenCL device memory. The thing is quite different however in the case of vectors of
slow and fast species. These vectors represent the system’s state and contain values that
will be often changed by the DMSSA. Thus these vectors should not be stored in the
constant section of the OpenCL device memory. Given 𝑁 threads, the vector of slow
species x𝑠𝑖 (and similarly fast species vector x𝑓𝑖 ) used in thread 𝑖 is stored in the matrix
of species X𝑠 in the following way:

X𝑠 = x𝑠,x
𝑠
, … ,x

𝑠
𝑖 , … ,x

𝑠
𝑁  , (A.)

where x𝑠, x
𝑠
,… , x𝑠𝑁 are column vectors of size 𝑚𝑠 of the form:

x𝑠𝑖 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑥𝑠𝑖
𝑥𝑠𝑖
⋮

𝑥𝑠𝑚𝑠𝑖

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (A.)

Hence, a collection of all supporting data structures needed by the DMSSA algorithm
should be provided, together with the number of threads. Here we can find the binding-
site matrices, the propensity functions supporting vectors and several other DMSSA
related data structures. We refer directly to the ParMSSA’s source code documentation
for more details regarding these arguments. One will probably argue why this data
adaptation task cannot be achieved already in the descriptor procedure, since after the
parsers load the data from the input files, all the required information is available for
constructing the data structures needed by the DMSSA. We decided to keep the raw
data available for any tools of the engine, so that each simulation engine can adapt this
data for its own use through its own data adapter. This choice ensures modularity and
independence between engines that may be developed in the future. We will see later
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on, that also the Morris experiment needs such an adapter. The data adapter therefore
provides all the properly formatted data necessary for the execution of the engine’s
OpenCL kernel.

The OpenCL kernel accepts also different types of activation rules for establishing
the promoters activation or inhibition state when the bseSSA procedure of the DMSSA
is simulating the transcription factors binding over the binding-site matrix (see section
. for more details). We described in the previous chapters that in the case of pro-
moters with multiple non-cooperative TFBSs the dynamics of their activation can pro-
foundly affect the final response of the system. Since these rules cannot be generalized
over all known models containing multiple non-cooperative TFBSs, the application of
these rules has to be customized outside the OpenCL kernel, with the help of simple
external headers directives.

DMSSA engine accepts also custom increase or decrease of a species’ concentra-
tion at specific simulation time, in order to simulate perturbations of a specific species
concentration in the simulated environment. As in the case of activation rules, such
changes are also restricted to simple custom directives in external headers used by the
OpenCL kernel during the preprocessing time.

Morris screening experiment

The third part of the ParMSSA code implements the Morris’s screening experiment
(MSE), which integrates both of the previous two parts. In order to calculate a simple
elementary effect, at least two evaluations of the model response have to be performed:
one with unmodified parameters and another with only one parameter modified by the
factor Δ, see Eq. (.). For this reason, MSE is designed to run two (or more) parallel
threads of DMSSA with a different value of a simple model’s parameter. In short,
given 𝑛 model parameters, MSE configures the DMSSA engine to set 𝑛 consecutive
threads, each of which differs from previous by only one parameter, Each thread is
then cloned 𝑢-times and executed in parallel. Here we would like to remind that
running 𝑢 identical parallel threads (or repeating it 𝑢 times) with the same parameter
configuration is necessary, if one wants to obtain statistical valid simulations.

Given 𝑛 threads, or 𝑛 computing units, we would like to perform on each thread a
DMSSA simulation with different values of the input parameters. We can thus store
the vector of reactions’ parameters k𝑠𝑖 , such as the one defined in Eq. (A.) used in
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thread 𝑖, in the matrix of parameters K𝑠 in the following way:

K𝑠 = k𝑠,k
𝑠
, … ,k

𝑠
𝑖 , … ,k

𝑠
𝑛 , (A.)

where k𝑠, k
𝑠
,… , k𝑠𝑛 are column vectors of size 𝑚𝑠 of the form:

k𝑠𝑖 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑘𝑠𝑖
𝑘𝑠𝑖
⋮
𝑘𝑠𝑚𝑠𝑖

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (A.)

Each element 𝑘𝑠𝑗𝑖, 𝑗 = 1, 2, … ,𝑚𝑠, represents the kinetic rate constant of the 𝑗-th slow
reaction of the simulation running on the 𝑖-th thread. Similarly this definition holds
also for the vector of fast reactions’ parameters k𝑓𝑖 and for the matrix of fast reactions’
parameters

K𝑓 = k𝑓 ,k
𝑓
 , … ,k

𝑓
𝑖 , … ,k

𝑓
𝑛 , (A.)

where k𝑓 , k𝑓 ,… , k𝑓𝑛 are column vectors of size 𝑚𝑓 of the form:

k
𝑓
𝑖 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑘𝑓𝑖
𝑘𝑓𝑖
⋮

𝑘𝑓𝑚𝑓 𝑖

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (A.)

In the same way we can also define the slow and fast species concentrations vectors
X𝑠 and X𝑓 (see Eq. (A.)). When running the Morris experiment however, as we
mentioned above, 𝑢 simulations with identical set of parameters are required to be
performed. This means that the matrix K𝑠 (or similarly K𝑓 ) has to be stretched out
as follow:

K𝑠 =  k𝑠,k
𝑠
, … ,k

𝑠


the first 𝑢 parallel
threads run the same
set of slow reaction’s

parameters k𝑠


, k𝑠,k
𝑠
, … ,k

𝑠


the next 𝑢 parallel
threads run the same
set of slow reaction’s

parameters k𝑠


, … , k𝑠𝑛,k𝑠𝑛, … ,k𝑠𝑛
the last 𝑢 parallel
threads run the

set of slow reaction’s
parameters k𝑠

𝑛

. (A.)
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The matrix of parameters K𝑠 with size𝑚 ⋅𝑛 from Eq. (A.) is in Eq. (A.) stretched
to the size 𝑚 ⋅ 𝑁 , where 𝑁 = 𝑛 ⋅ 𝑢, and each k𝑠𝑖 from Eq. (A.) is cloned 𝑢-times.
Hence the overall number of parallel threads that should be executed at once totals 𝑁 .

Generally all the elements of K𝑠, indexed with 𝑖 = 1, 2, … ,𝑁 can be defined as

k𝑠𝑖+ = k𝑠𝑖 + 𝛿
𝑠
𝑖 , (A.)

where

k𝑠𝑖 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑘𝑠𝑖
𝑘𝑠𝑖
⋮
𝑘𝑠𝑗𝑖
⋮
𝑘𝑠𝑚𝑖

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, 𝛿𝑠𝑖 =

⎧⎪⎪⎨
⎪⎪⎩

[0, 0, … , Δ𝑠𝑗, … , 0]
⊺, if (𝑖 + 1) mod 𝑢 = 1

[0, 0, … , 0, … , 0]⊺, otherwise
.

A similar definition can be also derived for the parameters K𝑓 as we can write

k
𝑓
𝑖+ = k

𝑓
𝑖 + 𝛿

𝑓
𝑖 , (A.)

where

k
𝑓
𝑖 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑘𝑓𝑖
𝑘𝑓𝑖
⋮
𝑘𝑓𝑗𝑖
⋮
𝑘𝑓𝑚𝑖

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, 𝛿𝑓𝑖 =

⎧⎪⎪⎨
⎪⎪⎩

[0, 0, … , Δ𝑓𝑗 , … , 0]
⊺
, if (𝑖 + 1) mod 𝑢 = 1

[0, 0, … , 0, … , 0]⊺, otherwise
.

These definitions of K affect directly the format and size of data structures arguments
of the DMSSA engine. For this reason a data adapter is needed for arranging the
definitions depicted in Eq. (A.) and Eq. (A.) and to be included in the DMSSA
simulation.

The next major step involves the creation of the matrix R∗ of size 𝑟 ⋅ 𝑘 through
orthogonal sampling. The matrix R∗ must contain exactly 𝑟 independently random
generated samples from each distribution 𝐹𝑖. The 𝑖-th row of R∗, namely x𝑖 represents
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a random sample of the 𝑘 parameters. Here we use a different notation for the param-
eters of the MSE as in chapter . With the symbol x we denote those parameters for
which the sensitivities are calculated. These parameters are not necessarily the same as
the reaction kinetic parameters previously denoted as k𝑠 or k𝑓 , but rather a superset
of all the basic and composite parameters of the model. These includes the genes copy
numbers 𝑐𝑚 and the number of binding sites 𝑛𝑚 for each promoter of the system.

The RTGM is then used to create the orientation matrices B∗
𝑖 of size (𝑘 + 1) ⋅ 𝑘.

These matrices are constructed from each row of R∗ in the same way as shown in
section ...

The function implementing this procedure is called CreateRandomTrajectory.
Since the matrix R∗ contains 𝑟 rows, this means that the whole MSE creates 𝑟 different
trajectories. Each matrix B∗

𝑖 represents one trajectory or sample in the parameters
hyperspace and is created inside the procedure main loop. Intuitively, larger values of
𝑟 lead to more accurate estimations of the average 𝜇∗ and the standard deviation 𝜎, but
at the same time increases the computational effort needed to calculate the elementary
effects.

Another fact must not be forgotten here and that is, the consideration we made
above for the type of interval we are dealing with. If a parameter’s interval is loga-
rithmically spaced, then the values of the Δs are not the same everywhere. This fact
must be taken into account, and this is the reason why, after the call to the function
CreateRandomTrajectory, we intentionally create another matrix D∗

𝑖 through the
function createDeltaSignMatrix, where we store all the interval perturbations (or
“jumps”) defined by the orientation matrix B∗

𝑖. This allows us to find by how much a
parameter was increased or decreased when calculating the elementary effects.

At this point, we have all the data needed for performing simulations. The MSE-
DataAdapter is responsible to prepare the data structures needed by the DMSSA
engine for performing the simulations with the parameters values, set by the orienta-
tion matrix. The engine executes groups of 𝑢 threads performing the same DMSSA
instance for each row of B∗

𝑖.

Algorithm A.
The Morris screening experiment (MSE) pseudocode of the procedure implemented in the ParMSSA engine.
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Input: 𝑀 (the model data - sbml/yaml file),
𝐶 (the configuration INI file).

Output: The matrix Y of responses for the input model,
the matrix G of binding gradients responses for the input model,
the timestamps matrix T,
the matrix R∗,
the collection 𝒟 of delta signs matrices.

procedure [Y,G,T,R∗,𝒟 ] = MorrisExperiment( 𝑀, 𝐶 )
Call the descriptor for the model and configuration file. The descriptor creates
a model  from . with the arrangements from Def. . and a collection of
data structures 𝜃, including the set of rules ℋ , from the model and configuration
input files 𝑀 and 𝐶 respectively.
[ ,  ] = Descriptor( 𝑀, 𝐶 )
Create a RTGM matrix R∗ with the orthogonal sampling.
R∗ = OrthogonalSampling( ,  )

for each row x𝑖 in R∗ do
Create an orientation matrix B∗ and a delta sign matrix D∗.
B∗

𝑖 = CreateRandomTrajectory( R∗ )
D∗

𝑖 = CreateDeltaSignMatrix( B∗
𝑖,  )

For each row of B∗
𝑖 , apply changes to each composite parameter of the system.

[ K, X, 𝑁 ] = MSEDataAdapter( , , B∗
𝑖, 𝑢 )

Run 𝑁 parallel simulations with the DMSSA OpenCL kernel.
[ 𝑌𝑖, 𝐺𝑖, 𝑇𝑖 ] = DmssaOpenCL( , ℋ , 𝑁 , K, X )
Add responses, timestamps and their 𝐷 matrices to results.
Y = Y + 𝑌𝑖 G = G + 𝐺𝑖 T = T + 𝑇𝑖 𝒟 = 𝒟+D∗

𝑖
end for

end procedure

Therefore an entire trajectory can be executed by the DMSSA engine at once. The
OpenCL engine is fired with a total of 𝑁 = (𝑘 + 1) ⋅ 𝑢 parallel threads. Here we took
advantage of the capabilities of the OpenCL drivers which can distribute the workload
over multiple threads efficiently and automatically, without the necessity of any user
intervention. More importantly all these independent threads can run asynchronously
until all the 𝑁 simulations are computed. This ensures a high exploitation of all the
parallel computing units available on the OpenCL device. Now, if the OpenCL device
is capable to run all 𝑁 threads concurrently, then an entire trajectory of the Morris ex-
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periment can be evaluated in the same time complexity as a simple run of the DMSSA.
The entire Morris experiment hence costs 𝑟 ⋅𝑂𝐷𝑀𝑆𝑆𝐴, where𝑂𝐷𝑀𝑆𝑆𝐴 is the time com-
plexity of the DMSSA given the size of its input data arguments. The function call
DmssaOpenCL returns the model output response of𝑁 parallel instances of DMSSA.
It differs from the Alg. . only by the arguments that it receives. The argumentsK and
X, contains the parameters intervals samples that are used by DMSSA for computing
the simulations with different input values (factors).

The main loop concludes a cycle by storing the responses of the DMSSA simulations.
The main loop ends when 𝑟 trajectories are computed and the results are properly stored
inside the results folder. The entire MSE procedure is shown in Alg. A..

Now, all the elementary effects can be computed for all the simulations performed
by the MSE and the two metrics 𝜇∗ and 𝜎 can be computed according to []. Since
we have all the results already stored, these calculation can be performed also by a third
part numerical software, such as Matlab®.

Random numbers generation

Last but not least, an important consideration about the implementation of any Monte-
Carlo based simulation, involves the type of pseudo-random numbers generator (PRNG)
used for stochastic simulations. A good PRNG is essential for achieving statistically
independent results over multiple repetitions. One of the most praised PRNG based
on linear recurrence is the Matsumoto’s and Nishimura’s Mersenne Twister (MT or
MT) [], which besides providing an extremely long period of 2 − 1, it
has the following benefits:

it is statistical independent,

it generates almost equally distributed numbers in the range [0, 1],

it has a higher performance compared to the default PRNGs from the standard
language libraries,

it does not require large amount of memory and

multiple generated numbers are highly well distributed over multiple dimen-
sions.
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Despite not being a cryptographically secure however, the MT is regarded as one of
the best state-of-the-art PRNG for stochastic simulations. In the light of this fact and
since a typical long run of the DMSSA usually requires at most a coupled of billions
of quickly generated random numbers, equally distributed in the range [0, 1], the MT
has been chosen to be used also for our simulations.

However, because the DMSSA engine relies on a OpenCL kernel for performing sim-
ulations, and since OpenCL API does not provide by default a MT PRNG, we needed
to implement a custom MT for our purposes. Moreover, since the simulations are
carried out in parallel, there is also a need to provide pseudo-random generated num-
bers in multiple concurrent OpenCL threads. Generating pseudo-random numbers in
parallel is a well known problem in computer simulations and several solutions have
been proposed already [, ]. The problem consists of creating pseudo-random
numbers independently between multiple parallel threads. Here, the concept of inde-
pendence means that the sequence of random numbers generated in each thread must
be independent by one and other. If we are going to use multiple instances of the same
MT declared with the same parameters in all threads, we will eventually create the
same sequence of pseudo-random numbers in all the simulations’ instances. Multiple
MT must be initialized by different seeds, thus providing different initial states from
which begin the linear recurrence and hence independent sequences. This is one of
the main solution that is generally adopted by simulation designers: select 𝑛 randomly
generated seeds by a local MT and then initialize in the 𝑛 threads the same MT, but
with a different seed value. But there is a hidden caveat for which this technique will
eventually fail for large scale simulations, i.e. for large values of 𝑛. This caveat refers
to the possible collisions that can be yielded by multiple sequences generated with the
same MT but with two initial states that may lie in the MT period too close from
each other. In fact when using the MT, or by means of any other linear recurrence
based PRNG, the sum of two or more sequences, initiated by different initial states,
may results in a sequence of already generated pseudo-random numbers. Hence there
may exist a possible dangerous situation (with a not small probability of happening),
where we might perform two (or more) simulations with the same sequence of pseudo-

This is true for a short length of sequences, since the period of a classical MT is −, which is≈ 
numbers long. The high k-distributions of dimensions also helps to sparse the initial states far away between
each other inside the period. We refer to [] for details about the properties of the linear recurrence used in
the MT.
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random generating numbers. Such situation should be avoided at any cost, if we want
to preserve statistical independence and accuracy between stochastic simulations. This
is also one of the main reason why we should not use the MT for generating pseudo-
random numbers for secure cryptography, where even the slightest occurrence of two
identical sequences can lead to catastrophic effects.

But let us calculate the probability of such occurrence in the case of multiple parallel
instances of the DMSSA OpenCL kernel. Let be 𝑚 the bit length of the pseudo-
random generated numbers of the MT, and let be 𝑢 the number of different threads of
the same simulation we want to perform in parallel (this value may be the same 𝑢-value
of repetitions defined by the user for achieving statistical valid stochastic simulations).
Now the number of all possible different seeds 𝑁 from which the MT can define the
initial state of its linear recurrence is 2𝑚, therefore for a value of𝑚 = 32, the number of
all different seeds is 2 = 4, 294, 967, 296. Now, if we attempt to define 𝑢 different
threads for which each thread would have a different sequence of random numbers
from the same MT, it is clear that this number 𝑢 is limited by 𝑁 . If we choose the
initial 𝑢 seeds pseudo-randomly, with an uniformly distribution, between the interval
0; 2 − 1, then the probability 𝑃𝑟[𝑢, 2] of the event that at least two threads of 𝑢
will be initiated with the same MT state, i.e. a collision event, will be

𝑃𝑟[𝑢, 2] = 1 −
𝑁𝑢 

𝑁+𝑢−𝑢 
. (A.)

In the Tab. A. we list some values of Pr[u,] for different 𝑢, selected for performing
DMSSA. We can see clearly that with probability of more than 2% we may face col-
lisions when 𝑢 is greater than 10000 repeats. Unfortunately in statistics, large sample
populations are needed to provide more accurate estimations of the mean and standard
deviation regarding some property that we want to generalize usually when testing hy-
pothesis. But because the DMSSA responses in general quickly converge to the median
trajectory, usually the user does not need more repetitions than few hundred, which
makes the collision probability almost negligible. Therefore we also opted for these
strategy by applying uniformly distributed pseudo-random seed to all the MT
OpenCL implementations, that will provide pseudo-random numbers sequences to all
the simulation’s instances fired by the DMSSA engine.

In the case where the number of repetitions must be higher than the reference value
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Table A.
Some sample values of the probability of collision occurring when 𝑚 =  and when the user selected 𝑢 threads for running 𝑢
instances of the same configuration of the DMSSA.

𝑢 𝑃𝑟[𝑢, 2]

20 8.84756 ∗ 10−

50 5.70435 ∗ 10−

100 2.30502 ∗ 10−

500 5.80896 ∗ 10−

1000 0.000232

10000 0.02301

of 10000, or in the case where the number of parallel threads needs to be very close to or
higher of the maximum number of different initial seeds, several studies recommended
the utilization of the Mersenne Twister Dynamic Creator (DCMT) [], a parallel
implementation of the known PRNG in which the identification number, also called
thread ID or processor ID, is embedded in the MT initialization parameters, enabling
thus the creation of completely different sequences with no common period. The main
shortcoming of this technique is that can be computational demanding, since it needs
to search an exponential space of values for the initialization of all the different MTs.
Fortunately, these space search can be done a priori, and the initialization of such
MT can be done very quickly. This is the strategy that is implemented and suggested
in several code examples, such as in [, ]. Anyway, not any present literature
decided to opt for this technique. In [] for instance, authors used a MRGKA
PRNG described in [] to perform stochastic simulations. The results indeed proved
to be statistically sounded. While Li and Petzold in [], adopted successfully the
DCMT [], with also impressive results.

Furtherer, other implementations of parallel PRNGs that can take advantage also of
SIMD architectures found in GPGPU, have been proposed in [, ]. Implemen-
tation of fully independent MTs on GPGPU threads resulted to be difficult, mainly
because of the memory architecture inside the graphic processing units. Hence the
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use of a parallel implementation for GPGPUs of the MT proposed in [] is recom-
mended, if simulations such as the DMSSA need to performed on GPGPU.

Concluding, DMSSA engine declares for 𝑛 threads, 𝑛 MTs with 𝑛 different initial
seeds. If the number of threads is small compared to the state space size then the prob-
ability of collision may be negligible and statistical independent stochastic simulations
may be performed. Otherwise, if the number of threads is very large, the DCMT
should be called and 𝑛 different MTs should be computed.

A.. OpenCL

OpenCL is an open standard for parallel programming for heterogeneous platforms
[]. Similarly to CUDA, OpenCL provides an API for exploitation of GPGPU. As
mentioned briefly in the previous section a single GPGPU may usually contain sev-
eral hundreds of processing cores (e.g. CUDA Cores) [], and hence its use is suit-
able for performing parallel computations. Since CUDA provides its API for solely
Nvidia proprietary GPGPUs, OpenCL enlarges the usability of its API to almost all
GPGPUs of the most common manufacturers, i.e. Nvidia, AMD and Intel. But one
of the main pros of the OpenCL API is that it also supports multi-core architectures
(e.g. AMD© Opteron™ or Intel© Core™ and Xeon™ CPUs) and many-core architec-
tures as well, such as the Intel© Xeon™ Phi accelerator [, , ]. Program-

Figure A.
The OpenCL API envi-
ronment from Khronos™
Group []. The kernel
code (once is compiled)
can run directly on the
devices, which can be ei-
ther a GPGPU (GPU), an
accelerator (ACC) or the
CPU itself.

CPU
ACC

GPU
CPU

OpenCL
kernel
code

OpenCL
Runtime API

Host

Devices

ming with OpenCL is similar as with CUDA. The OpenCL standard provides a C-
language specification [], that allow exploiting the powerfulness of the C language
for parallel programming. A C++ wrapper is also available [].

Unlike OpenMP, where the parallel programming is much like sequential program-
ming (e.g. parallelisation is achieved by definitions of simple pragmas before some loop

https://goo.gl/UcRL4O

https://goo.gl/UcRL4O
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initializations), OpenCL programming consists in dividing the program in two concep-
tual different parts. The first part contains the sequential code, which has to be run by
the host CPU. The second part instead contains a short function called kernel, which is
responsible to implement the task that needs to be accelerated on the target device(s).
This differentiation is depicted in Fig. A.. When an OpenCL program is running,
the host computer first initializes the device and then it copies the data, needed to be
processed in parallel, to the device global memory (see Fig. A.). The device driver
then distributes the same kernel code to all processing cores on the device. When the
kernel function is then called by the host CPU code, all the processing cores on the de-
vice execute the same kernel code. Hence each core can execute a thread of the kernel.
Usually these threads are organized within a specific matrix geometry, that user can
directly configure. Every thread can be uniquely identified by an index that defines the
thread’s position inside the geometry matrix. These indices can be used for a variety of

CPU
Main

memory

Host Device

Device global

memory

CPU
ACC

GPU

Local
memory

Figure A.
The OpenCL memory
hierarchy. Notice, that if
the chosen OpenCL device
is a multi-core CPU then
the host’s and the device’s
main memory are the
same.

purposes. Most commonly they represent the easiest way to access specific portion of
data by each thread running the same kernel. More rarely they are used to differentiate
operations that the kernel may specify. This is not however a recommend technique
for GPGPU systems, since by differentiation of the kernel execution, the threads syn-
chronization is often lost. Threads synchronization is one of the reason why GPGPU
systems can achieve so great parallelisation performances. We refer to [–] for a
more complete explanation of the OpenCL thread geometry configuration, as well as
a complete introduction to OpenCL programming.
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A. ParMSSA user guide

A.. Command line options

ParMSSA accepts a plethora of command line options, which are all listed below. All
the options, can be provided by a configuration INI file, except for the general and the
required options.

General options:
-v [ --version ] Print version string and exit.
-h [ --help ] Produce the help message and exit.

Required options:
-m [ --model ] arg The name of a SBML or YAML file containing

the model description (e.g. model.yaml or
model.sbml).

Configuration:
-c [ --config ] arg The name of an ini file containing the

configuration for the simulations (e.g.
config.ini).

-l [ --samples ] arg (=10) The number of points that the simulation
should generate. Default value: 10

--sampling-step arg (=1000) The number of SSA steps between two data logs.
This value is used for sampling the SSA
results. Usefull for decreasing results'
resolution and overall results' size.
Default value: 1000

-n [ --threads ] arg (=1) The number of parallel threads "n" that the
simulation will perform in order to generate
exactly "n" simulations. This flag is
overwritten when performing simulations for
sensitivity analysis (-s flag) in the case
the number of needed simulations are greater
than "n". Default value: 1

-p [ --path ] arg (=results) The path (folder) in which store the
simulation results. Default value: results
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--with-stats Print on the stnadard output the current
telemetry from the engine. Default: false

--with-log-file arg (=stdout) The log file in which store the simulation
log. Default value: stdout

-d [ --device ] arg (=cpu) The device to use for simulations. Default
device: cpu

--species-to-log arg The name of all the species for which we want
to log their simulation responses. In the
case of -s flag these are the species over
which the sensitivity analysis will be
performed. By default all species are logged.

--gradients-to-log arg The names of all the promoter species for
which we want to log their simulation
gradients.

--activation-rule arg The rule used to determine the activation
state of promoters with multiple binding
sites. The possible values are: 'majority',
'all-or-none', 'singular' and 'additive'.
If no rule is provided then by default, the
majority rule is used.

--no-multiscale Perform a classic SSA simulation instead of
using the multiscale engine. Warning: the
use of the flag MUST BE USED ONLY for models
with no multiple binding sites promoters,
i.e. for custom reactions definitions ONLY!

-s [ --sensitivity ] Perform a Morris simulation experiment over
the model. The results contain all the data
for global Morris sensitivity analysis
(Matlab™ required). By default no
sensitivity is perform on the model, unless
the flag -s is given in command line.
Default: false

--repetition-factor arg (=1) The number of times a simulation with the
same set of parameters should be run.
Default: 1
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--p-value arg (=10) An even number representing the p-value in
the Morris experiment. Default: 10

--r-sample arg (=4) The number of different random samples
(trajectories) from each elementary effect
distribution to perform in the Morris
experiment. Default: 4

-D [ --offset ] arg The delta offset (D) of the p-value. The
delta value (�) in the Morris experiment is
then calculated as: D/(p-1). Default value:
p-value/2

--print-model Print in verbose mode the model data
(species and reactions) constructed from
the given model configuration file (i.e.
sbml file). Default: false

A.. Model description

ParMSSA allows model definitions in both the systems biology markup language (SBML)
and the yet another markup language (YAML). SBML is an XML language extension
developed for model definitions in systems biology, while YAML is a simple JavaScript
Object Notation (JSON) derived language. The engine accept model definitions pro-
vided by an external file .yaml or .xml which has to be provided as command line
argument when running the engine.

Model definition with YAML

The model description can be defined as a simple YAML file for which ParMSSA re-
quires the following fields:

. name; the model name defined in header, mandatory for every YAML file,

. proteins; the list of proteins involved in the model,

. bindingsites; the list of all binding sites occurring in the model,

. genes; the list of all the complexes binding site–promoter–coding sequence,

. reactions; the list of all additional reactions not specified by the model implicitly,

. params; the list of all qualitative parameters of the model and
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. quantitative_params; the list of all quantitative parameters such as concentration
and copy number of the model.

Proteins

The proteins field contains the description of all the proteins involved in the model.
Each protein is defined as a list containing: name, the protein length in base pairs, the
name of the parameter representing the degradation rate, the name of the parameter of
the protein’s mRNA degradation rate, the concentration parameter and the mature/de-
mature mRNA parameters names. Each of the proteins parameters must however be
defined in the params field.

Code A.
A simple proteins list containing one protein definition.

proteins:
- name: protein_A

length: 1071
kdeg: k_deg_protein_A
kdegmrna: k_deg_mRNA
kmrnamature: k_protein_A_mrna_mat
kmrnademature: k_protein_A_mrna_demat
concentration: protein_A_concentration

Binding sites

Binding sites list definition is made in a similar way. Each binding site contain the
information about the protein kinetic binding velocity (𝑘𝑜𝑛) and the unbinding rate
(𝑘𝑜𝑓𝑓 ). Each binding site need however to specify the type of effect that the protein
should have while bounded to the binding site. This effect is specified within the type
attribute. This attribute can acquire the following values:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 → the bounded protein has no effect
1 → the bounded protein has inhibition effects
2 → the bounded protein has activation effects

Code A.
A binding sites list containing two definitions.
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bindingsites:
- name: bs_A

protein: protein_A
type: 1
kon: k_on_protein_A
koff: k_off_protein_A

- name: bs_B
protein: protein_A
type: 2
kon: k_on_protein_A
koff: k_off_protein_A

Genes

Genes list definition contains the name, the products and the list of TFBSs of each
gene of the GRN. In the gene definition there must be also defined the two reference
kinetic constants parameters of transcription and translation. The initial copy number
of the each gene can also be defined as a parameter attribute “copyn”.

Code A.
A genes list containing one gene definition.

genes:
- name: gen_A_1

bindingsites: A A A A A A A A A A
products: TAL_A_VP16
ktrsc: k_trsc_tal_vp16
ktrsl: k_trsl_tal_vp16
copyn: N_plasmids

Reactions

Reactions list definition allows one to define any reaction that occur in a GRN. Usually
are those defined as in ., however the engine is able to process any other reaction,
as long as it is defined as a list containing the following attributes: “type”, “products”,
“reactants” and “params”. The following code illustrates an example.

Code A.
A reactions list containing one reaction definition.
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reactions:
- reaction:

type: 0

products:
- name: PROTEIN_FOR_NEGATIVE_CONTROL

quantity: 1

reactants:
- name: protein_A

quantity: 2

params:
- kconst: k_protein_for_negative_control

Parameters

The parameters list contains all the parameters definitions (name, values, measurement
unit, type) for all the kinetic constants parameters used in the model. Here there is an
example:

Code A.
A parameter list containing two parameters definitions.

params:
- name: k_deg_protein_A

type: 0
value: 0.0308065
unit: s^-1

- name: k_protein_for_negative_control
type: 0
value: 1e-05

Quantitative parameters

Quantitative parameters refer mainly to the “non-kinetic constants” parameters needed
by the model, e.g. initial concentrations, number of binding sites of a particular cis-
regulatory module, or the initial successful plasmid transformation concentration.
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Code A.
A quantitative parameters list containing three parameters definitions.

quantitative_params:
- name: k_protein_concentration

type: 1
value: 100000

- name: N_binding_sites
type: 1
value: 10

- name: N_plasmids
type: 1
value: 100

ParMSSA allows one model definition per YAML file.

Model definition with SBML

The model definition with SBML is similar as the YAML definition. The DMSSA
requires detail descriptions of the binding sites and the relative gene data. Unfortu-
nately SBML does not provide a default included fitting object structure such as for
the protein and kinetic parameters. Hence we defined the model description inside
the <annotation> tag inside the SBML default model object to enable compatibility
for external XML parsers:

Code A.
SBML model description template parsed by the ParMSSA.

<sbml> <!-- the main xml tag -->
<model> <!-- the default SBML model tag -->
<annotation> <!-- the main SBML annotation tag for model -->

<parmssa xmlns="http://lrss.fri.uni-lj.si/bio" name="myModel">
<description>
<!-- the model description -->
</description>
</parmssa>
</annotation>
</model>
</sbml>
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<proteins>
<protein name="PROTEIN_FOR_NEGATIVE_CONTROL" length="2700">
<parameters>
<kdeg name="k_deg_TAL" type="0" value="0.00308065" default="0" default_max_range

="0" default_min_range="0" range_max_factor="0" range_min_factor="0"
range_max_value="0" range_min_value="0"/>

<concentration name="k_protein_concentration" type="0" value="100000" default="0"
default_max_range="0" default_min_range="0" range_max_factor="0"

range_min_factor="0" range_max_value="0" range_min_value="0"/>
</parameters>
</protein>

<protein name="TAL_A_KRAB" length="2800" sequence="
ATGCCTTTGGTAAATTGGGGCCCGGCAAAGCG">

<parameters>
<kdeg name="k_deg_TAL" type="0" value="0.00308065" default="0" default_max_range

="0" default_min_range="0" range_max_factor="0" range_min_factor="0"
range_max_value="0" range_min_value="0"/>

<kdegmrna name="k_deg_mRNA" type="0" value="0.00154033" default="0"
default_max_range="0" default_min_range="0" range_max_factor="0"
range_min_factor="0" range_max_value="0" range_min_value="0"/>

</parameters>
</protein>
</proteins>

<bindingsites>
<bindingsite name="A" protein="TAL_A_VP16" type="1">
<parameters>
<kon name="k_on_vp16" type="0" value="0.1" default="0" default_max_range="0"

default_min_range="0" range_max_factor="0" range_min_factor="0"
range_max_value="0" range_min_value="0"/>

<koff name="k_off_vp16" type="0" value="1e-09" default="0" default_max_range="0"
default_min_range="0" range_max_factor="0" range_min_factor="0"
range_max_value="0" range_min_value="0"/>

</parameters>
</bindingsite>
</bindingsites>

<genes>
<gene name="gen_A_1" promoterType="3" modelPolymerase="no">
<bindingsites>
<bindingsite name="A"/>
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<bindingsite name="A"/>
<bindingsite name="A"/>
<bindingsite name="A"/>
<bindingsite name="A"/>
<bindingsite name="A"/>
<bindingsite name="A"/>
<bindingsite name="A"/>
<bindingsite name="A"/>
<bindingsite name="A"/>
</bindingsites>
<products>
<product name="TAL_A_VP16"/>
</products>
<parameters>
<ktrsc name="k_trsc_tal_vp16" type="0" value="0.0185185" default="0"

default_max_range="0" default_min_range="0" range_max_factor="0"
range_min_factor="0" range_max_value="0" range_min_value="0"/>

<ktrsl name="k_trsl_tal_vp16" type="0" value="0.0444444" default="0"
default_max_range="0" default_min_range="0" range_max_factor="0"
range_min_factor="0" range_max_value="0" range_min_value="0"/>

<copyn name="N_plasmids_gen_A_1" type="1" value="100" default="0"
default_max_range="0" default_min_range="0" range_max_factor="0"
range_min_factor="0" range_max_value="0" range_min_value="0"/>

</parameters>
</gene>
</genes>

<reactions>
<reaction type="0">
<reactants/>
<products>
<product name="PROTEIN_FOR_NEGATIVE_CONTROL" quantity="1"/>
</products>
<parameters>
<kconst name="k_protein_for_negative_control_param" type="0" value="1e-05"

default="0" default_max_range="0" default_min_range="0" range_max_factor="0"
range_min_factor="0" range_max_value="0" range_min_value="0"/>

</parameters>
</reaction>
</reactions>
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V zadnjem desetletju je sintezna biologija dosegla izjemne uspehe tako na različnih
znanstvenih področjih, kot tudi v prvih komercialnih produktih, kot na primer v far-
makoloških, okoljevarstvenih in energentskih aplikacijah []. Primer iz farmakologije
so biološka zdravila zasnovana na bioloških (genskih) stikalih. Genska stikala predsta-
vljajo jedro kakršnegakoli sistema zmožnega procesiranja informacij v bioloških siste-
mih [, ]. Ti so v večini primerov zasnovani na gensko regulatornih omrežjih (GRO),
katerih delovanje lahko do določene mere prilagajamo našim potrebam []. Načrto-
vanje gensko regulatornih omrežij z vnaprej določenimi funkcionalnostmi večinoma ni
premočrten postopek in zato ponavadi zahteva veliko količino eksperimentalnega dela.
Pristopi računalniškega modeliranja lahko ključno pripomorejo k minimizaciji časa in
stroškov načrtovanja tovrstnih sistemov. Računalniški modeli predstavljajo osnovo za
kvantitativno ocenjevanje odzivanja načrtovanih sistemov pred njihovo eksperimental-
no realizacijo [–].

Biološki sistemi večinoma izražajo robustno obnašanje, ki je posledica dolgega proce-
sa evolucije []. Pri načrtovanju sintetičnih bioloških sistemov je po drugi strani zelo
težko predvideti vse možne interakcije, ki jih bo načrtovani sistem imel z okoljem, v ka-
terega bo umeščen. Njihovo delovanje je tako lahko zelo občutljivo na vplive iz okolja
kot so sprememba temperature, pH faktorja ter sevanje, ki se pogosto odražajo v šumu.
Omejevanje vplivov šuma in posledično napak v delovanju sistema oziroma preklopnih
funkcij, ki jih z njim realiziramo, je ključnega pomena pri načrtovanju sintetičnih bi-
oloških sistemov. Razširjen nabor metrik, ki omogočajo vzpostavitev neposrednejšega
pristopa za načrtovanje gensko regulatornih omrežij kot preklopnih gradnikov, je v pre-
teklosti že bil vzpostavljen []. Pomanjkljivost teh metrik je predvsem v odsotnosti
kriterija za ocenjevanje robustnosti sistema v različnih okoljskih pogojih. Robustnost
predstavlja ključni faktor adaptacije v evolucijskem procesu bioloških sistemov []. V
biologiji celice je robustnost lastnost, ki omogoča ustreznost njenega odziva tudi v ne-
predvidljivih okoliščinah (npr. pri bakterijski kemotaksi) []. Kvantitativno vredno-
tenje robustnosti je ključnega pomena pri razvoju zanesljivih in skalabilnih bioloških
preklopnih sistemov z novimi funkcionalnostmi.

Čeprav splošna kvantitativna mera za ocenjevanje robustnosti še ni bila vzpostavlje-
na, teorija kontrole (angl. control theory) že veliko let ponuja metodologije za njeno
ocenjevanje. V zadnjem desetletju je bilo predlaganih veliko metrik za vrednotenje ro-
bustnosti na področju bioloških sistemov [–]. Nekatere raziskave so pokazale, da
se lahko robustnost vrednoti tudi na podlagi metod občutljivostne analize (angl. sensiti-
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vity analysis) [, ]. Primer take metode je analiza občutljivosti parametrov [–],
katere prednost je v njeni zmožnosti usmerjanja eksperimentalnega dela. Rezultati ana-
lize so namreč tisti vhodni parametri modela, ki najbolj vplivajo na delovanje sistema
in jih je zato smiselno najbolj temeljito preučiti [].

Večino obstoječih metod za izvedbo občutljivostne analize lahko apliciramo zgolj na
determinističnih modelih, ki pa so nezmožni upoštevanja dinamike šuma. V literaturi
je sicer možno zaslediti nekatere izjeme [–]. Degasperi in ostali [] so predlagali
metodo za izvedbo občutljivostne analize v stohastičnih modelih, ki izražajo bistabil-
nost. Gunawan in ostali [] so predlagali metodo za direktno izvajanje občutljivostne
analize za enostavne diskretne stohastične modele gensko regulatornih omrežij, kot je
na primer preklopno stikalo. Komorowski in ostali [, ] so z ovrednotenjem
koeficientov lokalne občutljivosti posameznih parametrov izvajali občutljivostno ana-
lizo na nekaterih ključnih zgledih modelov v sistemski biologiji. Večina predlaganih
metod v literaturi je zasnovana na skupni strategiji, pri kateri je občutljivostna analiza
aplicirana na deterministične modele. Do teh modelov lahko pridemo z večkratnimi
aproksimacijami kemijske glavne enačbe (angl. chemical master equation). Glavne sla-
bosti te strategije so, da z njo ne moremo izvesti globalne občutljivostne analize in da je
ne moremo aplicirati na določene vrste modelov v sintezni biologiji, kot so na primer
stohastični večnivojski (angl. multi-scale) modeli [, ].

Preklopne funkcije so v bioloških sistemih ponavadi implementirane v okolju z veli-
ko količino šuma. To lahko predstavlja velik problem pri načrtovanju kompleksnih in
robustnih logičnih struktur. Načrtovanje bioloških sistemov z visoko stopnjo skalabil-
nosti in zanesljivosti delovanja tako postane zelo zahteven izziv. Stohastično modelira-
nje omogoča implicitno obravnavanje šuma znotraj odziva preklopa logičnih struktur
[–]. Metode za stohastično modeliranje so obenem lahko računsko zelo zahtev-
ne, predvsem ko je število prostih vezavnih mest na promotorju veliko. Take sisteme
na primer predstavljajo platforme na osnovi transkripcijsko-aktivacijskih efektorjev,
t.i. TAL efektorjev (angl. transcription activator like effectors) [, ]. Učinkovita
strategija za izboljšanje računske kompleksnosti je vzpostavitev in izraba stohastičnega
večnivojskega modeliranja [–]. Ta pristop predpostavlja, da lahko veliko število
sicer odvisnih kemijsko-kinetičnih podsistemov pri določenih pogojih privzamemo za
medsebojno neodvisne. Podsistemi se posledično lahko obravnavajo v ločenih časov-
nih okvirjih. S stohastičnim modeliranjem hkrati ohranjamo implicitno obravnavanje
šuma znotraj vzpostavljenega modela. Obravnavanje podsistemov v različnih časov-
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nih okvirjih omogoča kvalitetno aproksimacijo kinetike sistema in zmanjšuje računsko
zahtevnost reševanja problema. Kljub temu, da je bilo v zadnjih letih vzpostavljenih
veliko število metodologij za občutljivostno analizo tudi na področju sintezne biologi-
je, metod za izvedbo občutljivostne analize stohastičnih večnivojskih modelov še vedno
nimamo na razpolago. Vzpostavitev metodologije, ki bi te pomanjkljivosti odpravila,
je ključnega pomena za načrtovanje robustnih sintetičnih gensko regulatornih omrežij
in posledično za razvoj kompleksnejših sintetičnih bioloških sistemov zmožnih proce-
siranja informacij.

V disertaciji smo razvili metodologijo za izvedbo občutljivostne analize v stohastič-
nih večnivojskih modelih gensko regulatornih omrežij, ki vsebujejo večkratna neko-
operativna DNA vezavna mesta za transkripcijske faktorje. Metodologijo je možno
aplicirati neposredno v proces načrtovanja sintetičnih bioloških sistemov zmožnih pro-
cesiranja informacij.

Gensko Regulatorna Omrežja Kontrola genske ekspresije lahko poteka na osnovi
pospešitve ali inhibicije transkripcije DNA v sporočilno RNA molekulo (angl. messen-
ger RNA – mRNA). To je možno regulirati na osnovi vezave dveh vrst transkripcijskih
faktorjev, tj. aktivatorjev in represorjev, na vezavna mesta DNA v neposredni bližini
promotorjev. Aktivatorji povečajo afiniteto vezave RNA polimeraze na promotor, kar
pospeši pričetek transkripcije opazovanega gena. Represorji po drugi strani preprečijo
vezavo RNA polimeraze na promotor, kar posledično onemogoči transkripcijo gena.
Rezultat transkripcije je mRNA molekula, ki vsebuje informacijo o določenem protei-
nu. Ta informacija se nato v ribosomih dekodira v procesu translacije, katere produkt
je končni sintetizirani protein. V primeru, da mRNA vsebuje informacijo o določe-
nem transkripcijskem faktorju, ki aktivno sodeluje pri regulaciji nekeka drugega gena,
opazovani geni sestavljajo t.i. gensko regulatorno omrežje (angl. gene regulatory network
– GRN).

Slika B.
Večkratna vezavna mesta
za transkripcijske faktor-
je v neposredni bližini
promotorja.

DNA vezavna mesta za 
transkripcijske faktorje 

gen
...

promotor

V določenih primerih imajo promotorji lahko več kot eno samo vezavno mesto za
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transkripcijske faktorje (glej sliko B.). V teh primerih postane aktivnost promotor-
jev odvisna od zaporedja vezanih tranksripcijskih faktorjev na vezavna mesta v bližini
promotorjev. Primeri pravil, ki določajo aktivnost promotorjev reguliranih z vezavo
aktivatorskih proteinov so []:

pravilo vsi-ali-nihče,

singularno pravilo,

pravilo aditivnosti.

Pri pravilu vsi-ali-nihče je promoter aktiviran šele, ko so aktivatorji vezani na vsa ve-
zavna mesta, pri pravilu singularnosti pa je promotor aktiviran že v primeru, ko je na
vezavnem mestu vezan en sam aktivator. Pravilo aditivnosti opisuje primer, ko vsak ve-
zani transkripcijski faktor pripomore k večji aktivaciji promotorja. Genska regulacija
na osnovi več DNA vezavnih mest predstavlja poseben izziv v računski biologiji, saj ga
je zelo težko natančno modelirati.

Stohastino modeliranje Osnova stohastičnega modeliranja gensko regulatornih
omrežij je stohastični simulacijski algoritem (angl. stochastic simulation algorithm –
SSA) []. Ta je zasnovan na predstavitvi delovanja gensko regulatornih omrežij z
množico kemijskih reakcij. Te reakcije opisujejo spreminjanje koncentracij kemijskih
zvrsti, ki predstavljajo posamezno komponento sistema. Med opazovane kemijske zvr-
sti lahko uvrstimo proteine, transkripcijske faktorje, promotorje, gene in mRNA mo-
lekule. Algoritem SSA omogoča pridobitev časovne evolucije sistema glede na podani
model, njegove parametre in njegovo začetno stanje. Koraki algoritma simulacije so
prikazani v Alg. B..

Algoritem B.

Stohastični simulacijski algoritem (SSA).

Vhodni podatki: množica reakcij, ki predstavlja delovanje izbranega GRO
največji dovoljeni čas simulacije 𝑡𝑚𝑎𝑥

Izhodni podatki: časovna evolucija koncentracij 𝑥 skozi čas 𝑡.

procedura SSA

. Določi vse funkcije nagnjenosti 𝑎𝑗(𝑥) in njihovo vsoto 𝑎(𝑥).
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. Monte Carlo korak: izračunaj 𝜏 ter indeks 𝑗 s pomočjo enačb (B.) in (B.).

. Povečaj časovni korak 𝑡 ← 𝑡 + 𝜏 in izvedi spremembe koncentracij v vektorju
koncentracij 𝑥 glede na izbrane reakcije.

. Shrani par vrednosti (𝑥, 𝑡) in se vrni na korak , če je čas 𝑡 < 𝑡𝑚𝑎𝑥.

konec

Algoritem določi čas med izvedbo dveh reakcij 𝜏, kot

𝜏 = 1
𝑎(𝑥)

ln 
1
𝑟
 . (B.)

Iz množice 𝑀 različnih reakcij, algoritem SSA izbere 𝑗-to reakcijo na osnovi ruletnega
pravila, ki ga lahko formalno predstavimo z enačbo

min
𝑗

⎧⎪⎪⎨
⎪⎪⎩

𝑗

𝑘=

𝑎𝑘(𝑥) ≥ 𝑟𝑎(𝑥)

⎫⎪⎪⎬
⎪⎪⎭ . (B.)

Pri tem sta 𝑟 in 𝑟 dve naključni števili, ki sta enakomerno porazdeljeni v intervalu
(0, 1). 𝑥 predstavlja vektor trenutnih koncentracij vseh kemijskih zvrsti sistema, 𝑎𝑗(𝑥)
pa predstavlja funkcijo nagnjenosti (angl. propensity function) 𝑗-te reakcije, tj. utež, ki
posredno določa verjetnost izvedbe 𝑗-te reakcije. 𝑎(𝑥) predstavlja vsoto vseh uteži.

Enačbi (B.) in (B.) predstavljata Monte Carlo korak algoritma SSA. Časovno evo-
lucijo sistema lahko dobimo z izvajanjem teh dveh korakov za poljuben čas.

Algoritem SSA predstavlja natančno aproksimacijo rešitve kemijske glavne enačbe (an-
gl. chemical master equation - CME), zato lahko z njim simuliramo poljubno gensko
regulatorno omrežje.

Stohastini venivojski simulacijski algoritem Prednost algoritma SSA je eno-
stavnost in natančnost pri izračunu časovne evolucije sistema kemijskih reakcij. Glavna
pomanjkljivost je počasnost izvedbe simulacij pri velikem številu opazovanih kemijskih
reakcij in pri visokih koncentracijah kemijskih zvrsti. Delovanje algoritma lahko pohi-
trimo z večnivojskimi pristopi, ki jih lahko uporabimo, ko se nekatere reakcije izvajajo
veliko bolj pogosto kot ostale. Sistemom, ki izkazujejo to lastnost, pravimo tudi togi
sistemi (angl. stiff systems). Reakcije lahko v tem primeru razdelimo na hitre in po-
časne. Sistemi kemijskih reakcij gensko regulatornih omrežij, ki vsebujejo več DNA
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vezavnih mest za transkripcijske faktorje, predstavljajo tipičen primer togih sistemov.
Pri teh sistemih je potrebno simulirati zelo veliko hitrih reakcij vezave in disociacije
transkripcijskih faktorjev v primerjavi z bolj počasnimi reakcijami, ki zadevajo gensko
ekspresijo in degradacijo opazovanih kemijskih zvrsti. Njihove simulacije lahko pohi-
trimo z večnivojskimi (angl. multi-scale) simulacijskimi algoritmi. Ti predpostavljajo,
da lahko časovno evolucijo hitrih reakcij aproksimiramo z njihovim stabilnim stanjem
(angl. steady state). Dodatno komplikacijo obravnave velikega števila nekooperativnih
vezavnih mest predstavlja odvisnost stanja promotorja od trenutnega zaporedja vezanih
transkripcijskih faktorjev. V primeru 𝑛-nekooperativnih vezavnih mest, je število stanj
enako

(𝑘 + 1)𝑛, (B.)

kjer je 𝑘 število različnih tranksripcijskih faktorjev, ki tekmujejo za vezavo na ista DNA
vezavna mesta. V tem primeru je število različnih reakcij vezave in disociacije, ki jih
mora SSA simulirati, enako

𝑛

𝑖=

𝑛
𝑖 
𝑖 𝑘𝑛−𝑖+. (B.)

Problem aplikacije večnivojskih metod na gensko regulatorna omrežja, ki vsebujejo več
DNA vezavnih mest, postane določanje stanj promotorjev, ki poveča število reakcij do
te mere, da le-teh v modelu ne moremo učinkovito predstaviti.

V disertaciji smo predlagali učinkovit algoritem na osnovi vgnezdenih SSA, ki rešuje
predhodno opisani problem. Algoritem predstavi vsa DNA vezavna mesta za 𝑚-ti
promotor v gensko regulatornem omrežju ob določenem času 𝑡 z matrikoB𝑚(𝑡), katere
elementi so definirani kot

𝑏𝑚𝑖,𝑗(𝑡) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0; če je vezavno mesto nezasedeno,
1; če je na vezavno mesto vezan aktivator,
−1; če je na vezavno mesto vezan represor.

(B.)

Velikost matrike B𝑚(𝑡) je odvisna od števila kopij𝑚-tega promotorja v celici, ki določa
število vrstic, in od števila DNA vezavnih mest, ki določa število stolpcev matrike. Ta-
kih matrik imamo toliko, kolikor je različnih promotorjev z več DNA vezavnimi mesti
(𝑚 = 1, ..,𝑀𝑝). Algoritem simulira časovno evolucijo sistema, tako da izvede dve raz-
lični instanci SSA: glavno in vgnezdeno. Z uporabo vgnezdene SSA lahko simuliramo
vezavo in disociacijo transkripcijskih faktorjev na posamezno DNA vezavno mesto, z
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uporabo glavnega SSA pa počasne reakcije, to so reakcije transkripcije, translacije in
degradacije. Vgnezdeni SSA se tako uporablja za simulacijo hitrih reakcij. Ta se izve-
de za čas, ki ga določi zunanji SSA. Vgnezdeni SSA za GRO z več neekoperativnimi
DNA vezavnimi mesti smo poimenovali bseSSA (angl. binding sites evolution stochastic
simulation algorithm) in je orisan v Alg. B..

Algoritem B.
Algoritem bseSSA za simulacijo hitrih reakcij vezave in disociacije transkripcijskih faktorjev na več DNA vezavnih mest.

Vhodni podatki: vektor kemijskih zvrsti (z začetnim stanjem 𝑋𝑓 ()), ki se po-
javljajo v hitrih reakcijah

množica matrik vezavnih mest ℬ s kardinalnostjo 𝑀𝑝

Izhodni podatki: časovna evolucija sistema 𝑋𝑓 (𝑡).

procedura bseSSA( 𝑋𝑓 (), ℬ )
Določi začetni čas simulacije.
𝑡𝑓 = 
Preštej število aktiviranih, represiranih in praznih vezavnih mest za vsako matriko B𝑚 v
ℬ in določi koncentracijo aktiviranih, represiranih in praznih promotorjev v 𝑋𝑓 () na
osnovi teh števil.
for all 𝑚 = ,… ,𝑀𝑝 do

Za prazne promotorje
𝑋𝑓
𝑝𝑟𝑓𝑚
() = |𝑏𝑚𝑖𝑗 |

Za aktivirane promotorje
𝑋𝑓
𝑝𝑟𝑓+𝑚

() = |𝑏𝑚+𝑖𝑗 |
Za represirane promotorje
𝑋𝑓
𝑝𝑟𝑓−𝑚

() = |𝑏𝑚−𝑖𝑗 |
end for

Izvedi časovno evolucijo z vsako matriko B𝑚 v ℬ
while 𝑡𝑓 < 𝑇

𝑓
 do

Izvedi en korak SSA na hitrem sistemu 𝑋𝑓 (𝑡):
) izberi 𝑗-to reakcijo, ki jo bo sistem simuliral na osnovi enačbe (B.)
) izračunaj 𝜏𝑓 na osnovi enačbe (B.)

[𝑗, 𝜏𝑓 ] = SSA_korak( 𝑋𝑓 (𝑡𝑓 ) )
Preberi indeks 𝑚 promotorja iz 𝑗-te reakcije.
𝑚 = getPromoterIndex( 𝑗 )
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Izvedi spremembe v matrikah B𝑚(𝑡𝑓 )
if ( 𝑗 = “indeks reakcije vezave aktivatorja na promotor” ) then

Izberi naključno prazno mesto 𝑏𝑚 v B𝑚(𝑡𝑓 ) in zamenjaj njegovo vrednost na 
(po enačbi (B.), 𝑏𝑚 postane 𝑏𝑚+)
𝑏𝑚 = 

else if ( 𝑗 = “indeks reakcije disociacije aktivatorja iz promotor” ) then
Izberi naključno mesto 𝑏𝑚+ v B𝑚(𝑡𝑓 ) in zamenjaj njegovo vrednost na 
𝑏𝑚+ = 

else if ( 𝑗 = “indeks reakcije vezave represorja na promotor” ) then
Izberi naključno prazno mesto 𝑏𝑚 v B𝑚(𝑡𝑓 ) in zamenjaj njegovo vrednost na −
𝑏𝑚 = −

else if ( 𝑗 = “indeks reakcije disociacije represorja iz promotor” ) then
Izberi naključno mesto 𝑏𝑚− v B𝑚(𝑡𝑓 ) in zamenjaj njegovo vrednost na 
𝑏𝑚− = 

else
Zahtevana ni nobena sprememba v B𝑚(𝑡𝑓 ) pri 𝑗-ti reakciji

end if

Spremeni koncentracije kemijskih zvrsti v sistemu 𝑋𝑓 (𝑡𝑓 ) glede na vrednosti

stehiometričnega vektorja 𝜈𝑓𝑗
𝑋𝑓 (𝑡𝑓 + 𝜏𝑓 ) = 𝑋𝑓 (𝑡𝑓 ) + 𝜈

𝑓
𝑗

Povečaj časovni korak
𝑡𝑓 = 𝑡𝑓 + 𝜏𝑓

end while
konec

Po izvedbi vgnezdenega SSA lahko v zunanjem (glavnem) SSA določimo stanje po-
sameznega promotorja v sistemu z upoštevanjem določenega pravila aktivacije. Na
ta način se izognemo obravnavi (𝑘 + 1)𝑛 različnih stanj promotorjev. Algoritem, ki
opredeljuje delovanje obeh instanc SSA, smo poimenovali dinamični večnivojski stoha-
stični simulacijski algoritem – DMSSA (angl. dynamic multi-scale stochastic simulation
algorithm). Algoritem je orisan v Alg. B..
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Algoritem B.
Dinamični večnivojski stohastični simulacijski algoritem.

Vhodni podatki: sistem kemijskih reakcij , ki predstavljajo GRO z več DNA
vezavnimi mesti za transkripcijske faktorje
ℋ (množica aktivacijskih pravil za vse promotorje v GRO)

Izhodni podatki: evolucija sistema koncentracij kemijskih zvrsti 𝑋

procedura DynamicMultiscaleSSA (, ℋ )
Definiraj vse matrike B iz množice ℬ
ℬ = B, B, … B𝑀𝑝
Loči hitre in počasne reakcije, ter kemijske zvrsti, ki nastopajo v njih
𝑋𝑓 = 𝑋𝒫 𝑓 , 𝑋𝒯 𝑓 
𝑋𝑠 = 𝑋𝒫 𝑠 , 𝑋𝒯 𝑠 , 𝑋𝒰 𝑠 
𝑋 = 𝑋𝑓 , 𝑋𝑠
Postavi začetni čas na 
𝑡𝑠 = 
while 𝑡𝑠 < 𝑇𝑠 do

Osveži koncentracije skupnih kemijskih zvrsti glede na izvedbo počasnih kemijskih
reakcij

𝑋𝑓
𝒯𝑠∩𝑓 = 𝑋

𝑠
𝒯𝑠∩𝑓

Izvedi časovno evolucijo matrik vezavnih mest oz. na sistemu 𝑋𝑓 (𝑡)
𝑋𝑓 (𝑡𝑠 + 𝑇

𝑓
) = 𝑏𝑠𝑒𝑆𝑆𝐴𝑋𝑓 (𝑡𝑠),ℬ 

Izračunaj stanje promotorjev, na osnovi posameznih funkcij pravil ℎ iz
množice pravil ℋ in shrani njihovo stanje (+ = aktivno, - = represirano)
v matrike A𝑚. Število pojavitev vrednosti + v matrikah A𝑚 določa
koncentracijo aktivnih promotorjev v času 𝑡.
for all (𝑚 = , … ,𝑀𝑝) do

A𝑚(𝑡𝑠) = ℎ𝑚B𝑚(𝑡𝑠)
𝑝𝑟𝑠+𝑚 = 𝑓A𝑚(𝑡𝑠)

end for
Osveži koncentracije skupnih kemijskih zvrsti glede na izvedbo hitrih reakcij.
𝑋𝑠
𝒯𝑠∩𝑓 = 𝑋

𝑓
𝒯𝑠∩𝑓

Simuliraj en korak SSA algoritma za počasne reakcije, tj. izračunaj 𝜏 in 𝑗 na osnovi
enačb (B.) in (B.)
𝑗, 𝜏𝑠 = 𝑆𝑆𝐴𝑘𝑜𝑟𝑎𝑘𝑋𝑠(𝑡𝑠)
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Spremeni stanje sistema in povečaj časovni korak 𝑡𝑠
𝑋𝑠(𝑡𝑠 + 𝜏𝑠) = 𝑋𝑠(𝑡𝑠) + 𝜈𝑠𝑗
𝑡𝑠 = 𝑡𝑠 + 𝜏𝑠

end while
konec

Obutljivostna analiza V disertaciji smo se osredotočili na ocenjevanje občutljivo-
sti stohastičnih modelov GRO, ki vsebujejo več nekooperativnih DNA vezavnih mest
za transkripcijske faktorje. Potrebno je torej oceniti občutljivost večnivojskih stohastič-
nih modelov na osnovi algoritma Alg. B.. Predlagali smo izboljšano različico Morri-
sove metode [], ki omogoča ocenjevanje časovno neodvisnih elementarnih učinkov
posameznih parametrov na odziv modela.

V Morrisovi metodi je elementarni učinek (angl. elementary effect) 𝑖-tega parametra
v modelu z odzivno funkcijo 𝑦 definiran kot

𝑑𝑖(x) =
𝑦(𝑥, … , 𝑥𝑖−, 𝑥𝑖 + Δ, 𝑥𝑖+, … , 𝑥𝑘) − 𝑦(𝑥, … , 𝑥𝑖−, 𝑥𝑖, 𝑥𝑖+, … , 𝑥𝑘)

Δ , (B.)

kjer Δ označuje velikost perturbacije parametra z indeksom 𝑖. Občutljivost modela na
𝑖-ti parameter lahko izračunamo kot povprečje elementarnih učinkov:

𝜇𝑖 =
1
𝑟

𝑟

𝑗=
𝑑𝑖(x𝑗),

ki jih izračunamo za 𝑟 različnih vzorčnih vektorjev parametrov x. Saltelli in ostali
predlagajo uporabo povprečja absolutne vrednosti elementarnih učinkov

𝜇∗𝑖 =
1
𝑟

𝑟

𝑗=
|𝑑𝑖(x𝑗)|, (B.)

zaradi možnosti pojavitve negativnih vrednosti v enačbi (B.) []. Povezanost vpliva
𝑖-tega parametra z ostalimi parametri lahko izračunamo na osnovi standardne deviacije
𝑟 elementarnih učinkov, tj.

𝜎𝑖 =


⃓
⃓
⎷

∑𝑟
𝑗= 𝑑𝑖(x𝑙) − 𝜇𝑖



𝑟 . (B.)



 B Razširjen povzetek Mattia Petroni

Vrednost𝜇𝑖 (ali𝜇∗𝑖 ) se uporablja za sortiranje parametrov glede na njihov vpliv na odziv-
no (izhodno) funkcijo modela. Večja kot je vrednost 𝜇𝑖 (ali 𝜇∗𝑖 ), večji je vpliv parametra
na izhod sistema. V tem primeru pravimo, da je sistem občutljiv na perturbacije pa-
rametra z indeksom 𝑖. Majhna vrednost standardnega odklona 𝜎𝑖 označuje podobnost
med 𝑟-timi elementarnimi efekti, kar pomeni, da je učinek 𝑖-tega parametra na sistem
neodvisen od vrednosti ostalih parametrov. Po drugi strani velika vrednost 𝜎𝑖 pomeni,
da so elementarni učinki odvisni od vrednosti, ki jih zavzamejo ostali parametri.

V primeru, da je odzivna funkcija 𝑦 časovno odvisna, kot pri odzivih modelov prido-
bljenih s simulacijskim algoritmom DMSSA, postane tudi elementarni učinek časovno
odvisen, tj. 𝑑𝑖(x, 𝑡). Za namen izogibanja časovne odvisnosti, smo v disertaciji predla-
gali alternativne izhodne funkcije 𝑦. Med temi je pričakovana vrednost

𝔼 𝑦[𝑛]  = 1
𝑁

𝑁−

𝑛=

𝑦[𝑛] = 𝑦[𝑛] = 𝑦, (B.)

kjer 𝑦[𝑛] označuje časovno diskretni signal izhoda sistema dolžine N. Pričakovana vre-
dnost je v tem primeru časovno povprečje vseh vrednosti izbranega izhoda. Alternativ-
na izhodna funkcija predstavlja t.i. vezavni gradient (angl. binding gradient) 𝑖-te kopije
𝑚-tega promotorja. Ta je definiran z izrazom:

𝑔𝑚,𝑖(𝑡) =
𝑛𝑚

𝑗=
𝑏𝑚𝑖,𝑗(𝑡), (B.)

kjer je 𝑏𝑚𝑖,𝑗(𝑡) vrednost vezavnega mesta v matriki B𝑚 v 𝑖-ti vrstici in 𝑗-tem stolpcu. Z
𝑛𝑚 označujemo število vezavnih mest za transkripcijske faktorje na𝑚-tem promotorju
GRO. Če seštejemo vse vezavne gradiente za vse kopije promotorja v celici, dobimo
izraz

𝑔𝑚(𝑡) =
𝑐𝑚

𝑖=
𝑔𝑚,𝑖(𝑡) =

𝑐𝑚

𝑖=

𝑛𝑚

𝑗=
𝑏𝑚𝑖,𝑗(𝑡). (B.)

Pri stohastičnih simulacijah je običajno potrebno izvajati veliko število instanc iste
simulacije z istim naborom parametrom za pridobitev statistično reprezentativnih rezul-
tatov. To je potrebno tudi pri računanju vrednosti 𝑦[𝑛] in 𝑔𝑚(𝑡), če so le-te pridobljene
na osnovi stohastičnih simulacij. Pričakovano vrednost za vse ponovitve simulacij lah-
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ko predstavimo z matriko

𝔼 (Y) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑦[𝑛]
𝑦[𝑛]
⋮

𝑦𝑀[𝑛𝑀]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= Y. (B.)

Pričakovana vrednost matrike Y je skalar 𝔼Y, ki ga izračunamo kot:

𝑠𝑦(x) = 𝔼 Y =
1
𝑀

𝑀

𝑖=
𝑦𝑖[𝑛𝑖]. (B.)

Vrednost 𝑠𝑦(x) predstavlja časovno neodvisno statistiko, ki nam pove, kakšno je priča-
kovano povprečje izhodnih odzivov sistema skozi več ponovitev simulacije. Tovrstno
statistiko lahko uporabljamo neposredno za izračun elementarnih učinkov:

𝑑𝑠𝑦𝑖 (x) =
𝑠𝑦(x + Δ𝑖) − 𝑠𝑦(x)

Δ . (B.)

Tu z notacijo x + Δ𝑖 označujemo [𝑥, … , 𝑥𝑖−, 𝑥𝑖 + Δ, 𝑥𝑖+, … , 𝑥𝑘]. Z elementarni-
mi učinki 𝑑𝑠𝑦𝑖 (x) pridobljenimi na osnovi nove odzivne funkcije 𝑠𝑦, lahko na koncu
izračunamo še občutljivostni metriki 𝜇∗𝑖 in 𝜎𝑖 po izrazik

𝜇∗𝑖 𝑠𝑦 =
1
𝑟

𝑟

𝑙=
|𝑑𝑠𝑦𝑖 (x𝑙)|,

𝜎𝑖 𝑠𝑦 = √
∑𝑟
𝑙= 𝑑

𝑠𝑦
𝑖 (x𝑙) − 𝜇𝑖



𝑟 ,

(B.)

kjer je

𝜇𝑖 𝑠𝑦 =
1
𝑟

𝑟

𝑙=
𝑑𝑠𝑦𝑖 (x𝑙).

Podobno, lahko ocenimo elementarne učinke in občutljivosti parametrov na osno-
vi vezavnega gradienta 𝑔[𝑛]. Tudi pri vezavnih gradientih se lahko izognemo časovni
odvisnosti z enostavnim povprečenjem pridobljenih izhodnih vrednosti, tj. na podlagi
vrednosti 𝑠𝑔(x). Tako 𝑠𝑦 kot tudi 𝑠𝑔 lahko uporabljamo torej ne le za natančno sta-
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tistično predstavitev odziva modela, ampak tudi za ocenjevanje občutljivosti modela
na posamezen parameter. Za pospešitev izračuna povprečnih odzivov sistema smo v
sklopu disertacije razvili paralelno simulacijsko orodje ParMSSA, ki je zmožno paralel-
nega izvajanja velikega števila stohastičnih simulacij za potrebe pridobivanja izhodnih
vrednosti.

Slika B.
Shema genskega pre-
klopnega stikala virusa
Epstein-Barr [].

ebna 1-6 gene

EBNA1

ebna 1 gene

EBNA1 dimer

Cp promoter

Qp promoter

Family of Repeats

Oct-2/Grg/TLE

Rezultati Metodo za ocenjevanje občutljivosti modelov smo uporabili na dveh real-
nih primerih: na modelu GRO preklopa virusa Epstein-Barr, in na modelu sintetične-
ga oscilatorja. V prvem primeru smo občutljivostno analizo uporabili za identifikacijo
parametrov z največjim vplivom na izhode modela. Pri sintetičnem oscilatorju smo
občutljivostno analizo uporabili tako za razvrščanje vhodnih parametrov modela glede
na njihov vpliv na izhode modela, kot tudi za ocenitev robustnosti modela na osnovi
perturbiranja najbolj občutljivih parametrov.

Model preklopnega stikala v virusu Epstein-Barr je prikazan na sliki B.. Model vse-
buje negativno in pozitivno povratno zanko pri regulaciji dveh promotorjev, in sicer
promotorja Cp in Qp. Oba promotorja regulira več nekooperativnih DNA vezavnih
mest. Promotor Cp je reguliran z  vezavnimi mesti, promotor Qp pa z dvema ve-
zavnima mestoma. Dinamiko modela smo simulirali s pomočjo algoritma DMSSA.
Dobljene rezultate smo validirali na že obstoječih podatkih iz literature []. Na-
knadno smo izvedeli občutljivostno analizo z uporabo izboljšane Morrisove metode.
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Rezultati analize so prikazani na sliki B..
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Standardna deviacija proti absolutno povprečje elementarnih učinkov: (a) časovnega povprečja

od odziva EBNA (𝑠𝑦), in (b) časovnega povprečja od vezavnega gradients Cp promotorja. 
predstvlja dissociacijsko konstanto 𝐾𝑑𝐸 za dimerizacijo EBNA,  in  predstavljata razpo-

lovni čas EBNA dimera in EBNA proteina.  je Oct+Grg/TLE razpolovna doba in 
označuje število kopij Cp promotorja.

Slika B.
Občutljivosti parametrov
pridobljene glede na odziv
transkripcijskega faktorja
EBNA.

TAL

TALA

geneA

B

geneB

geneC

TALC

Slika B.
Shema sintetičnega genet-
skega oscilatorja na osnovi
represilatorja []. Vezje je
sestavljeno iz treh sintetič-
nih genov, ki so regulirani
z več DNA vezavnimi me-
sti ter s tremi sintetičnimi
transkripcijskimi faktorji:
TALA , TALB in TALC .

Sintetični genetski oscilator predstavlja osrčje sintezne biologije. Shema oscilatorja,
ki smo ga analizirali, je prikazana na sliki B.. V njem se sintetični proteini, ki igra-
jo vlogo represorjev, kompetitivno vežejo na prosta vezavna mesta in tako regulirajo
transkripcijo ostalih represorjev.
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Slika B.
Občutljivost sistema
v odvisnosti od števila
vezavnih mest.
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Slike prikazujejo občutljivost sistema na parameter, ki določa razpolovno dobo oziroma hitrost degradacije

prostega proteina. Slika (a) prikazuje občutljivost koncentracije enega izmed represorjev, slika (b) prikazuje

občutljivost povprečne periode oscilacij, slika (c) prikazuje občutljivost amplitude glavne frekvence odziva,

slika (d) prikazuje občutljivost povprečnega odziva vezavnega gradienta enega izmed promotorjev, slika (e)

prikazuje občutljivost periode glavne frekvence odziva vezavnega gradienta in slika (f ) prikazuje občutljivost

amplitude glavne frekvence odziva vezavnega gradienta. Vse občutljivosti so prikazane s   intervalom

zaupnosti in se nanašajo na singularno pravilo.

Predlagani oscilator smo simulirali za različne čase in parametre z namenom ocene
robustnosti oscilatorja in njene odvisnosti od števila vezavnih mest. Najprej smo iz-
vedli občutljivostno analizo za identifikacijo najvplivnejšega parametra, za katerega se
je izkazala hitrost degradacije prostega proteina. V nadaljevanju smo analizirali kako
število vezavnih mest vpliva na občutljivost sistema glede na ta parameter. Rezultati
analize so pokazali, da število vezavnih mest robustnosti oscilacij ne povečuje (glej sliko
B.), poveča pa zmožnost natančne kalibracije amplitude in periode oscilacij.



Computational methodology for enhanced sensitivity analysis of gene regulatory networks 

Zakljuek V disertaciji smo razvili metodo za stohastično modeliranje in simulacijo
gensko regulatornih omrežij, ki vsebujejo več nekooperativnih DNA vezavnih mest
za transkripcijske faktorje. Razvili smo algoritem DMSSA za večnivojsko stohastično
simuliranje dinamike tovrstnih gensko regulatornih omrežij.

Izboljšali smo Morrisovo metodo za analizo občutljivosti parametrov stohastičnih
modelov na osnovi uporabe algoritma DMSSA in orodja ParMSSA za pohitritev simu-
lacij. Analizo občutljivosti smo testirali na dveh vzorčnih modelih s področja sistemske
in sintezne biologije, tj. na modelu preklopnega stikala virusa Epstein-Barr in na sin-
tetičnem genetskem oscilatorju. Rezultati so potrdili ustreznost metode in na koncu
pokazali kako se občutljivost genetskega oscilatorja z večanjem števila DNA vezavnih
mest za transkripcijske faktorje spremeni. Tovrstno strategijo lahko tako uporabimo
pri načrtovanju robustnih sintetičnih bioloških sistemov z zmožnostjo procesiranja in-
formacij.
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NOMENCLATURE

𝑀𝑝 the number of all the different promoters in the GRN
A activation matrix
B∗ the orientation matrix
D∗ the sign delta matrix
R∗ random trajectory generator matrix
𝑐𝑚 the copy number of the 𝑚-th promoter of the GRN
𝑛𝑚 the number of transcription factor binding sites in the 𝑚-th

promoter of the GRN







ABBREVIATIONS

API application programming interface
ATP adenosine triphosphate

bseSSA binding sites evolution stochastic simulation algorithm

CLE chemical Langevin equation
CME chemical master equation
CMOS complementary metal oxid semiconductor
CPU central processing unit
CRISPR clustered regularly interspaced short palindromic repeats
CRN cis-regulatory network
CUDA Compute Unify Device Architecture

DCMT Dynamic Creator for Mersenne Twister
DFS Discrete Fourier series
DFT Discrete Fourier Transform
DM SSA direct method
DMSSA dynamic multi-scale stochastic simulation algorithm
DNA deoxyribonucleic acid

EBNA Epstein–Barr nuclear antigen 
EBV Epstein-Barr virus

FCS functional complete set of logic operators
FFT Fast Fourier Transform
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FR Family of Repeats
FRM first reaction method

GFP green fluorescent protein
GMO genetically modified organism
GPGPU general purpose graphic processing unit
GRN gene regulatory network

ITRS International Technology Roadmap for Semiconductors

KRAB Krüppel associated box repressor

LDM SSA logarithmic direct method
LHS Latin Hypercube sampling

MNO minimal normal form
MPI message passing interface
mRNA messenger RNA
MSE Morris screening experiment
MSSA multi-scale stochastic simulation algorithm
MT Mersenne Twister

NRM next reaction method
nSSA nested stochastic simulation algorithm

OAT on at a time approach
ODE ordinary differential equation
ODM optimized direct method
OpenCL open computing language
OpenMP open multi-processing
ORF open reading frame

ParMSSA a parallel multi-scale stochastic simulation algorithm engine
PCA Principal component analyses
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PDF probability density function
PDM partial propensities direct method
PEA partial equilibrium approximation
PPI protein-protein interactions network
PRNG pseudo-random numbers generator

QSSA quasy steady-state assumption

RNA ribonucleic acid
RNAP RNA polymerase enzyme
RRE reaction rate equation
RTGM random trajectory generator matrix

SBML systems biology markup language
SDM sorting direct method
SGRN synthetic GRN
SIMD single instruction multiple data
SSA stochastic simulation algorithm
SSA-CR SSA composition rejection algorithm
ssSSA slow-scale stochastic simulation algorithm

TALE transcription activator-like effector
TF transcription factor
TFBS transcription factor binding site
tRNA transfer RNA

ULSI ultra large scale integration

YAML yet another markup language

ZFTF zinc finger transcription factor





INDEX

API, 
application programming interface,

see API

binding gradient, –
binding site, 

cluster , –
biological systems, 

cis-regulation
complex cis-regulatory mod-

ules, –
elements, 
module, 
network, 

cis-regulatory network, see CRN
CMOS, 
Compute Unify Device Architecture,

see CUDA
computer, 
computer cluster, 
CPU, 
CRN, 
CUDA, 

degradation, –

deoxyribonucleic acid, see DNA
direct method, 
DM, see direct method
DNA, 

recombinant, , 
replication, 
transcription, see transcription
translation, see translation

EBV, 
elementary effect, 
Epstein-Barr virus, see EBV

first reaction method, 
Fourier series, , 

coefficients, 
FRM, see first reaction method
functional complete set, 

gene expression, –
gene regulatory network, see GRN
GFP, 
GPGPU, 
GRN, , –

half-life, 
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input parameter, 

kinetics
mass-action, 

Latin hypercube sampling, see param-
eter sampling

logic gates, 
logic structures, 

message passing interface, see MPI
messenger RNA, see mRNA
microRNA, 
modelling

deterministic, 
stochastic, 

Moore’s law, 
Morris screening experiment, see

MSE
MPI, 
mRNA, 
MSE, , –
multiple binding sites, see binding

site

ODEs, see ordinary differential equa-
tions

Open Computing Language, see
OpenCL

Open Multi-Processing, see OpenMP
open reading frame, see ORF
OpenCL, 
OpenMP, 
ordinary differential equations, 
ORF, 

orthogonal sampling, see parameter
sampling

parallelisation, see parallelism
parallelism

coarse-grained, 
parameter sampling, –

Latin hypercube, 
orthogonal, 

ParMSSA, –
polymerase, see RNA polymerase, 
promoter, , 

constitutive, 
protein, 

fluorescent, 
green fluorescent, 

regulation rule, 
ribonucleic acid, see RNA
RNA, 
RNA polymerase, 
RNAP, see RNA polymerase
RTGM, 

semiconductor, 
sensitivity analysis, 

global, –
local, –

SGRN, , –
SIMD, 
single instruction multiple data, see

SIMD
stochastic simulation algorithm, –


stoichiometric matrix, 
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stoichiometric vector, 

TALE, , 
terminator, 
TF, 

competition, 
cooperativity, 

transcription, –
modelling, –

transcription activator-like effector,
see TALE

transcription factor, see TF
transfer RNA, see tRNA
translation, –

modelling, –
tRNA, , 

ZFTF, see zinc finger
zinc finger, 
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