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Mehki model za računalnǐsko simulacijo letenja ptic v jati

Eno očitneǰsih dejstev o resničnem svetu je, da temelji na dinamiki. Opazujemo jo

namreč lahko tako v naravnem okolju (živi in neživi svet) kot tudi v umetno zgrajenih

sistemih (letalski in cestni promet, skupine robotov itd.). V večini primerov govorimo

o sodelovanju oziroma sobivanju skupin osnovnih entitet, ki so lahko homogene ali ne.

V večini primerov lahko tudi rečemo, da je najbolj osnovno sodelovanje entitet njihovo

usklajeno gibanje. Umetno zgrajenim sistemom je bilo to sposobnost treba vdahniti,

nasprotno pa je v naravnem svetu prisotna vse od njegovega nastanka. Prav zato večina

avtorjev [9, 11, 30, 43] pri modeliranju, simuliranju in uvajanju sposobnosti usklajenega

gibanja v umetno zgrajene sisteme črpa navdih prav iz naravnega okolja – primarno s

preučevanjem obnašanja živali, za katere je značilno usklajeno gibanje. Narava je namreč

polna primerov usklajenega gibanja, pri čemer so najbolj tipični primeri jate ptic, trume

rib, roji insektov itd.

Znanstvena veda, ki obravnava obnašanje živali v splošnem, je etologija. Do nedav-

nega je temeljila predvsem na opazovanju živali v naravnem okolju ter njihove interakcije

z njim [86]. Dandanes pa znanje, pridobljeno pri modeliranju in simuliranju sodelujočih

sistemov, ponuja nove pristope tudi k obravnavi obnašanja živali. Poraja se namreč

možnost obravnave s pomočjo računalnǐskih modelov in simulacij, ali povedano drugače,

možnost obravnave na osnovi izgradnje digitalnih (simuliranih) živali, ki živijo in sobivajo

v digitalnem svetu, ter opazovanja, kako nanj vplivajo in v njem sodelujejo [7]. Etolo-

gom se tako ponuja možnost, da preidejo z opazovanja obnašanja v naravnem okolju,

kjer je ponovljivost prikazanega obnašanja pogojena z začetnimi pogoji, na katere lahko

le redkokdaj vplivamo, na opazovanje obnašanja v digitalnem okolju, ki je pod popolnim

nadzorom znanstvenika. Tak pristop postaja vse bolj zanimiv predvsem zaradi zvǐsevanja

procesnih in predstavitvenih zmožnosti osebnih računalnikov. Etolog bodočnosti bo torej

najprej razvil digitalni primerek živali, ki je predmet njegovih raziskav, in zatem opa-
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zoval simulirano obnašanje v popolnoma obvladljivem okolju. Tako bo lahko preizkušal

obstoječe ali gradil nove hipoteze o tem, ‘kako’ in ‘zakaj’ se živali obnašajo tako, kot se.

Od vseh vretenčarjev, ki živijo v skupinah in se usklajeno gibajo, je ptice najlažje

opazovati, a istočasno verjetno tudi najtežje obravnavati [29]. Za razliko od ptic lahko

namreč za večino sesalcev privzamemo, da se gibljejo po ravnini, kar močno olaǰsa ana-

liziranje dinamike njihovega gibanja. Ribe pa lahko, po drugi strani, zapremo v akvarij,

s čimer omejimo prostor gibanja ter analizo dinamike zopet močno olaǰsamo. Prav sle-

dnje je verjetno eden vodilnih vzrokov, da številna dela obravnavajo ravno trume rib

[3, 16, 44, 56, 71, 77, 79, 80, 85, 91]. Kot že rečeno, so pravo nasprotje temu ptice. Te

se namreč gibljejo znotraj tridimenzionalnega prostora in to s hitrostmi, ki so lahko zelo

velike. Prostor, po katerem se gibljejo, je torej težko, če ne skoraj nemogoče, omejiti.

Obravnavo dinamike gibanja jat ptic pa poleg omenjenega otežuje še dejstvo, da so pre-

leti jat v naravi nepredvidljivi. Namreč tudi v primerih, ko z dovolj visoko statistično

verjetnostjo vemo, kje se pojavljajo, ne moremo napovedati njihovega gibanja. Pridobi-

vanje in analiza podatkov o naravnih prosto letečih jatah ptic sta tako izredno težavna,

kar je razvidno tudi iz literature [20, 29, 31, 46].

Prav zato smo se usmerili na pregled literature o jatah ptic. Največji poudarek smo

pri tem namenili raziskavam računalnǐskega modeliranja in simulacije letenja ptic v jati.

Pregled je pokazal, da je največ tovrstnih raziskav nastalo konec 80. let minulega stoletja.

Takrat sta bila namreč razvita tudi najodmevneǰsa modela, ki so ju postavili Reynolds

[64] ter Heppner in Grenander [28].

Reynolds, strokovnjak za računalnǐsko grafiko, se je s problemom soočil predvsem

zaradi težavnosti ročnega animiranja jat ptic za potrebe filmske industrije. Do tedaj

je slednje temeljilo na mukotrpnem ročnem postavljanju ključnih pozicij posameznih

članov jate. Reynolds pa je pod vplivom raziskovalnega področja umetnega življenja

(ang. artificial life) iskal rešitev, kako bi s pomočjo računalnǐskega modela in simulacije

animiranje jate ptic avtomatiziral.

Nasprotno sta Heppnerja, kot ornitologa, v načrtovanje računalnǐskega modela vo-

dili predvsem ključni vprašanji ‘kako’ in ‘zakaj’. Povedano natančneje sta to vprašanji

“Kako so razmeroma majhne ptice sposobne leteti v tako velikih jatah ter izvajati hitre

nenadne zavoje brez medsebojnih trkov?” in “Zakaj velike ptice letijo v tako natančnih

razporeditvah?”. Težavnost pridobivanja podatkov ga je prisilila v navezo z matematikom

Grenandrom ter iskanje drugačnih pristopov k obravnavi dinamike gibanja jate ptic.
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Ne glede na različni raziskovalni področji imata oba modela skupna izhodǐsča. V

obeh primerih gre za predpostavko, da dinamika jate ne temelji na centralnem viru

procesiranja odločitev, temveč na porazdeljenem procesiranju. O smeri in hitrosti gibanja

se tako odloča vsak član jate posamezno. Procesiranje je pri tem odvisno od stanja

okolice posameznega člana ter tendenc, ki izvirajo iz njegovih teženj. Poleg tega pa so

v obeh primerih težnje izvedene s pomočjo matematičnih enačb (geometrijski izračuni,

diferencialne enačbe itd.), do katerih so avtorji prǐsli z eksperimentalnim delom. Po

Reynoldsu [64, 68] so težnje:

razmik (ang. separation): član jate skuša držati pravšnjo oddaljenost od svojega

sosedstva (ostalih bližnjih članov jate),

usmerjenost (ang. alignment): član jate skuša svojo smer in hitrost izenačiti s

smerjo in hitrostjo svojega sosedstva in

vezljivost (ang. cohesion): član jate se skuša usmerjati v sredǐsče svojega sosedstva.

Po Heppnerju in Grenandru [28] pa:

vračanje (ang. homing): član jate se skuša zadrževati v bližini počivalǐsča oziroma

območja hranjenja (ang. roosting area),

uravnavanje hitrosti (ang. velocity regulation): član jate skuša leteti z vnaprej

določeno hitrostjo in se ob morebitni spremembi k tej hitrosti vrniti ter

interakcija (ang. interaction): če sta dva člana jate preblizu drug drugemu, se

skušata oddaljiti; če sta preveč oddaljena, drug na drugega ne vplivata, v naspro-

tnem primeru pa se skušata drug drugemu približati.

Poleg teh treh teženj pa sta Heppner in Grenander v svoji želji po čimvečji verodo-

stojnosti modela s Poissonovim stohastičnim procesom simulirala tudi vplive različnih

nepredvidljivh motenj, kot so sunki vetra. V svojem delu [28] priznavata, da jima brez

slednjega ne bi uspelo dobiti zadovoljivega obnašanja.

Gledano splošneje segajo prvi poskusi modeliranja umetnega življenja nazaj vse do

leta 1940. Tedaj je namreč John von Neumann postavil osnove definicije strukture, ime-

novane celularni avtomat (ang. cellular automaton), na kateri temelji večina obstoječih

modelov umetnega življenja [1, 9, 18, 19, 35, 70].
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Celularni avtomat je definiran kot prostor celic, katerih osnovna značilnost je notra-

nje stanje. Skozi diskretne časovne korake lahko posamezna celica stanje spreminja, in

sicer na osnovi lastnega stanja v predhodnem koraku ter stanj, ki so jih v predhodnem

koraku imele njej sosednje celice. V večini primerov se kot model celice uporablja Moorov

avtomat (ang. Moore automaton) [48]. Žal zahteva po nespremenljivi razporeditvi celic

vpliva na uporabnost celularnega avtomata kot pristopa k modeliranju dinamike gibanja

organiziranih skupin.

V disertaciji smo se zato osredotočili na Moorov avtomat ter ga nadgradili tako,

da lahko z množico avtomatov predstavimo digitalni svet, sestavljen tako iz živih bitij

kot tudi neživih predmetov in katerega predstavitev ni pogojena z njihovo prostorsko

razporeditvijo. Ker osnovna vodila pri nadgradnji vsebinsko sovpadajo s pojmom animat

(ang. animat), ki ga je brez formalizacije vpeljal Wilson [87], a se dandanes kljub temu

uporablja za poimenovanje razreda računalnǐsko simuliranih živih bitij in robotov [13, 86],

smo naš razširjeni Moorov avtomat poimenovali animat.

Razširitev se pri tem nanaša predvsem na funkcijo prehajanja stanj, ki je v razširjeni

obliki predstavljena kot trinivojska funkcija. Prvi nivo je namenjen modeliranju zazna-

vanja okolja, drugi nivo modeliranju teženj, ki vplivajo na obnašanje modeliranega bitja,

tretji pa modeliranju razvrščanja in združevanja akcij, ki uresničujejo težnje modeli-

ranega bitja. Trinivojska funkcija prehajanja stanj nam tako omogoča modeliranje na

osnovi enega izmed osnovnih mǐsljenj o načinu delovanja živih bitij, kjer je končna ak-

cija posledica procesa zaznavanja prisotnosti impulzov iz okolja ter uresničevanja lastnih

ciljev.

Kot prikaz uporabnosti animata smo slednjega uporabili za postavitev obeh najod-

mevneǰsih računalnǐskih modelov za simulacijo letenja ptic v jati ter pri tem opazili, da

imata modela precej skupnih točk. Oba namreč temeljita na zakonitostih privlačnosti in

odbojnosti, katerih pomembnost za notranjo strukturo in dinamiko organizirane skupine

je predstavil že Okubo [51]. Kljub temu pa sta modela zaradi uporabe matematičnih

postopkov (geometrijski izračuni, diferencialne enačbe itd.) težko obvladljiva avditoriju,

ki sta mu pravzaprav namenjena (biologi, etologi, behavioristi itd.).

Mehko modeliranje (ang. fuzzy modelling) je postalo aktualno s hitrim povečevanjem

procesorskih zmogljivosti. Temelji na mehki logiki (ang. fuzzy logic), ki je nastala kot

naravna posledica vpeljave teorije mehkih množic (ang. fuzzy sets). Slednjo je v svojem

članku leta 1965 prvič predstavil Lotfi A. Zadeh [90]. Teorija mehkih množic predsta-
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vlja posplošitev teorije klasičnih (ostrih) množic z vpeljavo delne pripadnosti. Osnovna

razlika med klasično in mehko množico tako temelji na obravnavi pripadnosti elementa

množici. Klasični množici lahko element le pripada ali ne pripada, mehki pa lahko pri-

pada tudi delno. Torej, če pripadnost elementa opazovani množici ovrednotimo na osnovi

pripadnostne funkcije (ang. membership function), zaloga vrednosti omenjene funkcije,

ki jo pri klasični množici predstavlja množica {0, 1}, postane v primeru mehke množice

zvezni interval [0, 1].

Temelje modeliranja na osnovi dvomnih vedenj in robnih pogojev je postavil Witold

Pedrycz [53]. V aktualni literaturi je moč najti mnogo konkretnih zgledov mehkega

modeliranja (modeliranje požarov v naravnem okolju [47, 82, 83], modeliranje snežnih

plazov [6], modeliranje krmiljenja bele tehnike [49] itd.), pri čemer le redki sodijo v

področje masivnih dinamičnih procesov. Mehkega modeliranja gibanja ptic v jati po

načelih teženj pa v literaturi ni moč zaslediti.

Modeliranje dinamike gibanja organiziranih skupin je zahtevna naloga, ki potrebuje

natančno poznavanje obnašanja modeliranega bitja. Žal pa je natančno poznavanje pogo-

sto nedosegljivo. Slednje pomeni, da so nam v večini primerov na voljo le opisi in razlage

opazovanega obnašanja, ki so običajno pod močnim vplivom opazovalca. To pomeni tudi,

da je prenos takšnega dvoumnega znanja v matematične enačbe težak in pogostokrat za

avditorij, ki se z obnašanjem živali ukvarja, skoraj nemogoč.

Prav slednje nas je vodilo v nadgradnjo animata z vpeljavo mehkosti. Mehki animat

(ang. fuzzy animat) je tako postal struktura, ki omogoča postavitev modela na osnovi

dvomnih (ang. ambiguous, uncertain, vague itd.) znanj ali vedenj ter dvomnih vhodnih

podatkov. Temeljna prednost mehkega animata je možnost neposrednega lingvističnega

opisa (programiranja) teženj modeliranega bitja ter procesiranje na osnovi dvomnih vho-

dnih podatkov.

Mehki animat smo uporabili za modeliranje posamezne ptice v jati, pri čemer smo

se omejili na dvodimenzionalni prostor brez ovir. Pri modeliranju teženj naše digitalne

ptice smo izhajali iz osnovnega splošnega vedenja o obnašanju ptic v jati.

Z namenom analitične in kontrolirane eksperimentalne primerjave obstoječih mode-

lov z našim mehkim modelom smo postavili nabor metrik, ki omogočajo objektivno

primerjavo. Pri konkretni primerjavi smo se osredotočili predvsem na primerjavo našega

mehkega modela z modelom, ki ga je postavil Reynolds [64, 68]. Analiza je pokazala,

da smo, tako kot na drugih področjih modeliranja [47, 49], z uporabo preprostih mehkih
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pravil, ki temeljijo na splošnem vedenju in za katere niso bili uporabljeni postopki učenja

[10], dobili primerljivo ter v nekaterih pogledih bolj ‘naravno’ obnašanje.

V pričujoči doktorski disertaciji so tako podani naslednji izvirni prispevki k znanosti:

postavitev in formalizacija razširjenega Moorovega avtomata (animata),

postavitev in formalizacija mehke oblike razširjenega Moorovega avtomata (mehkega

animata),

uporaba modela mehke oblike razširjenega Moorovega avtomata (mehkega animata)

za potrebe realizacije modela gibanja ptic v jati,

postavitev in formalizacija metrik za primerjavo simulacijskih rezultatov različnih

modelov gibanja ptic v jati ter

primerjava in analiza simulacijskih rezultatov različnih modelov gibanja ptic v jati.

Ključne besede: ptica, jata, boid, animat, mehka logika, mehko modeliranje, mehki

animat, umetno življenje, vedenjska animacija.
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One of the most obvious observations that can be made about the natural world is

that it is based on dynamics. Indeed the latter is as present in nature (fluids, animal

groups, etc.) as it is in man-made systems (vehicle traffic, autonomous robots, etc.).

In most cases we talk about cooperation or coexistence of groups of entities, which

can be homogeneous or not. Furthermore it can be said that in most cases the basic

means of cooperation or coexistence is coordinated movement. In man-made systems this

capability had to be introduced, but in the natural world it has been present since the

days of its creation. This is why most authors when modelling, simulating or introducing

coordinated movement capabilities into men-made systems draw their inspiration from

the natural world – primarily from coordinated groups of moving animals. Examples of

coordinated animal groups abound, but the most commonly known are flocks of birds,

schools of fish and swarms of insects.

The scientific study of animal behaviour in general is called ethology. Until recently

it has been practiced entirely through observation of living animals and their interactions

with the environment. Nevertheless, knowledge gained while modelling and simulating

cooperating and coexisting systems presents a new approach to the study of animal be-

haviour. Appearing is indeed the possibility to study animal behaviour through computer

modelling and simulation, in other words, to study animal behaviour by developing digi-

tal (or simulated) animals living and coexisting in a digital universe and observing them

while cooperating with each other. Ethologists can thus move from observing behaviour

in the natural world, where the displayed behaviour depends on preconditions on which

one has hardly any influence, to observing behaviour in the digital world, which is fully

under the scientist’s control. Furthermore, the approach is gaining appeal because of

the ever increasing processing and visualisation capabilities of personal computers. In

the future the ethologist will thus first construct a digital counterpart of the animal of

vii
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their interest and then observe the simulated behaviour inside a perfectly controllable

environment. In doing so they will be able to test the existing or forming new hypotheses

about ‘why’ and ‘how’ animals behave as they do.

Of all coordinated groups of moving vertebrates, birds are at the same time the easiest

to observe and perhaps the most difficult to study. With this in mind the bibliography

about bird flocking was reviewed, where emphasis was given to the studies regarding

computer modelling and simulation. The review showed that the research field was at its

peak at the end of 1980s, when the two most influential models were developed. After-

wards research interest slowly subsided. A thorough review established that the primary

reason for the latter might be because the models usually employ complex mathemati-

cal methods and are as such difficult to understand. This is further emphasized by the

syntactical confusion, which is present in most of the research papers discussing them.

To help remedy that and allow a uniform approach to modelling the dynamics of

organized groups of moving animals, a formal definition of the animat was developed. The

latter was based on a reformulation of the transition function of the Moore automaton.

In order to diminish syntactical confusion, the animat was then used to reproduce the

two most influential models for the computer simulation of bird flocking.

Furthermore, as the existing models are difficult to understand and/or use by the

audience they were designed for, primarily because they employ complex mathematical

methods, fuzzy logic was introduced into the animat and a formal definition of the fuzzy

animat was presented. The latter was then used to construct a new fuzzy model for the

computer simulation of bird flocking. Results from the analysis and comparison of the

fuzzy model with the existing models showed that comparable and in some aspects more

‘natural’ behaviour can be obtained by using the fuzzy model even when basing it on the

common sense knowledge about the behaviour of flocking birds.

Key words: bird, flock, boid, animat, fuzzy logic, fuzzy modelling, fuzzy animat, arti-

ficial life, behavioural animation.
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1 Introduction

1.1 Motivation

With the increase of the processing and presentational capabilities of personal computers,

the field of computer modelling and simulation has been gaining research interest even in

the areas that a decade ago did not believe that modelling and simulation were suitable

for them. One such area is the modelling of the dynamics of organized groups of moving

animals. Some of the typical examples of such groups are pedestrians [12, 23], bird flocks

and fish schools [3, 28, 37, 38, 39, 40, 52, 64, 77, 79, 80, 91], ant colonies [9, 61], etc.

For the majority of these groups their dynamics is not based on a centralized source

of decision processing, but on a distributed one. Each individual member of the group

thus processes its own decision, depending on the perceived state of the universe and the

tendencies that originate from the drives guiding it.

If I focus on bird flocks: the first and most influential models were developed by

Reynolds [64] and Heppner and Grenander [28]. In both cases the drives are implemented

through mathematical equations (geometrical calculations, differential equations, etc.),

which the authors obtained by means of trial-and-error experimentation. According to

1
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Reynolds [64, 68], these drives are:

separation: each member of the flock tries to maintain a certain separation distance

from its flockmates (nearby flock members),

alignment : each member of the flock tries to match its flight speed and flight

direction with that of its flockmates,

cohesion: each member of the flock tries to fly toward the centre of its flockmates.

According to Heppner and Grenander [28], the drives are:

homing : each member of the flock tries to stay in the roosting area,

velocity regulation: each member of the flock tries to fly with a certain predefined

flight speed - it tries to return to that speed if perturbed,

interaction: if two flockmates are too close to one another, they try to move apart;

if they are too distant, they do not influence each other; otherwise they try to move

closer together.

However, in addition to these three drives, Heppner and Grenander modelled also the

random impact, which was intended to simulate the random distractions that are present

in a natural environment (wind gusts, distractions from moving objects on the ground,

etc.). They implemented it as a Poisson stochastic process and admitted that without

its inclusion they were unable to produce flock-like behaviour.

Upon the analysis of the relevant bibliography it has been determined that the existing

models have some weaknesses, which can be briefly summarized as follows:

syntactical confusion: most of the authors do not present formal definitions of the

models; in the majority of cases the models are only described, which is usually

not a good enough basis for an actual implementation; the latter requires a formal

specification in the form of an automaton or algorithm;

lack of evaluation metrics: regardless of the numerous models, neither an analytical

comparison between the obtained results nor their evaluation have been performed;

in this sense the models have never been truth-tested;
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usability : most of the models are based on complex mathematical formalisms (dif-

ferential equations, random processes, computation of the centre of mass, etc.); in

this sense the models are difficult to understand and/or use by the audience they

were designed for (biologists, ethologists, behaviourists, etc.).

Fuzzy modelling has gained momentum with the increase of processing capabilities.

It is based on fuzzy logic, which emerged as an outgrowth of fuzzy set theory. The latter

was first introduced in 1965 by Lotfi A. Zadeh [90]. Fuzzy set theory is a generalization of

conventional (or crisp) set theory by the introduction of the concept of partial member-

ship. The main difference between the two is thus in the interpretation of membership.

In conventional set theory, an object can be either a member of the observed set or not a

member of the observed set; in fuzzy set theory, however, it can also be a partial member

of the observed set. Therefore if the object’s membership to the observed set is computed

by means of a membership function, then in the case of a crisp set this function maps to

the set {0, 1}, whereas in the case of a fuzzy set it maps to the entire unit interval [0, 1].

The basics of modelling using uncertain knowledge and preconditions were set by

Witold Pedrycz [53]. In the current literature numerous examples of fuzzy modelling can

be found (modelling of fire spread prediction [47, 82, 83], modelling of snow avalanches

[6], modelling of the control of kitchen appliances [49], etc.). However, only some of them

model massive dynamic processes. Furthermore in the extensive literature I did not find

any attempt at fuzzy modelling of bird flocking.

1.2 Scientific Contributions

In the light of the preceding discussion about the existing models’ weaknesses, the fol-

lowing scientific contributions are presented in this dissertation:

design and formal definition of an extended Moore automaton (animat): with re-

spect to the current syntactical confusion I design and present a formal definition

of an extended Moore automaton [34], which allows a uniform approach to mod-

elling the dynamics of organized groups of moving entities; the ideas behind the

above mentioned formal definition correspond with the term animat, which was

introduced, without a formal definition, by Wilson [87]; in spite of that, in the last

decade the term has become the synonym for a class of computer simulated animals

or robots;
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design and formal definition of a fuzzy extended Moore automaton (fuzzy animat):

afterwards I upgrade the extended Moore automaton with the introduction of fuzzi-

ness [90]; the latter allows the construction and implementation of the automaton

by using ambiguous (uncertain, vague, etc.) knowledge and data; one of the main

advantages of fuzzy logic is its ability to permit a direct linguistic description (pro-

gramming) of an arbitrary decision system;

application of the fuzzy animat to the problem of the simulation of bird flocking :

to present its usability I employ the fuzzy animat to model a member of a bird

flock; the model is limited to a two-dimensional space without obstacles; these two

preconditions originate from comparable models of other authors;

design and formal definition of a set of metrics used for comparing the simulation

results from different computer models of bird flocking : the authors of the related

models base the analysis of their simulation results mostly on visual grounds; the

approach is subjective and is, as such, useless for an analytical comparison of

different models; with this in mind I design and formally define a set of metrics

that allow the comparison of the simulation results, and if the required data be

available, perhaps also a comparison to the dynamics of a natural flock;

comparison of the simulation results obtained by using different computer models

of bird flocking : I then use the introduced metrics to compare the simulation re-

sults obtained by using the newly introduced model with those obtained by using

Reynolds’s model [64, 68]; the latter represents the main reference for the majority

of the existing models;

analysis of the simulation results from different computer models of bird flocking :

I analyse the differences in the simulation results of the compared models.

1.3 Methodology

In the quest to achieve the discussed scientific contributions, the following methodologies

have been employed:

review and analysis of the bibliography related to modelling massive dynamic

processes; in doing so, I have learnt about the most important related models;
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application of the acquired knowledge to the design of an extended Moore automa-

ton (animat);

application of the knowledge about fuzzy logic to the design of a fuzzy extended

Moore automaton (fuzzy animat);

development of a computer application (simulator) for the simulation of bird flock-

ing;

experimental work with the simulator and analysis of the simulation results;

comparison of the results obtained with the simulation and those obtained by using

the computer models of other authors;

monitoring and review of all of the new activities in the related fields and active

participation in the form of journal articles and conference contributions.

1.4 Dissertation overview

The main question to be addressed by this dissertation is, “How to use fuzzy logic for

modelling bird flocking?” I feel that flock-like behaviour could be much more easily

described by using simple linguistic descriptions (e.g. collections of if-then rules) than

by using mathematical equations. Indeed, the existing knowledge about the behaviour

of flocks is usually available in the form of the observer’s linguistic descriptions and

explanations of the perceived behaviour.1 The existing models were thus arrived at

by approximating such linguistic descriptions using mathematical equations. Moreover,

considerable amounts of advanced mathematical skills were required for this transition.

Fuzzy logic [90] is a very popular, successful and widespread approach for modelling

processes, for example fire spread prediction [47, 82, 83], which are too complex for

classical mathematical methods. I feel that by using it to describe the simulated animal’s

behaviour the transition from the linguistic description to the actual behaviour could be

made much shorter and much more understandable. In this way researchers involved

with the study of the dynamics of organized groups of moving animals would gain a tool
1“It seems likely that if a bird, say, to the left and in front of another bird turned suddenly in front

of the trailing bird, the trailing bird would have time to react, and turn in the same direction, avoiding

collision.” From personal correspondence with Frank H. Heppner.
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that enabled them to construct the subjects of their interest – the digital animals – and

study their behaviour through simulations.

This dissertation presents the fuzzy animat construction framework and through the

study case of bird flocking also its usage. In Chapter 2 the bird flocking literature is

reviewed and the two most influential models are presented. Chapter 3 presents a formal

definition of an extended Moore automaton that can be used as a uniform approach to

modelling the dynamics of organized groups of moving animals. Chapter 4 presents a brief

overview of fuzzy logic and fuzzy modelling. In Chapter 5 fuzzy logic is used to introduce

fuzziness into the earlier formalized extended Moore automaton, which is then used to

construct a fuzzy digital bird. Chapter 6 is dedicated to the analysis of the dynamics

of organized groups of moving fuzzy digital birds and Chapter 7 concludes by reviewing

the achieved scientific contributions and presenting the future research directions.

1.4.1 Notation

This dissertation assumes that the reader is familiar with the fundamentals of the theory

of conventional (or crisp) sets and conventional (crisp or two-valued) logic. Furthermore,

it is assumed that the reader is familiar with Euclidean vector spaces and correspond-

ing vector operations. This section is included solely to introduce the notation that is

employed, as needed, throughout the dissertation.

N = {1, 2, 3, . . .} the set of all positive natural numbers,

Nn = {1, 2, 3, . . . , n} the set of all positive natural numbers lower or equal n,

R the set of all real numbers,

R+ the set of all non-negative real numbers,

E an Euclidean vector space such as R2, R3,

A, . . . ,Z conventional (or crisp) sets,

Ã, . . . , Z̃ fuzzy sets,

a, . . . , z vectors from vector space E,

〈x1, x2, . . . , xn〉 ordered n-tuple of elements x1, x2, . . . , xn.

In addition
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iff is shorthand expression for “if and only if”,

∃ is shorthand expression for “exists”,

∀ is shorthand expression for “for all”,

|A| is shorthand for the size of set A,

µA is shorthand for the membership function of crisp set A,

P(A) is shorthand for the family of all crisp sets that can be defined on universal

set A,

µÃ is shorthand for the membership function of fuzzy set Ã,

F(A) is shorthand for the family of all fuzzy sets that can be defined on universal

set A,

‖a‖ is shorthand for the size (norm) of vector a,

a0 is shorthand for the normalized vector a (i.e. a vector in the same direction as

a but with size 1),

baea is shorthand for the truncated vector a (i.e. a vector in the same direction as

a but with size lower or equal a).



2 Bird Flocks

2.1 Flock Formations

Of all coordinated groups of moving vertebrates, birds are at the same time the easiest

to observe and perhaps the most difficult to study [29]. This is primarily because most of

the animal congregation research is highly dependent on collecting [29, 31] large sets of

four-dimensional data (i.e. three in space and one in time). In fact, as a contrast to birds,

most mammals move in a two-dimensional plane, which simplifies obtaining real-world

data, and fish can be brought into a laboratory and enclosed in an aquarium for study.

Probably because of the easier and more fruitful tracking of confined objects [29, 55],

fish schools have been a frequent research theme [3, 16, 44, 56, 71, 77, 79, 80, 85, 91].

On the other hand, scientists involved in bird congregations research are challenged

by the highly difficult and almost luck-dependent data collection [29]. Just the fact

that a single bird in an organized flock can move through six degrees of freedom at

velocities up to 150 km/h makes collecting real-world data very difficult. Flocks fly in

a three-dimensional space that cannot be easily contained and their flight paths cannot

be predicted. Even by knowing the locations where there is a reasonable probability of

8
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flock appearance one cannot predict its flight path. Furthermore the three-dimensional

acquisition and analysis techniques generally demand either fixed camera or detector

positions. The free-flying flocks must thus be either induced to fly in the field of the

cameras or the cameras must be placed in locations where there is reasonable probability

that adventitious flocks will move through their field. The difficulty of data acquisition is

evident even from the existing literature [20, 29, 31, 46]. According to Heppner [29], this

may be one of the reasons why there is a current of imaginative speculation, and lively

controversy in literature on bird congregation structure and internal dynamics, but little

data. However, regardless of the difficulty of data acquisition, some basic understanding

of bird flocks is already available.

Birds can fly in disorganized groups, such as gulls orbiting over a landfill, or organized

groups, such as the vees of waterfowl. To the evolutionist, behaviourist, or ecologist,

any group is of interest, but nevertheless organized groups raise most questions. In his

pioneering work from 1974 Heppner [24] presented the first definitions of the two groups.1

Definition 2.1: A disorganized group of birds or flight aggregation is a group of flying

birds lacking coordination in turning, spacing, velocity, flight direction of individual birds

and time of take-off or landing, assembled in a given area.

Definition 2.2: An organized group of birds or flight flock is a group of flying birds, coor-

dinated in one or more of the following parameters of flight: turning, spacing, velocity, and

flight direction of individual birds, and time of take-off and landing.

In this study Heppner also presented a classification of flight flock formations and a

discussion of the leading research directions. According to his study, there are two major

classes of flight formations: line formations and cluster formations. Their characteristics

had and still have a substantial influence on the leading research directions. Today

[29, 55], as it was then [24], the examination of bird flocks is still led by two primary

questions. The first, usually expressed while observing a skein of geese flying overhead,

is “Why do they fly in such a precise alignment?” The second comes to mind when we

observe 5000 European Starlings, Sturnus vulgaris, turning and wheeling over a roost.
1In this dissertation I primarily consider groups of birds in flight and thus will be concerned neither

with their take-off nor landing. For reasons of clarity the term flight in flight flock and flight aggregation

will therefore be omitted.
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We ask ourselves “How do they achieve such coordination and polarity?” The question

‘why’ is thus usually expressed in reference to relatively large birds, like waterfowl, flying

in line formations, whereas the question ‘how’ is in reference to relatively large flocks of

small birds, like sandpipers, flying in cluster formations.

2.1.1 Line Formations

Line formations (Fig. 2.1) are groups of relatively large birds, such as waterfowl and

pelicans, flying in a single line, or joined single lines. Typically they are approximately

two-dimensional and show a rather high degree of regularity in spacing and alignment.

In line formations birds fly in a single line, one behind the other (column), one beside the

other (front) or staggered stepwise from the bird at the head of the formation (echelon).

In nature left and right echelons can be found and frequently a left echelon becomes a

right echelon, and vice versa. However, the transition is not a swing from side to side,

but rather a temporary breakup of the formation. In line formations birds also fly in

joined single lines; left and right echelons joined at the tip of the formation (‘J’ and ‘V’ )

or at the tail of the formation (inverted ‘J’ and inverted ‘V’ ). In the ‘V’ and inverted

‘V’ formation the left and right echelon are approximately the same size, whereas in the

‘J’ and inverted ‘J’ formation one is considerably larger.

echelon

‘V’

‘J’

inverted ‘V’

inverted ‘J’

frontcolumn

Figure 2.1 Line formations: column, front, echelon, ‘J’, ‘V’, inverted ‘J’, and inverted ‘V’ [24].

2.1.2 Cluster Formations

Cluster formations (Fig. 2.2) are relatively large flocks of small birds, like sandpipers,

characterized by development in the third dimension, and rapid, apparently synchronous

turns. In cluster formations birds are typically distributed over a three-dimensional space
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of an irregular spheroidal shape that is, when observed perpendicularly to the plane of

flight: as wide as it is long (globular cluster), wider than it is longer (front cluster),

or longer than it is wider (extended cluster). Birds flying in globular clusters generally

fly in apparent close order and can be seen making very rapid turns. Similarly, front

clusters tend to have very precise spacing and turning. The front cluster is often seen in

pigeons. However, birds flying in extended clusters tend to be rather disorganized, with

frequent breakoffs and shifts of position. This formation may simply be a disorganized

group of birds that happen to be flying independently toward a common destination (i.e.

an aggregation) [24].

front cluster extended cluster

globular cluster

Figure 2.2 Cluster formations: front cluster, globular cluster, and extended cluster [24].

2.2 Simulating Bird Flocks

While observing line formations, one is impressed by the precision with which relatively

small numbers of large birds maintain themselves in accurate spatial alignment and

angular orientation with their flockmates. On the other hand, while observing cluster

formations, the attention is drawn to the coordination that enables large numbers of small

birds, flying in close order, to wheel and turn without suffering mid-air collisions. In the

first case the primary interest is the functional significance of formation flight [29, 72]. In

the second the attention is given to the synchrony, or apparent synchrony, in the turning

movements and the necessity or presence of a leader guiding these manoeuvres.

In the mid 1980s different papers appeared, suggesting that coordination in cluster

flocks might be achieved by the application of the mathematics of nonlinear dynamics

[52] and that flocking might be an emergent property arising from individuals following

simple rules of movement [27]. At the same time, but working in another field of study,
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namely computer graphics, Reynolds [64] published a ground-breaking seminal paper

that first presented a computer model of bird flocking. His primary objective was a

believable animation of a bird flock. In his study a collection of individuals whose behav-

iour is governed by three simple rules based on geometrical calculations, demonstrates

flocking behaviour that is typical for flying birds. Without knowing about Reynolds’s

work, ornithologist Frank Heppner joined forces with mathematician Ulf Grenander and

published the second computer model of bird flocking [28]. In their model the flock was a

self-organizing collection of individuals, whose behaviour was based on stochastic nonlin-

ear differential equations. Nevertheless, both models base their assumptions on common

grounds and model the behaviour of individuals on the, at times contradictory, clues of

attraction and repulsion. The mutual coexistence and importance for the congregation’s

structure of these two clues was already suggested by Okubo [51].

After 1990 papers regarding computer models of bird flocking subsided. The rare

exceptions were the studies of the evolution of flocking behaviour [65, 66, 67, 73, 74] and

Heppner’s unpublished study of flock take-off and landing [29]. In the last few years the

field has been slowly regaining scientific interest. Recent research, however, builds on the

two original models. Tanner, Jadbabaie, and Pappas [75, 76] for example concentrate on

the stability analysis of an organized flock that is based on Reynolds’s model. Couzin et

al. [14], on the other hand, employ Reynolds’s model to examine leadership and decision

making in animal groups on the move. Their approach adds a preferred flight direction

only to a proportion of the modelled digital birds. Their study reveals that the larger

the group the smaller the proportion of informed individuals needed to guide the group,

and that only a small proportion is required to achieve great accuracy. A rare example

of a different, and also the most recent, approach is that of Wiltschko and Nehmzow [88],

but its primary concern is not flocking but rather the navigation process employed by

pigeons.

The primary reasons for the loss of research interest may lie hidden in the mathemati-

cal nature of these simulations as well as in the amount of work that is required to master

the effects that parameter changes have on the displayed behaviour. Even Heppner and

Grenander [28] admit that the interesting patterns were discovered serendipitously and

that considerable trial-and-error experimentation was needed before flock-like behaviour

was produced.

Furthermore, one can hardly imagine that flocking birds flying at speeds up to
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150km/h [29] have the time or the ability to perform sophisticated or time-intensive

mathematical calculations. Even Parrish et al. [55] state that there must be simple

traffic rules for species’ engaging in collective movement. To continue, considering our

perception of the surrounding environment, it is difficult to imagine that birds are able

to perceive precise (i.e. crisp) information (e.g. distance). However, all of the existing

mathematical models assume such capabilities.

Furthermore, the mathematical nature of the existing models means that a substan-

tial mathematical understanding was required for their construction as is required for

their thorough understanding. In my opinion this represents a major drawback for their

usability. The mathematical nature, if truth be told, makes the models difficult to under-

stand by the audience they were designed for. The latter is predominantly composed of

ethologists, not mathematicians. Even if one makes the models as black-box modules and

allows only changing the values of parameters, this would not suffice for truth-testing.

Truth-testing any sort of simulation that purports to represent natural behaviour is ex-

tremely difficult, and has not often been done, especially in behaviour. Models are usually

too crude, or have too many special conditions to be readily tested with real-world data.

This is probably why ethologists have difficulties in using the models for testing the

existing hypotheses or forming new ones.

2.2.1 Computer Model by Craig W. Reynolds

Traditionally an animator who wanted to animate a bird flock would carefully set up

numerous key frames that defined the motion paths of every single flock member. When

animating a line flock, especially if it is a very small one, such an approach is somehow

possible. Difficulties arise when large cluster flocks are being animated. In this case

animating each and every flock member becomes painstaking and tedious, and is, dis-

regarding the difficulty of corrections, without inter-bird collisions almost impossible to

do.

As already mentioned, Craig W. Reynolds, in his pioneering work from 1987, pre-

sented the first computer model of bird flocking [64]. When reflecting on how to animate

a bird flock he treated the latter as any group of entities that exhibit the general class of

aligned, noncolliding, aggregate motion. This means that with the term flock Reynolds

refers also to schools, herds, etc. However, when speaking about bird flocks it can be seen

that his notion is more strict than definition 2.2. In fact, he assumes an organized flock
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to be coordinated in all of the flight parameters as well as that there are no collisions.

However, the requirements of definition 2.2 are met also when coordination is only in

some of the parameters of flight and the definition does not make note of the absence of

collisions. The latter on one hand seems plausible, however, on the other hand, especially

in large cluster flocks, because of their size, the relatively small inter-bird spacing and

fast manoeuvres, seems almost impossible.

In the mid 1980s the decentralization ideology [61] was becoming ever more influential.

This was also the time when the research field of artificial life [1, 18, 36] was emerging.

Both, together with Reynolds’s prior work [62, 63], led him toward the idea that a flock

of birds, as perceived by one of its members, is something completely different than as

perceived by an outside observer. It is much like the difference between driving in traffic

and standing on a roadside watching traffic whiz by. This represented an important step

forward. He did not look at the flock as a whole any more or searched for a single rule

that describes it – known as top-down approach. On the contrary, he imagined what it

would be like to be a member of the flock and searched for the rules to follow in order to

stay in the flock – known as the bottom-up approach. This approach is characteristic for

modelling artificial life [1, 18, 19, 35, 36, 70, 77, 78, 80, 85]. I am talking about modelling

by constructing a large number of primary entities, whose local interactions base on

simple rules, and observing the emergent global behaviour, behaviour not previously

programmed according to specific rules [18]. Later, in computer graphics, Reynolds’s

approach, when one actually seeks to model the behaviour of an object and not its shape

or physical properties, became known as behavioural animation [64].

Reynolds [64] came to the conclusion that as a member of a flock he would have to

successfully coordinate three different drives. He found out that, in order to fly without

collisions, he would have to make sure that he was not too close to any of his flockmates.

In other words, he would try to maintain a certain separation distance. Furthermore, he

would have to try to fly with the same flight speed and in the same flight direction as his

flockmates. This also means that it would be highly unlikely that he collided with them

in the near future. And finally if he noticed that all of the flockmates were on one of

his sides he would wish to drift towards them. Written in the form of simple rules these

drives are [64, 68, 69]:

separation: avoid collisions with nearby flockmates,
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alignment : attempt to match flight speed and flight direction with nearby flock-

mates,

cohesion: attempt to stay close to nearby flockmates.

The cohesion and separation drives together represent the so-called attraction-repul-

sion scheme [51]. The alignment drive, on the other hand, is used to produce polarization,

which is another important feature of animal groups of uniform density [55].

Reynolds translated the three drives to a set of geometrical equations, where he

interpreted the expression ‘nearby flockmates’ as the bird’s immediate surroundings (see

section 3.3.1). Actually, he found out that a bird does not require full knowledge about

the positions, flight speed and flight direction of every bird in the flock, but only a

small subset. The expression ‘nearby flockmates’ thus addresses the bird’s awareness of

another bird and Reynolds based its computation on the distance and direction of the

offset vector between them. His digital bird2 thus actually has a localized perception of

the world with a certain distance and field of view and can be visualized as a perception

volume shaped like a sphere with a cone removed from the back. It is important to note

that, when the digital birds are in a flock, the individual perception volumes overlap and

each individual bird will probably end up in a number of perception volumes.

With a limited perception volume, Reynolds makes a very good point stating that

a bird’s perception of the world is severely limited by occlusion (i.e. nearby birds hide

those far away), but inside the perception volume he does not take this into account.

Furthermore, even though he limits the digital bird’s awareness of the world, the perceived

information is accurate, meaning that the digital bird has full and precise knowledge

about the position, flight speed and flight direction of its flockmates. In my opinion this

approach is still defective. It is true that Reynolds does not try to model visual perception

but tries to make available approximately the same information that is available to a

bird as the end result of perceptual and cognitive processes. However, all of the obtained

information is still based on visually perceptible information. A bird’s visual perception

is not limited only by occlusion, but also by the fact that the ability to sense distance,

apart from being affected by the degree of binocular overlap, decreases with distance

itself. Moreover, in his latest implementation of the model,3 Reynolds uses three distinct
2Actually Reynolds refers to the digital (simulated) bird-like, “bird-oid” objects, generically as boids

even when they represent other sorts of creatures such as schooling fish [64].
3OpenSteer v0.8, http://opensteer.sourceforge.net/.

http://opensteer.sourceforge.net/
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perception volumes, one per drive. According to my experiments (see Chapter 6) this

introduces unwanted ‘unnatural’ behaviour.

Furthermore, Reynolds models the cohesion drive as the digital bird’s tendency to fly

toward the centre of mass of the nearby flockmates. I find this somewhat questionable.

The centre of mass is a mathematical construct and it is difficult to believe that a real

bird has knowledge of such constructs or uses them to compute its action. It is true that

it was Pliny [29] who noted that “it is a peculiarity of the starling kind that they fly in

flocks and wheel round in a sort of circular ball, all making towards the centre of the

flock”. However, in my opinion, real birds might not have any idea about the centre of

the flock and their making towards it might be just an emergent property by itself.

In Reynolds’s approach an individual digital bird thus, based on the precise informa-

tion about the position, flight speed and flight direction of its flockmates, using geomet-

rical equations, computes the three desired changes of flight direction and flight speed,

each satisfying one drive. As Reynolds models the digital bird as a point mass (simple)

vehicle [64, 68], he represents the desired change in flight direction and flight speed as

the physical force that would induce it. The digital bird thus computes the actual change

in flight direction and flight speed by computing a weighted sum of the resulting three

physical forces (see section 3.3.1 for more detail).

2.2.2 Computer Model by Frank H. Heppner and Ulf Grenander

As a contrast to animators who try to produce a flock animation that visually resembles a

natural flock in a way that could take in a theatre spectator, flocks interest ornithologists

from a completely different point of view. The synchrony, or apparent synchrony, in the

turning movements of cluster flocks has drawn much attention from ornithologists. The

key research directions were, and still are, guided mostly by the question how flocks

coordinate their movement and decide when to wheel or turn. With respect to this in

most investigations the leading role was played by the search for evidence that would

answer the question of existence or necessity of a flock leader. Indeed, many researchers

assumed a leader’s existence and presumed it directed the movement of the whole flock

[28]. This approach was also taken by Heppner and Hafner [25], but they proceeded to

demonstrate the formidable obstacles to visual or acoustic communication between such

a putative leader and its followers. Nevertheless, efforts to identify the flock’s leader

have been so far unsuccessful, even when using methods that permit an analysis of the
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position of individually identified birds in a free-flying pigeon flock [60]. In the meantime

reports appeared [15] which suggested that the coordinated turning might be an emergent

phenomenon; the result of individual birds ‘voting’ with their bodies on the flight path

the flock should take. According to this theory the flock turns in the direction expressed

by the initiators only when a ‘critical mass’ is reached. Recently, a similar approach has

been used by Couzin et al. [14] to examine leadership and decision making in animal

groups on the move.

Similar to Reynolds, ornithologist Frank H. Heppner started pondering the idea that

flocks might be an emergent phenomenon; the result of a group of individuals following

simple rules. This idea was, again as in Reynolds’s case, initially inspired by artificial

life research; by Conway’s ‘Game of Life’ [19], to be more precise. Moreover, also by the

emerging suggestions that coordination in cluster flocks could be achieved by the applica-

tion of nonlinear dynamics [52]. As ornithologists in most cases are not mathematicians,

Heppner joined forces with applied mathematician Ulf Grenander, to translate his ideas

into mathematical equations. The result of their work was the second computer model of

bird flocking [28] given through a stochastic differential driven by a Poisson process. As

in Reynolds’s case, the model developed by Heppner and Grenander also suggested that

birds coordinate through three, but different drives. They assumed that the coordination

in flocks emerges because birds try to accomplish the following drives:

homing : each member of the flock tries to stay in the roosting area,

velocity regulation: each member of the flock tries to fly with a certain predefined

flight speed – it tries to return to that speed if perturbed,

interaction: if two flockmates are too close to one another, they try to move apart;

if they are too distant, they do not influence each other; otherwise they try to move

closer together.

As already said, Grenander translated these drives into mathematical equations that

depended on the current position of the digital bird (homing), its flight speed (velocity

regulation) or its distance from other digital birds (interaction). But their digital bird

has complete and precise information about the locations of other digital birds. With this

Heppner and Grenander make an unrealistic assumption because, as already discussed,

real birds have limited and inaccurate perceptive capabilities.
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As a contrast to Reynolds, who modelled the principles of attraction and repulsion in

the form of two distinct drives, Heppner and Grenander combined them into one drive

(interaction). Combined or not, the two drives seem reasonable and ‘natural’, after all,

their mutual coexistence and importance for the congregation’s structure has already

been suggested by Okubo [51]. On the other hand, the velocity regulation drive used by

Heppner and Grenander seems somewhat strange. They derived this drive from aerody-

namic theory; with a given power output and configuration, an aircraft will maintain a

constant speed, it will return to that speed if perturbed. A real bird would not have to

make a decision about this. In my opinion, this results in a questionable effect. Take, for

example, a digital bird that slowed down because it was too close to one of its flockmates.

It will speed up. But not because it is trying to catch up with the flock, but because

it is returning to the predefined preferred flight speed. In my opinion this behaviour

resembles more to an aggregation of birds that happen to be flying together than to a

flock of birds that are trying to fly together. Furthermore, it is hard to grasp that a bird

has a predefined preferred flight speed. Even if it does, this cannot be constant in time.

Even though birds (especially in line flocks) tend to fly in relatively straight lines and

at very consistent speeds, they tend to change their flight speed regardless of the speed

of the flock, which might, however, be primarily caused by fatigue or other distractions

(e.g. wind gusts).

Another important feature of flocks is alignment. Heppner and Grenander [28] did not

model it specifically, but they mention that in certain cases organized flocks maintaining

straight direction of flight emerged. This might be caused by the perception model they

used. Their digital bird has complete and accurate information about its surroundings,

which means it has full and precise knowledge about the locations of all surrounding

digital birds that are closer than a predefined distance. However, in their quest for

realism, Heppner and Grenander, introduced also a special influence which was intended

to simulate the effects of wind gusts and random local disturbances. They modelled

it using a Poisson stochastic process and state that it was of crucial importance for

achieving flock-like behaviour [28].



3 The Animat

3.1 The Digital Universe

The first attempts to model artificial life date all the way back to the 1940s. It was

then when John von Neumann, while researching advanced computer structures, based

on parallel processing, laid the foundations of a special structure denoted as a cellular

automaton. Indeed, most of the early artificial life research was based on the cellular

automaton, Conway’s ‘Game of Life’ [19] and Langton’s self-reproducing loop [35] being

the most renown examples [1, 18, 70].

The cellular automaton is formally defined as a spatial array of cells, where each cell

holds a digital state number [70]. The cells’ states are updated in parallel at discrete time

steps. In addition, it is required that the method of updating is local and homogeneous.

In most cases the cells’ next states are computed based on their current state and the

state of their immediate neighbourhood (i.e. the states of the cells that are, with respect

to their spatial arrangement, adjacent to the observed cell). But the fixed topology of

the cellular automaton makes it difficult to apply to modelling the dynamics of organized

groups of moving animals.

19
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However, according to Mraz [48], the abstract structure that is the most suitable for

modelling a cell in the cellular automaton is the Moore automaton [34].

Definition 3.1: The Moore automaton is defined as a five-tuple 〈X,Q,Y, δ, λ〉, where X,

Q and Y are non-empty sets representing the input alphabet, the internal states and the

output alphabet respectively; δ is a mapping called the transition function and λ is a

mapping called the output function:

δ : X×Q → Q, (3.1)

λ : Q → Y. (3.2)

At any discrete time step t ∈ T, where T is a non-empty set of discrete time steps, the

automaton is in a state q(t) ∈ Q. The state determines its future input-output behaviour.

If an input x(t) ∈ X is applied, then, in the next discrete time step t + 1, the automaton

assumes a new state q(t + 1) = δ(x(t), q(t)) that depends both on the current state and the

input. In addition, the automaton emits the output λ(q(t + 1)) ∈ Y, which depends on the

new state.

Let me put aside the cellular automaton structure and concentrate on its cell (i.e. the

Moore automaton). In this chapter the Moore automaton shall be extended so that it can

be used to represent an inanimate or animate object. The idea of using Moore automata

to represent inanimate or animate objects is not new; after all, every artificial life model

constructed by using a cellular automaton makes this notion. However, instead of the

fixed topology as required by the cellular automaton, a collection of extended Moore

automata is not required to be in a fixed spatial arrangement. In other words this means

that it can be used to represent the digital universe [7]. Furthermore, it also means that

the objects constituting the digital universe update their states in parallel at discrete

time steps and that the method of updating is local yet not necessarily homogeneous.

3.2 The Digital Animal

Regardless of the methods used when modelling a digital animal, the basic characteristics

of real animals first need to be abstracted. Most people accept or infer that every animal

exists in time and space, and is surrounded by inanimate and animate objects (i.e. the

universe). Most people also presume that animals have senses (i.e. sight, hearing, smell,

etc.) through which they have the ability to perceive the current state of the universe.
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An animal is, through actions (e.g. movement), capable of influencing its internal state

and the state of the universe. With respect to its current internal state (e.g. hunger) only

certain data from the universe (e.g. locations of food sources in the vicinity) is important

to the animal and its drive is to optimize (e.g. minimize) the rate of their occurrence.

The animal selects actions (e.g. feeding) that satisfy its drives. In view of its current

internal state and the most pressing drives the animal performs a sequence of muscular

movements that will accomplish a combination of these actions (action selection). A

model that takes into account the above characteristics is commonly referred to as digital

(simulated, artificial) animal or animat [13, 86, 87].

Modelling perception, drives and action selection with a Moore automaton is far from

being straightforward. To simplify this, the Moore automaton was extended [37, 38, 39]

and the transition function δ from definition 3.1 reformulated to a three-stage scheme

that is presented in Fig. 3.1. Since the ideas behind the extension correspond with

Wilson’s animat [87], I adopted the name and denoted the extended Moore automaton

as an animat.

universe

u t( )

perception P1 Pk

drives D1 Dl

action selection S

q t( +1)

next state

neighbourhoodpk

pkp1p1

ala1

...

...

action

Figure 3.1 The animat – the three-stage scheme of the reformulated transition function δ.
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Definition 3.2: An animat A = 〈X,Q,Y, δ, λ, P, D, S〉 is an extended Moore automaton,

where P =
〈
P1, . . . , Pk

〉
is a k-tuple of perception functions, D =

〈
D1, . . . , Dl

〉
is an l-tuple

of drive functions, S is an action selection function and the transition function δ is defined

as:

δ(x, q) = S(〈a1, ..., al〉, q), (3.3)

aj = Dj(〈p1, ..., pk〉, q), j = 1, . . . , l, (3.4)

pi = Pi(x, q), i = 1, . . . , k. (3.5)

As already said, at the most basic level, the universe is a collection of inanimate and

animate objects. I shall assume that it can be represented as a collection of animats

(i.e. extended Moore automata). This means that at a discrete time step t ∈ T there

are n(t) ∈ N animats. Nevertheless, without a loss of generality, it can be assumed that

n(t) = n, ∀t ∈ T and then the animats can be denoted as A1, . . . , An.

According to the discussion at the beginning of this section, animate and inanimate

objects exist in time and space. Let E be an Euclidean vector space and Si represent

the set of possible internal states of animal i. Then, when modelling organised groups

of moving animals, the state of animat Ai at a discrete time step t ∈ T is typically

represented as qi(t) = 〈pi(t),vi(t), si(t)〉, where pi(t) ∈ E denotes the position in space,

vi(t) ∈ E the velocity and si(t) ∈ Si the internal state of the modelled animal.

Let Yi denote the output alphabet of animat Ai for all i = 1, . . . , n. It is a non-

empty set representing data about animal i that can be perceived by an outside observer.

Therefore U = Y1×· · ·×Yn and the perceivable state of the universe at a discrete time

step t ∈ T is given by the n-tuple u(t) = 〈y1(t), . . . , yn(t)〉, where yi(t) = λi(qi(t))

denotes the output of animat Ai at time step t for all i = 1, . . . , n.

At any discrete time step all animats are applied the same input; the perceivable

state of the universe. In other words, at a discrete time step t ∈ T, the input that is

applied to all animats is x(t) = u(t). Subsequently this means that all animats use the

input alphabet X = U = Y1 × · · · ×Yn.

If I summarize: at a discrete time step an animat is applied the current perceivable

state of the universe (i.e. the data about all of the animats that can be perceived by an

outside observer). Using the transition function (i.e. taking into consideration perception,

drives and action selection), the animat computes its next discrete time step state and



3.2 The Digital Animal 23

then emits its new output. With this the perceivable state of the universe changes. In

the following sections perception, drives and action selection are going to be discussed in

more detail.

3.2.1 Perception

As already said, the input of an animat is the current perceivable state of the universe.

Let perception be the animal’s process of interpreting the perceivable data and selecting

just the relevant information from all of the sensory signals that exist in the universe

(e.g. detect the locations of food sources in the vicinity). From the viewpoint of human

perception of the universe, it could be said that there exist multiple perception types

(i.e. sight, hearing, smell, etc.), where each of them selects only the relevant information

according to a specific characteristic.

Let the current perceivable state of the universe be the n-tuple u = 〈y1, . . . , yn〉,
where for all i = 1, . . . , n yi ∈ Yi is data about animat Ai that can be perceived by an

outside observer. Let q ∈ Q be the current state of the observed animat and let its input

x ∈ X be the current perceivable state of the universe, that is x = u = 〈y1, . . . , yn〉.
Let Nn denote the set of all positive natural numbers lower or equal to n and for all

i = 1, . . . , n let the set Ic
i represent information about animat Ai that can be obtained

from yi with respect to a certain characteristic c.

Let the set N ∈ P(Nn) represent the set of indexes of members of x; in other words,

animats that are according to characteristic c relevant to the observed animat. The

ordered pair p =
〈
N, o

〉
, where N ∈ P(Nn) and o ∈ Ic

1 × · · · × Ic
n then represents the

information regarding characteristic c that was obtained from the current perceivable

state of the universe and is, with respect to this characteristic, relevant to the observed

animat. For reasons of notational simplicity, let the set P(Nn)×(Ic
1×· · ·×Ic

n) be denoted

simply as Pc.

Definition 3.3: Let x ∈ X be the current perceivable state of the universe and p ∈ Pc be

the information regarding characteristic c that was obtained from x and is, according to

this characteristic and the state q ∈ Q, relevant to the animat. Then a perception function

for characteristic c is a mapping P : X×Q 7→ Pc.

For reasons of simplicity I shall address the image of a perception function with the

name neighbourhood. If I sum up, a neighbourhood obtained by means of a perception
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function represents only the relevant characterized sensory signals (e.g. locations of food

sources in the vicinity). This means that the perception function allows taking into

account that different animals employ different strategies for sampling sensory data [13].

3.2.2 Drives

The animal’s drives are in strong correlation of its internal state and the perceived

information about the state of the universe. In other words: based on the information

obtained from the perceivable state of the universe (e.g. locations of food sources in the

vicinity) and its current internal state (e.g. hunger) the animal will select actions (e.g.

feeding) that satisfy a specific drive (e.g. minimize hunger).

Let the observed animat have k ∈ N perception functions denoted as P1, . . . , Pk.

This means that the set P = Pc1 × · · · ×Pck represents information obtainable from the

perceivable state of the universe. Let me for all i = 1, . . . , k use pi ∈ Pci to denote the

neighbourhood that was obtained using perception function Pi. Then 〈p1, . . . , pk〉 ∈ P

represents the perceived information about the current state of the universe that was,

with respect to the current state of the animat, obtained from the current perceivable

state of the universe.

Definition 3.4: Let A denote the set of possible actions of the animat and let a ∈ A be

the action that, with respect to the perceived information about the current state of the

universe 〈p1, . . . , pk〉 ∈ P and the current state of the animat q ∈ Q, satisfies a specific

drive. Then a drive function is a mapping D : P×Q 7→ A.

3.2.3 Action Selection

With action selection I refer to the animal’s neurological process of selecting the sequence

of muscular movements that will accomplish the actions that result from its drives. This

process must combine, prioritize, and arbitrate between potentially conflicting actions.

Let the observed animat have l ∈ N drive functions denoted as D1, . . . , Dl. This

means that the l-tuple 〈a1, . . . , al〉 ∈ Al represents the animat’s desired actions (i.e. the

actions that would satisfy its drives, each satisfying only one of them).
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Definition 3.5: Let q′ ∈ Q denote the next state of the animat computed by taking into

account the current state of the animat q ∈ Q and combining, prioritizing and arbitrating

between its desired actions 〈a1, . . . , al〉 ∈ Al. Then an action selection function is a mapping

S : Al ×Q → Q.

If I sum up, at any discrete time step the animat’s input is the current state of the

universe. The three stage scheme of the transition function, given by equations (3.3)–

(3.5), tries to imitate the adopted theory about the behaviour of animals (Fig. 3.1). In

the first stage the perception functions are used to retrieve, from the current perceivable

state of the universe, only the information that is relevant to the observed animat. In

the second stage the drive functions use the retrieved information to compute the desired

actions (i.e. those that would satisfy the observed animat’s drives). Finally the action

selection function combines, prioritizes and arbitrates between the potentially conflicting

actions and generates the animat’s next discrete time step state.

3.3 Case Study

In the previous sections a formal definition of the animat was presented. The animat

can be used to model an inanimate or animate object. In this section I shall employ it

to reproduce the computer models of bird flocking that were presented by Reynolds [64]

and Heppner and Grenander [28]. This way I will show the usability of the animat and

also present the formalization of the two models.

Reynolds based all of his processing on geometrical calculations, but even though

he has published numerous works concerning his model [64, 65, 66, 67, 68, 69], no for-

mal definitions have ever been given. Fortunately, he has recently made available the

OpenSteer library,1 which includes an implementation of the model. Therefore all of my

studies are based on this implementation, more precisely on OpenSteer v0.8.

Heppner and Grenander, on the other hand, based their processing on stochastic

differential equations. In their paper, as a contrast to Reynolds’s, they give more infor-

mation, but which is not sufficiently complete to allow for an immediate easy reimple-

mentation. Furthermore, the model they used is not available on-line. Recently, however,

Heppner has given me a printout of the source code of the model through personal cor-

respondence, and thus I have based my studies on the latter.
1http://opensteer.sourceforge.net

http://opensteer.sourceforge.net
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3.3.1 Formalization of Reynolds’s Computer Model

Reynolds in his study [64] modelled the universe as a collection of n digital birds of

the same kind and obstacles which represented inanimate objects. He states that the

obstacles and the digital birds’ attempts to navigate around them increase the apparent

complexity of the displayed behaviour. In his paper he also suggests that the complexity

of natural flocks might be due largely to the complexity of the natural environment [64].

More recently,2 however, he has acknowledged that the lifelike, unpredictable behaviour

of the digital birds emerges from the complex adaptive nature of the model. Furthermore,

in his latest studies [68, 69] he states that flock-like behaviour can be achieved by using

only three drives and is independent of obstacles. Thus I decided not to model the

obstacles, after all, natural flocks form and exist even in open spaces, where there are no

obstacles.

As already said, Reynolds’s digital bird moves through the universe with a certain

velocity (i.e. flight direction and flight speed) and at every discrete time step it changes

this velocity in order to approximately optimize three drives: separation, alignment, and

cohesion (see section 2.2.1). The decision is based purely on the digital bird’s current

state and the current perceivable state of the universe. More precisely, the decision is

based on the perceived locations and velocities of the nearby flockmates. However, the

meaning of the expression ‘nearby flockmates’ is drive dependant. Regardless of the

latter, the above led me to believe that Reynolds’s digital bird could be represented as

an animat [37, 38, 39].

I shall assume that Reynolds’s digital bird can be represented as an animat. As

discussed in section 3.2, the animat’s internal state q ∈ Q is defined by the triplet

〈p,v, s〉, where p ∈ E is its position in space, v ∈ E its velocity and s ∈ S is the

modelled animal’s internal state. I shall therefore begin by defining the latter.

Definition 3.6: Let the triplet r = 〈rs, ra, rc〉 represent the separation, alignment and cohe-

sion perception distances and let the triplet fov = 〈fovs, fova, fovc〉 represent the separation,

alignment and cohesion fields of view. Let m represent the digital bird’s mass, vM its max-

imal achievable flight speed and fM its maximal available force. Then the internal state of

the animal modelled by Reynolds’s digital bird is

s = 〈r, fov, m, vM, fM〉 . (3.6)

2http://www.red3d.com/cwr/boids/applet/

http://www.red3d.com/cwr/boids/applet/
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For reasons of simplicity it shall be assumed that only the animat’s position p and

velocity v change through time, while the modelled animal’s internal state s stays con-

stant. This is also consistent with Reynolds’s original definition [64]. The velocity vector

v gives the animat’s relative position changes per coordinate axis in the Cartesian co-

ordinate system and therefore encodes the animat’s flight direction v0 and flight speed

‖v‖. The perception distances and fields of view define the animal’s perception volume

(Fig. 3.2). The maximal achievable speed represents a simple model of viscous speed

damping (i.e. it will be used to model the inability to exceed a certain speed even if

constantly accelerating), while the maximal available force shall be used to take into

account the fact that only an animal with a finite amount of energy is being modelled.

r
s

fov
s

r
a

fov
a

r
c

fov
c

Figure 3.2 The perception model that Reynolds used in the OpenSteer v0.8 implementation of his model [68]. The black

arrow represents the digital bird’s flight direction. The shaded area represents the combined perception volume

defined by the distinct separation (rs,fovs), alignment (ra,fova) and cohesion (rc,fovc) perception volumes.

The perceived flockmates are depicted in a light blue colour.
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Modelling Perception

As discussed before, in Reynolds’s case, the universe is homogeneous (i.e. consists of

animats of the same kind). Furthermore, the number of animats is n ∈ N and constant

through time. This means that the animat’s input alphabet is X = Yn.

Let Y = E×E and let the animat’s output function λ(q) = 〈p,v〉 return the animat’s

current position in space and its current velocity. Then at a discrete time step t ∈ T

the perceivable state of the universe is u(t) = 〈y1(t), . . . , yn(t)〉, where for all i = 1, . . . , n

yi(t) = λ(qi(t)) is the output of animat i (i.e. its position in space and its velocity) at

time step t.

As said, a perception function (definition 3.3) acts like an interpreter of the perceivable

state of the universe and a selector of relevant information. Then, regarding the drives

employed by Reynolds and the OpenSteer v0.8 source code, three perception functions Ps,

Pa and Pc must be defined. The separation perception function Ps returns the locations

of the flockmates that must be avoided, the alignment perception function Pa returns

the velocities of flockmates that should be followed and the cohesion perception function

Pc returns the locations of flockmates that should be kept close to.

Let Bi and Bj , where i, j ∈ Nn, be two animats from Reynolds’s digital universe

and let qj = 〈pj ,vj , sj〉 be the current state of animat Bj and yi = λ(qi) = 〈pi,vi〉 be

the current output of animat Bi (i.e. the perceivable data about it). Let Bj denote the

observed animat. Then the distance of animat Bi is computed as

εi = ‖pi − pj‖ , (3.7)

and the direction of the offset vector between them is computed as

ϕi = arccos
(

vj · (pi − pj)
‖vj‖ ‖pi − pj‖

)
. (3.8)

Definition 3.7: Let x = 〈y1, . . . , yn〉 be the current perceivable state of the universe and j

the index of the observed animat. Let Is = E be the set representing obtainable information

about a flockmate’s location. Then Ps = P(Nn)× En and equations (3.9)–(3.11) define the

separation perception function Ps : X×Q 7→ Ps.

Ps(x, q) =
〈
Ns, os

〉
, (3.9)

Ns = {i| i ∈ Nn, i 6= j, εi ≤ rs, ϕi < fovs} , (3.10)

os = 〈p1, . . . ,pn〉. (3.11)
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Definition 3.8: Let x = 〈y1, . . . , yn〉 be the current perceivable state of the universe and j

the index of the observed animat. Let Ia = E be the set representing obtainable information

about a flockmate’s velocity. Then Pa = P(Nn)×En and equations (3.12)–(3.14) define the

alignment perception function Pa : X×Q 7→ Pa.

Pa(x, q) =
〈
Na, oa

〉
, (3.12)

Na = {i| i ∈ Nn, i 6= j, εi ≤ ra, ϕi < fova} , (3.13)

oa = 〈v1, . . . ,vn〉. (3.14)

Definition 3.9: Let x = 〈y1, . . . , yn〉 be the current perceivable state of the universe and j

the index of the observed animat. Let Ic = E be the set representing obtainable information

about a flockmate’s location. Then Pc = P(Nn) × En and equations (3.15)–(3.17) define

the cohesion perception function Pc : X×Q 7→ Pc.

Pc(x, q) =
〈
Nc, oc

〉
, (3.15)

Nc = {i| i ∈ Nn, i 6= j, εi ≤ rc, ϕi < fovc} , (3.16)

oc = 〈p1, . . . ,pn〉. (3.17)

To sum up, the three perception functions together return only those digital birds

that are in the perception volume of the observed digital bird. In other words, each

of the three neighbourhoods represents only the flockmates that are treated as ‘nearby’

according to the digital bird’s corresponding drive [64] (see section 2.2.1).

Modelling Drives

Recall that a drive function (definition 3.4), based on the current perceived information

about the state of the universe and the current state of the animat, selects the action

to satisfy a specific drive. Then, since Reynolds states that flock-like behaviour can be

achieved if the digital bird follows three drives, three drive functions Ds, Da and Dc need

to be defined. The separation drive function Ds returns the action that will keep the

animat safe from colliding with the flockmates which should be avoided. The alignment

drive function Da returns the action that will align it with the flockmates which should

be followed and the cohesion drive function Dc returns the action that will direct it

towards the centre of the flockmates which should be kept close to. Reynolds models

the drives using geometrical equations (detailed descriptions are presented in [68]) and
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since he models the digital bird as a simple vehicle [64, 68], he represents the desired

actions as physical forces which would induce the desired flight direction and/or flight

speed change.

Let the animat’s k-tuple of perception functions be P =
〈
Ps, Pa, Pc

〉
. Then, according

to definition 3.4 and definitions 3.7–3.9, the set representing information obtainable from

the perceivable state of the universe is P = Ps ×Pa ×Pc.

According to Reynolds [68], the separation drive gives the digital bird the ability to

maintain a certain separation distance from nearby flockmates. In this case the nearby

flockmates are the digital birds that should be avoided (i.e. computed using the separation

perception function). For each flockmate a ‘repulsive force’ is computed by subtracting

the current position of the observed animat and the current position of the flockmate.

This force is then divided by the square of the flockmate’s distance.3 The resulting forces

are then summed together, and according to OpenSteer v0.8 also normalized, to produce

the desired action (i.e. the desired change in flight direction and flight speed).

Definition 3.10: Let the current state of the animat be q = 〈p,v, s〉. Let the information

that was, with respect to the current state of the animat q, obtained from the current

perceivable state of the universe be 〈ps, pa, pc〉 ∈ P and let ps =
〈
Ns, os

〉
, where Ns ∈ P(Nn)

is a set representing the indexes of animats that should be avoided and os = 〈p1, . . . ,pn〉 are

their current positions in space. Let the set of available actions be A = E. The separation

drive function is then the drive function Ds : P×Q 7→ A that is defined as

Ds(〈ps, pa, pc〉, q) =

[∑
i∈Ns

p− pi

‖pi − p‖2

]0

. (3.18)

The alignment drive, on the other hand, gives the digital bird the ability to align

itself with (i.e. fly in the same flight direction and/or with the same speed as) the nearby

flockmates. The nearby flockmates in this case are the digital birds that should be

followed. The average of the velocities of these flockmates is computed and represents

the desired new velocity of the observed digital bird. The velocity difference is computed

by subtracting the observed digital bird’s velocity from the desired new velocity. Finally

the force representing the desired action is then, according to OpenSteer v0.8, computed

by normalizing the velocity difference.
3Reynolds admits [68] that the division by the square of the flockmate’s distance is just a setting that

worked well and not a fundamental value.
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Definition 3.11: Let the current state of the animat be q = 〈p,v, s〉. Let the information

that was, with respect to the current state of the animat q, obtained from the current

perceivable state of the universe be 〈ps, pa, pc〉 ∈ P and let pa =
〈
Na, oa

〉
, where Na ∈ P(Nn)

is a set representing the indexes of animats that should be followed and oa = 〈v1, . . . ,vn〉
are their current velocities. Let the set of available actions be A = E. The alignment drive

function is then the drive function Da : P×Q 7→ A that is defined as

Da(〈ps, pa, pc〉, q) =

[(
1

|Na|
∑
i∈Na

vi

)
− v

]0

. (3.19)

Finally, the cohesion drive gives the digital bird the ability to cohere with (i.e. ap-

proach and form a group with) the nearby flockmates. Here the nearby flockmates are

the digital birds that should be kept close to. The centre (i.e. the centre of mass or

average position) of these flockmates is computed and represents the desired position of

the observed digital bird. The ‘attraction force’ is computed by subtracting the observed

digital bird’s position from the desired position. At last the force representing the desired

action is, according to OpenSteer v0.8, computed by normalizing the attraction force.

Definition 3.12: Let the current state of the animat be q = 〈p,v, s〉. Let the information

that was, with respect to the current state of the animat q, obtained from the current

perceivable state of the universe be 〈ps, pa, pc〉 ∈ P and let pc =
〈
Nc, oc

〉
, where Nc ∈ P(Nn)

is a set representing the indexes of animats that should be kept close to and oc = 〈p1, . . . ,pn〉
are their current positions in space. Let the set of available actions be A = E. The cohesion

drive function is then the drive function Dc : P×Q 7→ A that is defined as

Dc(〈ps, pa, pc〉, q) =

[(
1

|Nc|
∑
i∈Nc

pi

)
− p

]0

. (3.20)

Modelling Action Selection

Each of the three drive functions returns a physical force that would satisfy the specific

drive. Recall that the action selection function (definition 3.5), combines, prioritizes

and arbitrates between potentially conflicting actions to select the sequence of muscular

movements that will eventually accomplish all of the animal’s drives. In his original

study Reynolds [64] proposes that the physical forces should be combined using a special

algorithm named prioritized acceleration allocation. But in one of his later studies [68] he
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also admits that in the course of several reimplementations of the model over the years, a

simpler linear combination has proved sufficient. Moreover, in his latest implementation

in OpenSteer v0.8 he uses a weighted sum combination.

This means that Reynolds models action selection as a weighted sum of the desired

actions (i.e. weighted sum of the respective physical forces). The resulting force is used

to compute the digital bird’s new position in space and velocity. This computation is

subjected to a set of constraints modelling conservation of momentum, viscous damping

and the animal’s finite amount of energy. He names the approach geometrical flight [64].

Reynolds does not model the musculoskeletal structure of a bird, but models it as a

point mass vehicle [64, 68]. This means that the animat’s physics is based on forward

Euler integration. In other words, the combined forces (limited by the animat’s maximal

available force) are applied to the animat’s point mass. This produces an acceleration

equal to the combined force divided by the animat’s mass. The acceleration is then

added to the animat’s current velocity and truncated by the maximum achievable speed.

Finally the animat’s new position in space is computed by adding the new velocity to

the animat’s current position in space.

Let a ∈ E be a vector and let a ∈ R+ represent the maximal size of a. Then the

truncation of vector a to its maximal size a is calculated as

baea = min(‖a‖ , a)a0. (3.21)

Definition 3.13: Let the current state of the animat be q = 〈p,v, s〉, where the modelled

animal’s internal state s is defined by definition 3.6. Let the l-tuple of drive functions be

D =
〈
Ds, Da, Dc

〉
and let the computed desired actions be 〈as, aa, ac〉. Let ws, wa and wc

represent the weights of the separation, alignment and cohesion drive respectively and let

dt represent the simulation step. Then the weighted sum action selection function is the

action selection function Sws : A×Q 7→ Q that is defined as

Sws(〈as, aa, ac〉, q) = 〈p′,v′, s〉, (3.22)

v′ =

⌊
v +

bwsas + waaa + wcacefM

m
dt

⌉vM

, (3.23)

p′ = p + v′dt. (3.24)

Therefore Reynolds’s digital bird can be defined as a special animat.
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Definition 3.14: Reynolds’s digital bird is the animat B = 〈X,Q,Y, δ, λ, P, D, S〉. The set

representing internal states is Q = E×E×S, where S is defined by definition 3.6. The output

alphabet is Y = E × E and the input alphabet is X = Yn. The animat’s current internal

state q = 〈p,v, s〉 represents the modelled animal’s current position in space p ∈ E, velocity

v ∈ E and internal state s ∈ S. The output function λ : Q 7→ Y is λ(q) = 〈p,v〉. The

k-tuple of perception functions is P =
〈
Ps, Pa, Pc

〉
, where Ps, Pa and Pc are the separation,

alignment and cohesion perception function respectively (definitions 3.7–3.8). The l-tuple

of drive functions is D =
〈
Ds, Da, Dc

〉
, where Ds, Da and Dc are the separation, alignment

and cohesion drive function respectively (definitions 3.10–3.12). Finally, the action selection

function is the weighted sum action selection function S = Sws (definition 3.13).

3.3.2 Formalization of Heppner and Grenander’s Computer Model

Heppner and Grenander in their study [28] modelled the universe as a collection of

n digital birds of the same kind. As a contrast to Reynolds they did not model any

obstacles, but added a special influence modelling random distractions. Furthermore,

they admit that without this influence they were not able to achieve flock-like behaviour.

Nevertheless, all things considered, they had a similar approach as Reynolds. Their

digital bird moves through the universe with a certain velocity and at every discrete time

step it changes this velocity in order to satisfy three drives: homing, velocity regulation,

and interaction (see section 2.2.2). The decision is again based purely on the digital

bird’s current state and the current perceivable state of the universe. More precisely the

decision is based on the digital bird’s position, velocity and the perceived locations of

the nearby flockmates.

Let me define the animat that models Heppner and Grenander’s digital bird. As

discussed in section 3.2, the animat’s internal state q ∈ Q is defined by the triplet

〈p,v, s〉, where p ∈ E is its position in space, v ∈ E its velocity and s ∈ S is the

modelled animal’s internal state. Let me again first define the latter.

Definition 3.15: Let r ∈ E be the position of the centre of the roosting area of the the

modelled bird, ro its perception range, vp its preferred flight speed and dp its preferred

distance from flockmates. Then the internal state of the animal modelled by Heppner and

Grenander’s digital bird is

s = 〈r, ro, vp, dp〉 . (3.25)
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As in Reynold’s case (section 3.3.1) I shall assume that only the animat’s position

p and v can change through time, while the modelled animal’s internal state s stays

constant. This is again consistent with Heppner and Grenander’s original definition [28].

The velocity vector v is thus again used to encode the flight direction v0 and flight speed

‖v‖. The perception range defines an omnidirectional perception volume (Fig. 3.3). The

r
o

Figure 3.3 The perception model used by Heppner and Grenander [28]. The black arrow represents the digital bird’s flight

direction. The shaded area represents the omnidirectional perception volume defined by the perception range.

The perceived flockmates are depicted in a light blue colour.

preferred flight speed is the flight speed to which the bird wishes to return if perturbed

and the preferred distance defines the optimal distance from a flockmate (i.e. the distance

at which the bird is neither attracted to nor repulsed from the flockmate).

Modelling Perception

As discussed before, in Heppner and Grenander’s case the universe again consists of

animats of the same kind. Similarly, their number n ∈ N is constant through time, which

means that the animat’s input alphabet is yet again X = Yn.
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For reasons of consistency let the output alphabet again be Y = E × E and let the

animat’s output function λ(q) = 〈p,v〉 return the animat’s current position in space and

velocity. Even in Heppner and Grenander’s case the perceivable state of the universe

at a discrete time step t ∈ T is u(t) = 〈y1(t), . . . , yn(t)〉, where for all i = 1, . . . , n

yi(t) = λ(qi(t)) is the output of animat i (i.e. its position in space and its velocity) at

time step t.

Recall from section 2.2.2 that Heppner and Grenander gave their digital bird full and

precise knowledge about the locations of all surrounding digital birds that are closer than

a predefined distance. Let Bi and Bj , where i, j ∈ Nn, be two animats from Heppner and

Grenander’s digital universe and let the current state of animat Bj be qj = 〈pj ,vj , sj〉
and the current perceivable data about animat Bi be yi = 〈pi,vi〉. Let Bj denote the

observed animat. Then recall from equation (3.7) that the distance of animat Bi from

the observed animat Bj is computed as

εi = ‖pi − pj‖ .

Definition 3.16: Let x = 〈y1, . . . , yn〉 be the current perceivable state of the universe and j

the index of the observed animat. Let Io = E be the set representing obtainable information

about a flockmate’s location. Then Po = P(Nn) × En and equations (3.26)–(3.28) define

the omnidirectional perception function Po : X×Q 7→ Po.

Po(x, q) =
〈
No, oo

〉
, (3.26)

No = {i| i ∈ Nn, i 6= j, εi ≤ ro} , (3.27)

oo = 〈p1, . . . ,pn〉. (3.28)

Modelling Drives

Recall from section 2.2.2 that homing expresses the bird’s tendency to stay in a roosting

area and depends only on the digital bird’s current position. Velocity regulation expresses

its tendency to fly with a certain flight speed and depends only on the digital bird’s

current flight speed. Finally interaction expresses the bird’s attraction to or repulsion

from flockmates and depends only on the perceived locations of the nearby flockmates.

Let the animat employ only the omnidirectional perception function. Then P =
〈
Po

〉

and, according to definitions 3.4 and 3.16, the set representing information obtainable

from the perceivable state of the universe is P = Po.
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Definition 3.17: Let the current state of the animat be q = 〈p,v, s〉, where the modelled

animal’s internal state is s = 〈r, ro, vp, dp〉 as defined by definition 3.15. Let po denote the

neighbourhood obtained by using the omnidirectional perception function. Let the set of

available actions be A = E. Let hm be the minimum distance for roost attraction and hM

the distance of maximum roost attraction. The homing drive function is then the drive

function Dh : P×Q 7→ A that is defined as

Dh(po, q) =

{
0 iff ‖r− p‖ < hm

cae−bc

(a/b)ae−a (r− p)0 iff ‖r− p‖ ≥ hm

, (3.29)

where a and b are parameters for controlling the shape of the attraction function and

c =
a

b

(
‖r− p‖ − hm

hM

)
. (3.30)

Definition 3.18: Let the current state of the animat be q = 〈p,v, s〉, where the modelled

animal’s internal state is s = 〈r, ro, vp, dp〉 as defined by definition 3.15. Let po denote the

neighbourhood obtained by using the omnidirectional perception function and let the set of

available actions be A = E. The velocity regulation drive function is then the drive function

Dv : P×Q 7→ A that is defined as

Dv(po, q) = (vp − ‖v‖)v0. (3.31)

Definition 3.19: Let the current state of the animat be q = 〈p,v, s〉, where the modelled

animal’s internal state is s = 〈r, ro, vp, dp〉 as defined by definition 3.15. Let the neighbour-

hood obtained by using the omnidirectional perception function be po =
〈
No, oo

〉
, where

No ∈ P(Nn) is the set of indexes of relevant animats and oo = 〈p1, . . . ,pn〉 are their loca-

tions. Let the set of available actions be A = E and let fM denote the maximal repulsion

force. The interaction drive function is then the drive function Di : P × Q 7→ A that is

defined as

Di(po, q) =
∑
i∈No

[
1− (‖pi − p‖ − a)2

b

]
c (pi − p)0 , (3.32)

where a =
dp+ro

2
, b =

(
dp−ro

2

)2

and

c =





1 iff ‖pi − p‖ ≥ dp

‖pi − p‖ (b−a2)−fM
dp(b−a2)

+ fMb
b−a2 iff ‖pi − p‖ < dp

. (3.33)
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Modelling Action Selection

Each of the three drive functions returns a vector which may be interpreted as an uncon-

ventional (non-Newtonian) [28] force that would satisfy the specific drive. Recall that

the action selection function (definintion 3.5) combines, prioritizes and arbitrates be-

tween these potentially conflicting forces. Heppner and Grenander again took a similar

approach as Reynolds and modelled action selection as a simple weighted sum. However,

apart from the Poisson stochastic process modelling the effects of wind gusts and random

local disturbances they did not apply any additional constraints.

Definition 3.20: Let the current state of the animat be q = 〈p,v, s〉. Let the l-tuple of drive

functions be D =
〈
Dh, Dv, Di

〉
(definitions 3.17–3.19) and let the computed desired actions

be 〈ah, av, ai〉. Let wh, wv and wi represent the weights of the homing, velocity regulation

and interaction drive respectively and let dt represent the simulation step. Then the simple

weighted sum action selection function is the action selection function Ss : A×Q 7→ Q that

is defined as

Ss(〈ah, av, ai〉, q) = 〈p′,v′, s〉, (3.34)

p′ = p + vdt, (3.35)

v′ = v + (whah + wvav + wiai) dt + ddt, (3.36)

where d ∈ E is a Poisson controlled vector modelling random distractions.

Heppner and Grenander’s digital bird [28] is therefore a special animat.

Definition 3.21: The animat modelling Heppner and Grenander’s digital bird is the animat

B = 〈X,Q,Y, δ, λ, P, D, S〉. The set representing internal states is Q = E×E×S, where S

is defined by definition 3.15. The output alphabet is Y = E× E and the input alphabet is

X = Yn. The animat’s current internal state q = 〈p,v, s〉 represents the modelled animal’s

current position in space p ∈ E, velocity v ∈ E and internal state s ∈ S. The output

function λ : Q 7→ Y is λ(q) = 〈p,v〉. The k-tuple of perception functions is P =
〈
Po

〉
,

where Po is the omnidirectional perception function (definition 3.16). The l-tuple of drive

functions is D =
〈
Dh, Dv, Di

〉
, where Dh, Dv and Di are the homing, velocity regulation and

interaction drive function respectively (definitions 3.17–3.19). The action selection function

is the simple weighted sum action selection function S = Ss (definition 3.20).



4 Fuzzy Modelling

4.1 Fuzzy Sets

Fuzzy sets are a natural outgrowth and generalization of conventional (or crisp) sets.

Recall that a crisp set in a universe of discourse (i.e. a collection of objects that repre-

sents allowable values for a variable) can be defined by stating all of its members or by

specifying the precise properties required for membership.

Take for example the set of real numbers ‘from 3 to 5’ and denote it as C. In this

case the universe of discourse is the set of real numbers R and C is a crisp set. It can be

described by writing C = {r ∈ R|3 ≤ r ≤ 5}.
Equivalently, a crisp set can be described by specifying its membership function that

maps from the universe of discourse to the set {0, 1}. The membership function returns

1 for all objects from the universe of discourse that satisfy the required properties and 0

for those that do not.

In the case of the crisp set C the membership function returns 1 for all real numbers

that satisfy the property ‘from 3 to 5’ and 0 for all other (Fig. 4.1a). If µC is used to

38
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denote the membership function of crisp set C, then ∀r ∈ R:

µC(r) =





1, if 3 ≤ r ≤ 5

0, otherwise.
(4.1)

Fuzzy sets, on the contrary, contain elements that satisfy imprecisely defined proper-

ties [8]. Zadeh [90] proposed describing them by using a generalized membership function

that maps from the universe of discourse to the entire unit interval [0, 1]. This is the

basic idea in fuzzy set theory; the membership function provides the degree to which an

object from the universe of discourse satisfies the imprecisely defined properties [8]. It

provides the object’s degree of membership.

Take for example the ‘set’ of real numbers that are ‘close to 4’. Because the property

‘close to 4’ is imprecise, the ‘set’ of real numbers that are ‘close to 4’ is a fuzzy set. Let

it be denoted by F̃. Again the universe of discourse is the set of real numbers R, but the

membership function µF̃ now provides the degree of membership of a real number in the

fuzzy set F̃; the nearer the value of µF̃(r) to unity, the higher the degree of membership

of r in F̃. This means that µF̃(r) provides the measure of the degree of consistency

between r and the interpretation of ‘close to 4’.

However, since the property ‘close to 4’ is imprecise and its interpretation subjective,

there is not a unique membership function for F̃. Rather, it is left to the modeller to

decide what µF̃ should be like. In this particular case, with respect to the property ‘close

to 4’, it seems plausible that:

the degree of membership of number 4 is unity,

the closer a number is to 4, the closer its degree of membership is to unity,

numbers equally far left and right of 4 have equal memberships.
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Figure 4.1 Membership functions of a crisp set of real numbers ‘from 3 to 5’ (a) and a fuzzy set of real numbers ‘close to

4’ (b).
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Given these intuitive constraints, a useful representation of the fuzzy set of numbers

‘close to 4’ might be the fuzzy set F̃ that is presented in Fig. 4.1b and described by the

membership function

µF̃(r) = max(0, 1− |r − 4|). (4.2)

Recall that in crisp set theory the family of all crisp sets that can be defined in a

given universe of discourse X is called the power set of X, and is usually denoted by

P(X). Thus, returning to the examples, it can be written that C ∈ P(R).

Similarly, in fuzzy set theory, the family of all fuzzy sets that can be defined in a given

universe of discourse X is called the fuzzy power set of X, and is usually denoted by F(X)

[33]. Therefore, again returning to the examples, it can be written that F̃ ∈ F(R).

4.1.1 Set Theoretic Operations for Fuzzy Sets

In order to manipulate fuzzy sets, Zadeh [90] generalized the classical set theoretic oper-

ations (i.e. intersection, union and complement) and introduced fuzzy intersection, fuzzy

union, and fuzzy complement.

Definition 4.1: Let fuzzy sets F̃1 and F̃2, defined on the universe of discourse X, be

described by their membership functions µF̃1
and µF̃2

. The fuzzy set theoretic operations

are then defined using the following operators:

fuzzy intersection:

minimum: µF̃1∩F̃2
(x) = min(µF̃1

(x), µF̃2
(x)),

algebraic product : µF̃1 ·∩F̃2
(x) = µF̃1

(x) · µF̃2
(x),

fuzzy union:

maximum: µF̃1∪F̃2
(x) = max(µF̃1

(x), µF̃2
(x)),

algebraic sum: µF̃1]F̃2
(x) = µF̃1

(x) + µF̃2
(x)− µF̃1

(x) · µF̃2
(x),

fuzzy complement: µ
F̃1

(x) = 1− µF̃1
(x).

The minimum fuzzy intersection, maximum fuzzy union and fuzzy complement are

also known under the names standard fuzzy intersection, standard fuzzy union and stan-

dard fuzzy complement. Later Klir and Yuan [33] showed that by using a strong axiomatic

basis many more operators can be defined. They even gave an axiomatic definition for

the complement of a fuzzy set, but in engineering applications most people prefer to use

the standard fuzzy complement defined by Zadeh [90].
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4.2 Fuzzy Logic

The membership function of a crisp set maps real numbers to two values (0 or 1). Hence

crisp sets correspond to conventional (crisp or two-valued) logic. Logic works with state-

ments. Take for example the statement ‘distance is from 3 to 5 ’. It can be either true

or false; there is no ambiguity in it. Let d denote the value of distance and C denote

the set of numbers ‘from 3 to 5’. Then the question of this statement’s truth becomes

a question of membership ‘is d in C?’ and the answer is true if µC(d) = 1 and false if

µC(d) = 0.

On the other hand, the value of µF̃(r) provides the degree of membership of r in fuzzy

set F̃. Therefore fuzzy sets correspond to continuously valued logic. Take for example the

statement ‘distance is close to 4 ’. Because ‘close to 4’ is an imprecisely defined property,

this statement is not crisp at all; it cannot be told if it is true or false. However, a

similar approach as in two-valued logic can be used, the value of distance denoted by

d, but ‘close to 4’ defined as a fuzzy set F̃. Then the question of the statement’s truth

becomes again a question of membership ‘is d in F̃?’ but the value µF̃(d) now answers

the statement’s degree of truth. The answer can be true (µF̃(d) = 1), false (µF̃(d) = 0)

or anywhere in between (0 < µF̃(d) < 1).

Furthermore, in fuzzy logic the value of distance can be a fuzzy set too. Let it be

denoted as D̃. The statement’s truth now becomes a question of similarity ‘is D̃ similar

to F̃?’ and the answer is given by the highest degree of membership of objects that are

common to both fuzzy sets (i.e. supr µD̃∩F̃(r)).

Logic allows joining simple statements to form more complex ones. This is achieved

through standard logical operators, namely ‘and’, ‘or’, and ‘not’. An example of a

complex crisp statement is ‘(distance is from 3 to 5 ) and (speed difference is 20m/s)’.

Evaluating such statements involves computing the truths of the substatements and

applying the logical operators. In two-valued logic the compound statement is true:

when all of the substatements are true (logical operator ‘and’),

when at least one of the substatements is true (logical operator ‘or’),

when the substatement is false (logical operator ‘not’).

However, in fuzzy logic the constraint of the absolute truth or falsity of a statement is

relaxed and this influences the interpretation of logical operators. Nevertheless, as fuzzy
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logic is a superset of standard two-valued logic, if the degrees of truth are kept at the

extremes of 1 (completely true), and 0 (completely false), standard logical operators will

hold. The most common interpretation is to use the operators that Zadeh [90] used to

define fuzzy intersection (logical operator ‘and’), fuzzy union (logical operator ‘or’), and

fuzzy complement (logical operator ‘not’). In other words this means that to resolve the

truth of the statement ‘A and B’, where A and B are statements and T (A), T (B) denote

their corresponding degrees of truth, the following function is evaluated

T (A and B) = min(T (A), T (B)) (i.e. minimum fuzzy intersection),

T (A and B) = T (A) · T (B) (i.e. algebraic product fuzzy intersection),

similarly the degree of truth of ‘A or B’ becomes equivalent

T (A or B) = max(T (A), T (B)) (i.e. maximum fuzzy union),

T (A or B) = T (A) + T (B)− T (A) · T (B) (i.e. algebraic sum fuzzy union),

and finally, the degree of truth of ‘not A’ is computed as

T (not A) = 1− T (A) (i.e. standard fuzzy complement).

Typically most fuzzy logic applications make use of these operators. But any combi-

nation of fuzzy union, fuzzy intersection and fuzzy complement operators can be used as

far as it is made sure that either DeMorgan’s laws are not used or that fuzzy union and

fuzzy intersection are dual with respect to the chosen fuzzy complement [33]. This means

that the different operators that are available in fuzzy set theory provide a plethora of

richness, but also some (tough) choices have to be made [45]. In this dissertation the

logical operator ‘and’ is interpreted as product fuzzy intersection, the logical operator

‘or’ as maximum fuzzy union and ‘not’ as the standard fuzzy complement.

4.2.1 The if-then Rule

Logic makes often use of a special statement known as if-then rule, which assumes the

form ‘if A then C ’, where A and C are statements. The if-part of the rule (i.e. statement

A) is called the antecedent or premise, while the then-part (i.e. statement C) is called the

consequent or conclusion. The antecedent can always be written as a set of statements

connected with the logical operator ‘and’ [45], which means that the rule can be read as

a set of conditions that must be met for a certain consequence. However, this also means
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that antecedents of if-then rules that have the same conclusion can be joined using the

logical operator ‘or’ and interpreted as a single if-then rule.

Interpreting an if-then rule involves evaluating the truth of the antecedent and apply-

ing that result to the consequent (known as implication). In the case when the antecedent

has multiple parts, their degrees of truth are calculated simultaneously and the truth of

the antecedent is resolved by applying the logical operators. In two-valued logic the

interpretation of the if-then rule is simple. Whenever the premise is true the conclusion

is true too. However, if the premise is false nothing can be said about the conclusion.

Since in fuzzy logic the truth of the antecedent is a matter of degree, the interpretation

of the if-then rule is less restricted. This means that whenever the antecedent is true to

some degree, the consequent is also true to that same degree.

However, because in fuzzy logic the consequent specifies a fuzzy set to be assigned to

the output, implication modifies this set to the degree specified by the antecedent. The

most common ways to modify the output fuzzy set are chopping it off (i.e. minimum

fuzzy implication) or squashing it (i.e. product fuzzy implication). Let T (A) denote the

antecedent’s degree of truth and F̃ be the output fuzzy set defined on the real numbers

domain. Let µF̃ denote the membership function of the output fuzzy set and µF̃′ the

membership function of the modified output fuzzy set. Then minimum fuzzy implication

is computed as

µF̃′(r) = min(T (A), µF̃(r)) (4.3)

and product fuzzy implication as

µF̃′(r) = T (A) · µF̃(r). (4.4)
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Figure 4.2 Graphical representation of the minimum (a) and product (b) fuzzy implication. The dashed grey line represents

the original output fuzzy set while the blue solid line represents the modified output fuzzy set.

Take for example the if-then rule whose consequent is ‘direction is turn left ’ and let

the degree of truth of its antecedent be T (A) = 0.11. The minimum fuzzy implication’s
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effect of chopping off the output fuzzy set can be seen in Fig. 4.2a while the squashing

effect of the product fuzzy implication can be seen in Fig. 4.2b.

4.2.2 The Fuzzy Rule Base

Rarely the output of a decision process can be described by a single if-then rule. On the

contrary; in most cases it is described by a collection of if-then rules, which are in fuzzy

logic usually called a fuzzy rule base. In addition: in fuzzy logic individual rules from a

fuzzy rule base can at times be mutually contradictive.

In two-valued logic with a given input value usually the antecedent of only one rule is

true. This means that the output value is at all times unequivocally known. However, as

in fuzzy logic the interpretation of if-then rules is less restricted and mutually contradic-

tive rules are allowed, more than one rule’s antecedent can be true to some degree. This

means that after applying fuzzy logic on a fuzzy rule base, one ends up with a collection

of modified output fuzzy sets which represent only candidates for the final output value.

Most fuzzy logic applications solve this by combining the modified output fuzzy sets

into a single fuzzy set, which thereon represents the final output value of the fuzzy

rule base. In most cases this combination is done by computing the fuzzy union of the

modified output fuzzy sets.

The final output value of the fuzzy rule base is thus represented by the combined

fuzzy set. However, as in most cases the fuzzy rule base is used as a control decision

process, and the controlled process usually requires crisp control inputs, the fuzzy rule

base’s output (i.e. the combined fuzzy set) needs to be converted to a single (crisp) value

[33, 45]. This conversion is called defuzzification. For a given fuzzy set it returns the

single (crisp) value which, in some sense, is the best representative of the fuzzy set.

A number of defuzzification methods leading to distinct results were proposed in

literature [17, 33, 45, 53, 92], but the most commonly used, and also the one used in this

dissertation, is called the centroid method. In this method, which is sometimes called

the centre of gravity or centre of area method, the defuzzified value is defined as the crisp

value, for which the area under the graph of the membership function of the combined

fuzzy set is divided into two equal subareas (Fig. 4.3).

Let F̃ ∈ F(R) denote the combined fuzzy set obtained by evaluating a fuzzy rule

base and let µF̃ represent its membership function. Then the centroid defuzzified value
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is calculated as

cog F̃ =
∫

rµF̃(r)dr∫
µF̃(r)dr

. (4.5)
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Figure 4.3 Graphical representation of the centroid defuzzification. The blue line represents the membership function of the

final output value of a fuzzy rule base computed by combining the output fuzzy sets of individual fuzzy rules. The

orange line divides the area under the graph of the membership function (shaded area) into two equal subareas

and thus represents the single (crisp) value that is, according to the centroid defuzzification method, the best

representative of the combined fuzzy set.



5 The Fuzzy Animat

5.1 The Fuzzy Digital Animal

Modelling organized groups of moving animals is a complex task, requiring thorough

knowledge about the behaviour of the modelled animal. However, the behavioural reper-

toire displayed by animals is typically so large that even ethologists are at times unable

to form hypotheses about the actions guiding the displayed behaviour, not to mention

the reasons that initiated it. Exact knowledge is thus usually not available, and in cases

when knowledge is available, it usually cannot be truth-tested.

Furthermore, the linguistic descriptions and explanations of the perceived behaviour

generally bear a fair amount of influence by the observer and are consequently uncertain

or ambiguous per se. Knowledge about animal behaviour can as a consequence be best

described as uncertain, ambiguous or fuzzy. This is where fuzzy logic, with its ability

to model using uncertain knowledge and process uncertain data, shows its potential. In

this chapter I shall thus introduce fuzziness into the animat (see Chapter 3) and with

this allow constructing digital animals using uncertain, ambiguous or fuzzy knowledge.

Recall that, at the most basic level, the universe is a collection of inanimate and

46
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animate objects. This dissertation assumes that the perceivable state of the universe

can be represented as a crisp value. In other words, I assume that data about objects

constituting the universe that can be perceived by an outside observer is crisp. This

seems reasonable. After all, taking for example a tree in the nearby park; even though

its exact size cannot be perceived or described it could be measured, provided there was

an infinitely precise measurement aid.

In addition, I also assume that the objects constituting the universe update their

states in parallel, at discrete time steps, and that the method of updating is local, how-

ever not necessarily homogeneous. Therefore, regardless of the method employed for

constructing the digital animals the digital universe can be represented as a collection of

animats whether they are fuzzy or not.

Let me concentrate on the introduction of fuzziness into the animat. Recall first that

the animat (definition 3.2) is an extended Moore automaton, taking into account a certain

set of animal characteristic (i.e. perception, drives, action selection). Recall also that the

digital universe is a collection of n animats. This means that the perceivable state of the

universe at a discrete time step t ∈ T is given by the n-tuple u(t) = 〈y1(t), . . . , yn(t)〉,
where yi(t) = λ(qi(t)) is the output of animat i at time step t, for all i = 1, . . . , n.

In addition, recall that at a discrete time step t ∈ T all animats are applied the same

input (i.e. the current perceivable state of the universe). Thus x(t) = u(t) and the input

alphabet is X = U = Y1 × · · · × Yn. Finally, recall that the state of animat i at a

discrete time step t ∈ T is, in most cases when modelling organised groups of moving

animals, given as qi(t) = 〈pi(t),vi(t), si(t)〉, where pi(t) ∈ E denotes its position in

space, vi(t) ∈ E its velocity and si(t) ∈ Si the internal state of the modelled animal. In

other words, the above states that the animats’ fuzziness originates from their decision

processing (i.e. perception, drives and action selection).

Definition 5.1: A fuzzy animat Ã = 〈X,Q,Y, δ, λ, P̃ , D̃, S̃〉 is an extended Moore automa-

ton, where P̃ =
〈
P̃1, . . . , P̃k

〉
is a k-tuple of fuzzy perception functions, D̃ =

〈
D̃1, . . . , D̃l

〉
is

an l-tuple of fuzzy drive functions, S̃ is a fuzzy action selection function and the transition

function δ is defined as:

δ(x, q) = S̃(〈Ã1, ..., Ãl〉, q), (5.1)

Ãj = D̃j(〈P̃1, ..., P̃k〉, q), j = 1, . . . , l, (5.2)

P̃i = P̃i(x, q), i = 1, . . . , k. (5.3)
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If I sum up, at a discrete time step even the fuzzy animat is applied the current

perceivable state of the universe (i.e. the crisp data about all of the animats, fuzzy

or not,1 that can be observed by an outside observer). Using the transition function

(i.e. taking into account fuzzy perception, fuzzy drives and fuzzy action selection) it

then computes the next discrete time step state and emits its new output, which as a

consequence changes the perceivable state of the universe. The following sections discuss

fuzzy perception, fuzzy drives and fuzzy action selection in more detail.

5.1.1 Fuzzy Perception

As discussed before, the input of a fuzzy animat is the current perceivable state of the

universe. Recall that the crisp perception function (definition 3.3) is used to model

the animal’s process of interpreting the perceivable data and selecting just the relevant

information from all of the sensory signals that exist in the universe. However, the crisp

perception function allows modelling only accurate perception (i.e. one that gives the

animat exact knowledge about the state of the universe). As we know from our own

perception of the world, the latter is ‘unnatural’. A fuzzy perception function, which

allows modelling inaccurate perception as well, should therefore be defined.

Let the current perceivable state of the universe be the n-tuple u = 〈y1, . . . , yn〉,
where for all i = 1, . . . , n yi is data about animat i that can be perceived by an outside

observer. Let q ∈ Q be the current state of the observed fuzzy animat and let its input

x ∈ X be the current perceivable state of the universe x = 〈y1, . . . , yn〉.
Recall that Nn denotes the set of all positive natural numbers lower or equal to n and

for all i = 1, . . . , n Ic
i represents information about animat i that can be obtained from

yi with respect to a certain characteristic c.

Let Ñ ∈ F(Nn) represent the fuzzy set of indexes of members of x (i.e. animats)

that are according to characteristic c vaguely relevant to the observed fuzzy animat. As

a contrast to the crisp perception function, where an animat can only be relevant or

irrelevant, the relevancy is now a matter of degree. The ordered pair
〈
Ñ, Õ

〉
, where

Ñ ∈ F(Nn) and Õ ∈ F(Ic
1) × · · · × F(Ic

n) represents uncertain information regarding

characteristic c that was obtained from the current perceivable state of the universe and
1Indeed the universe can be a mixed collection of crisp and fuzzy animats. Due to this the term

animat shall be used, throughout the rest of this dissertation, to address both animat versions (i.e. the

fuzzy and crisp).
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is, with respect to this characteristic, vaguely relevant to the observed fuzzy animat.

For reasons of simplicity the same approach as in the crisp perception function will be

employed and F(Nn)× (F(Ic
1)× · · · × F(Ic

n)) will be denoted simply as F(Pc).2

Definition 5.2: Let x ∈ X be the current perceivable state of the universe and P̃ ∈ F(Pc)

be the uncertain information regarding characteristic c that was obtained from x and is,

according to this characteristic and the state q ∈ Q, vaguely relevant to the animat. Then

a fuzzy perception function for characteristic c is a mapping P̃ : X×Q 7→ F(Pc).

For reasons of simplicity I shall address the image of a fuzzy perception function with

the name fuzzy neighbourhood. Relating to the crisp perception function this means that

the fuzzy neighbourhood represents only the vaguely relevant and inaccurately charac-

terized sensory signals (e.g. inaccurate locations of uncertain food sources).

5.1.2 Fuzzy Drives

Recall that the crisp drive function (definition 3.4) is used to model the process with

which, based on the information obtained from the perceivable state of the universe and

its current internal state, the animal selects the action that satisfies a certain drive. Since

the fuzzy animat perceives the universe inaccurately and knowledge about the animal’s

drives is usually vague, the drive function should take this into account.

Let the observed fuzzy animat have k fuzzy perception functions. Let them be denoted

as P̃1, . . . , P̃k. This means that F(P) = F(Pc1)×· · ·×F(Pck) represents uncertain infor-

mation obtainable from the current perceivable state of the universe. For all i = 1, . . . , k

let P̃i ∈ F(Pci) denote the fuzzy neighbourhood that was obtained with perception

function P̃i. Then 〈P̃1, . . . , P̃k〉 ∈ F(P) represents the perceived uncertain information

about the current state of the universe that was, with respect to the current state of the

fuzzy animat, obtained from the current perceivable state of the universe.

Definition 5.3: Let A denote the set of all possible actions of the fuzzy animat. Let the

uncertain action that, with respect to the perceived uncertain information about the current

state of the universe 〈P̃1, . . . , P̃k〉 ∈ F(P) and the current state of the fuzzy animat q ∈ Q,

satisfies a specific, vaguely known, drive be represented by the fuzzy set Ã ∈ F(A). Then

a fuzzy drive function is a mapping D̃ : F(P)×Q 7→ F(A).

2In fact, in this dissertation, when X = X1 × · · · ×Xm, I use F(X) to denote F(X1)× · · · ×F(Xm)

and not F(X1 × · · · ×Xm).
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The studied animal’s drives are in the case of the crisp animat usually implemented

through mathematical equations (e.g. digital birds by Reynolds [64, 68] – section 3.3.1 and

Heppner and Grenander [28] – section 3.3.2). In addition, as discussed, exact knowledge

about the studied animal’s behaviour is rarely available. Indeed, it is usually available

only in the form of descriptions of the observed behaviour bearing a fair amount of influ-

ence by the observer, and transition from such descriptions to mathematical equations

is far from straightforward. The fuzzy drive functions of the fuzzy animat, on the other

hand, because of their use of fuzzy logic, allow the studied animal’s drives to be imple-

mented using collections of if-then rules. This makes the transition from descriptions

to drive functions much simpler and the construction of digital animals much easier. In

addition the requirement for exact knowledge is removed.

5.1.3 Fuzzy Action Selection

Bring to mind that the crisp action selection function (definition 3.5) is used to model the

neurological process of selecting the sequence of muscular movements that will accomplish

the actions that result from the animal’s drives and combines, prioritizes and arbitrates

between potentially conflicting actions. Since in the case of the fuzzy animat the actions

are uncertain, the action selection function has to take this into account. This section

shall thus define the fuzzy action selection function.

Let the observed fuzzy animat have l ∈ N fuzzy drive functions denoted as D̃1, . . . , D̃l.

Then the l-tuple 〈Ã1, . . . , Ãl〉 ∈ F(A)l represents the fuzzy animat’s desired uncertain

actions.

Definition 5.4: Let q′ ∈ Q denote the next state of the fuzzy animat computed by taking

into account the current state of the animat q ∈ Q and combining, prioritizing and arbi-

trating between its desired uncertain actions 〈Ã1, . . . , Ãl〉 ∈ F(A)l. Then a fuzzy action

selection function is a mapping S̃ : F(A)l ×Q → Q.

If I sum up, the three stage scheme of the fuzzy animat’s transition function, as in the

case of the crisp animat, imitates the adopted theory about animal behaviour (Fig. 3.1).

The first stage is used to model the studied animal’s perception of the universe, the second

stage to model its drives and finally the third stage to model the process of selecting and

executing the sequence of muscular movements that will eventually satisfy its drives.

However, as a contrast to the crisp animat, the fuzzy animat’s fuzzy perception, fuzzy
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drive and fuzzy action selection functions allow constructing a model of an animal even

by using only vague knowledge about its behaviour.

5.2 Case Study

The previous section presented a formal definition of the fuzzy animat. The latter can

be used to model inanimate or animate objects by using ambiguous knowledge and data.

In this section I shall use it to construct a fuzzy model for a computer simulation of bird

flocking. More precisely, it will be used to construct a fuzzy digital bird.

Recall that Reynolds [64] (section 3.3.1) modelled the universe as a collection of

animats of same kind and obstacles that represented inanimate objects. Similarly, recall

that Heppner and Grenander [28] (section 3.3.2), on the other hand, modelled the universe

as a collection of animats of same kind and excluded inanimate objects, but added a

special influence which is intended to simulate the effects of wind gusts and random

local disturbances. Furthermore, they state that in their case the latter was of crucial

importance for flock-like behaviour [28].

Since I am interested in producing a self-organizing flight flock, I employ the same

approach and model the universe as a collection of n fuzzy animats. What is more, at

this stage I also omit obstacles. I justify the omission with the fact that natural flocks

form and exist also in open spaces, where there are no obstacles. For the time being I

also do not simulate the effects of wind gusts and random local disturbances, even though

it would be interesting to test the effect of their inclusion, which I plan as part of my

future research. In addition I take the same approach as Reynolds [64, 68] and Heppner

and Grenander [28] and assume a constant universe (i.e. even though the animats’ states

change through time their number stays constant).

As discussed in section 5.1, the fuzzy animat’s internal state q ∈ Q is defined by the

triplet 〈p,v, s〉, where p ∈ E is its position in space, v ∈ E its velocity and s ∈ S is the

modelled animal’s internal state.

Definition 5.5: Let rv be the range of the modelled bird’s visual perception, fovv its per

eye visual field and bv the angle of binocular overlap. Let m represent the modelled bird’s

mass, vM its maximal achievable flight speed and fM its maximal available force. Then

s = 〈rv, fovv, bv, m, vM, fM〉 . (5.4)
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As when constructing Reynolds’s digital bird (section 3.3.1), I shall assume that only

the fuzzy animat’s position p and velocity v change through time, while the modelled

animal’s internal state s stays constant. The velocity vector v again gives the fuzzy an-

imat’s relative position changes per coordinate axis in the Cartesian coordinate system

and therefore encodes the fuzzy animat’s flight direction v0 and flight speed ‖v‖. The

visual perception range, per eye visual field and the angle of binocular overlap define the

animat’s perception volume (i.e. they will be used to model visual perception). In addi-

tion, the maximal achievable speed represents a simple model of viscous speed damping

(i.e. it will be used to model the inability to exceed a certain speed even if constantly

accelerating), while the maximal available force will be used to take into account the fact

that an animal with a finite amount of energy is being modelled.

Definition 5.6: My fuzzy digital bird is the fuzzy animat B̃ = 〈X,Q,Y, δ, λ, P̃ , D̃, S̃〉. The

set representing the fuzzy animat’s internal states is Q = E× E× S, where S is defined by

definition 5.5. The output alphabet is Y = E× E and the input alphabet is X = Yn. The

fuzzy animat’s current internal state q = 〈p,v, s〉 represents the modelled animal’s current

position in space p ∈ E, velocity v ∈ E and internal state s ∈ S. The output function

λ : Q 7→ Y is λ(q) = 〈p,v〉. The k-tuple of fuzzy perception functions is P̃ =
〈
P̃v

〉
,

where P̃v is the fuzzy visual perception function (definition 5.7). The l-tuple of fuzzy drive

functions D̃ =
〈
D̃a, D̃r, D̃p

〉
, where D̃a, D̃r and D̃p are the fuzzy attraction, fuzzy repulsion

and fuzzy alignment drives respectively (definitions 5.8–5.10). The fuzzy action selection

function is the fuzzy weighted sum action selection function S̃ = S̃ws (definition 5.11).

In the following sections I shall discuss the fuzzy visual perception function, the

fuzzy attraction drive, the fuzzy repulsion drive, the fuzzy alignment drive and the fuzzy

weighted sum action selection in more detail.

5.2.1 Modelling Visual Perception

As discussed in sections 2.2.2 and 3.3.2 Heppner and Grenander [28] give each animat

complete and precise information about the universe. In doing so they make an unrealistic

assumption because real birds have limited and inaccurate perceptive capabilities (e.g.

nearby flockmates hide those far away, thus the bird cannot visually perceive them).

Reynolds [64], on the other hand, as discussed in sections 2.2.1 and 3.3.1, admitting

that a bird’s perception of the world is severely limited by occlusion, models perception
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as a volume within which the animat has the ability to sense flockmates. But in his

case the sensed information is precise – giving the animat precise information about

the state of its flockmates (i.e. their exact distance, position, flight speed and flight

direction). Even though Reynolds [64] states that his perception model tries to make

available approximately the same information that is available to a bird as the end result

of perceptual and cognitive processes, his approach, although better, is still unrealistic.

A bird’s visual perception is not limited only by occlusion, but also by the fact that the

ability to sense distance, apart from being affected by the degree of binocular overlap,

decreases with distance itself.

Even though it is likely that aerodynamic perception is as important in birds as hy-

drodynamic perception is important in fish [85], I currently model only visual perception.

Although it is still an unrealistic model, I adopt a slightly modified Reynolds’s [68] ap-

proach of localized visual perception. The main difference between the two is in the

returned information.

In fact, I model visual perception as a visual volume defined by the visual range rv,

per eye visual field fovv and the angle of binocular overlap bv of the fuzzy animat (see

Fig. 5.1). At the time being I am using the visual range of seven body lengths and the

per eye visual field of 150◦ with no binocular overlap so that the fuzzy animat has a blind

area of 60◦ behind it, which corresponds closely to the values reported by Heppner et al.

[26]. However, instead of giving full information about the perceived flockmates I give

only their distance, angular offset, relative difference in flight speed and relative difference

in flight direction. I justify this by the fact that using visual perception, a bird can sense

only the distance and angular offset of a flockmate, but through cognitive processes and

tracking it can judge the relative difference in flight speed (i.e. if the flockmate is moving

faster, slower or with the same speed) and their relative difference in flight direction (i.e.

if the flockmate is flying more to the left, more to the right or in the same direction).

Nevertheless in my current implementation the sensed information is still precise (i.e.

exact distance, angular offset, etc.).3 I reserve the modelling of the binocular overlap

and inaccurate visual perception for future work.

Recall that, as in Reynolds’s case, in my case the digital universe is homogeneous.
3It could be argued that by using this information one can calculate the same precise information as

in Reynolds’s [68] case, but I strongly object to any mentioning that a bird has precise or full information

about its global position in space, absolute flight speed or absolute flight direction.
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Figure 5.1 The perception model used in my fuzzy animat. The black arrow represents the fuzzy digital bird’s flight direction.

The shaded area represents the visual volume defined by the visual range rv, per eye visual field fovv and the

angle of binocular overlap bv. The perceived flockmates are depicted in a light blue colour.

Indeed it consists of n fuzzy animats of same kind denoted as B̃1, . . . , B̃n. Recall that my

fuzzy animat’s output function is also λ(q) = 〈p,v〉, where p ∈ E is the animat’s current

position in space and v ∈ E its velocity. This means that at a discrete time step t ∈ T

the perceivable state of the universe is u(t) = 〈y1(t), . . . , yn(t)〉, where for all i = 1, . . . , n

yi = λ(qi(t)) is the output of fuzzy animat B̃i at time step t.

As a crisp perception function a fuzzy perception function acts like an interpreter

of the perceivable state of the universe and selector of relevant information. But as

a contrast to the crisp version it allows modelling inaccurate perception. However, as

already said, in the current implementation I model visual perception as accurate.

Let B̃i and B̃j , where i, j ∈ Nn, be two fuzzy animats from the digital universe and

let qj = 〈pj ,vj , sj〉 be the current state of fuzzy animat B̃j and yi = λ(qi) = 〈pi,vi〉
the current output of fuzzy animat B̃i. Let B̃j denote the observed animat. Recall from
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equation (3.7) that the crisp distance of fuzzy animat B̃i can be computed as

εi = ‖pi − pj‖ , (5.5)

and from equation (3.8) that the direction of the offset vector between them (i.e. their

crisp angular offset) can be computed as

ϕi = arccos
(

vj · (pi − pj)
‖vj‖ ‖pi − pj‖

)
. (5.6)

The crisp difference in flight speed between the observed fuzzy animat B̃j and fuzzy

animat B̃i is on the other hand computed as

ςi = ‖vi‖ − ‖vj‖ . (5.7)

As already said, the velocity vector v gives the relative position changes per coordinate

axis in the Cartesian coordinate system. Let ax, ay and az denote the x, y and z axis

components of vector a. Then since I am using a two-dimensional Euclidean space

E = R2, where a× b = axby − aybx, the crisp difference in flight direction between the

observed fuzzy animat B̃j and fuzzy animat B̃i is computed as

ϑi = sgn (vi × vj) arccos
(

vi · vj

‖vi‖ ‖vj‖
)

, (5.8)

where sgn : R 7→ R is the signum function defined as

sgnx =





−1 iff x < 0

0 iff x = 0

1 iff x > 0

. (5.9)

In my model of visual perception the observed animat perceives only the distance,

angular offset, difference in flight speed and difference in flight direction of the fuzzy

animats that are in its visual volume. This means that the set of visually obtainable

information about a fuzzy animat is Iv = R4 and the fuzzy neighbourhood is
〈
Ñ, Õ

〉
,

where Ñ ∈ F(Nn) and Õ ∈ F(Iv)n. However, since in the current implementation the

perception is accurate, the fuzzy set Ñ is in fact a crisp set N ∈ Nn and Õ is a crisp

value o ∈ (Iv)n.4

4Indeed this can safely be done because fuzzy sets are a generalization of crisp sets and a crisp set A

defined on the universe of discourse X can always be represented as the fuzzy set Ã whose membership

function µÃ(x) = 1 iff x ∈ A and µÃ(x) = 0 iff x /∈ A, for all x ∈ X.
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Definition 5.7: Let x = 〈y1, . . . , yn〉 be the current perceivable state of the universe, j

denote the index of the observed fuzzy animat and let Iv = R4 be the set representing visually

obtainable information about a flockmate’s distance, angular offset, difference in flight speed

and difference in flight direction. Then F(Pv) = F(Nn) × F(Iv)n and equations (5.10)–

(5.12) define the fuzzy visual perception function P̃v : X×Q 7→ F(Pv).

P̃v(x, q) =
〈
Ñ, Õ

〉
, (5.10)

Ñ = {i| i ∈ Nn, i 6= j, εi ≤ rv, ϕi < fovv} , (5.11)

Õ =
〈
〈ε1, ϕ1, ς1, ϑ1〉, . . . , 〈εn, ϕn, ςn, ϑn〉

〉
. (5.12)

5.2.2 Modelling Drives

Even though, as discussed in sections 2.2.1 and 3.3.1, Reynolds in his latest studies

[68, 69] presented drives5 through the combination of which one can achieve complex

behaviours, he states that flocking behaviour can be achieved using only three drives,

namely separation, alignment and cohesion. Cohesion simulates attraction toward flock-

mates and is modelled as the animat’s tendency to fly towards the centre of mass of

the perceived flockmates. Separation simulates repulsion away from flockmates and is

modelled as the animat’s tendency to fly away from the perceived flockmates. These two

drives (cohesion and separation) represent the attraction-repulsion scheme. Alignment,

on the other hand, tries to produce polarization and is modelled as the animat’s tendency

to change its flight direction and flight speed, so that it corresponds to the average flight

direction and flight speed of its perceived flockmates.

Heppner and Grenander [28] (sections 2.2.2 and 3.3.2) also modelled three, but dif-

ferent, drives, namely homing, velocity regulation and interaction. Homing simulates the

attraction of the roosting point and is modelled as the animat’s tendency to fly toward the

roosting point. This tendency drops to zero if the animat is close enough (i.e. a predefined

distance) or too far away (i.e. a predefined distance) from the roosting point. Velocity

regulation is modelled as the animat’s tendency to fly at a certain predefined preferred

speed. Interaction, on the other hand, combines the attraction-repulsion scheme in one

single drive and simulates the actual interaction between animats. If two animats are too

close (i.e. a predefined distance) they are repelled, if they are too far (i.e. a predefined

5In his papers he uses the name steering behaviours, but for reasons of consistency and clarity the

term drives is used throughout this dissertation.
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distance) they do not influence each other and if they are anywhere in between, they are

attracted.

Attraction towards and repulsion from the flockmates feel natural. After all, their

mutual coexistence and importance for the congregation’s structure has already been

suggested by Okubo [51]. Another important feature of groups of uniform density is

polarization [55]. Heppner and Grenander [28] did not model it specifically, but they

mention that in certain cases organized flocks maintaining straight direction of flight

emerged. This might be caused by the perception model they used (i.e. all animats have

complete and accurate information about the universe) in conjunction with the velocity

regulation drive. Reynolds [64], however, tries to model polarization through the drive

of alignment.

According to the above discussion I model these three primary drives, the attraction to

flockmates (fuzzy attraction drive), the repulsion from flockmates (fuzzy repulsion drive)

and polarization with flockmates (fuzzy alignment drive). In the following subsections I

will discuss them in greater detail. Note that when modelling attraction to flockmates I

do not use a predefined preferred position like the centre of mass [64] and similarly, when

modelling polarization with flockmates I do not use a predefined preferred flight speed

[28]. Instead I let these properties emerge on their own.

As said before, my fuzzy animat perceives the current state of the universe through

visual perception only. At any point in time the fuzzy animat perceives only information

about a localized subset of the universe. Since I model the universe as a collection of fuzzy

animats, the fuzzy animat thus perceives information about its nearby flockmates. The

perceived information includes only distance, angular offset, relative difference in flight

direction and relative difference in flight speed of the nearby flockmates. At the time

being the perceived information is precise and I reserve modelling inaccurate perception

for future work. In addition, I shall suppose that the fuzzy animat can act only by

changing its flight speed and/or flight direction.

The Fuzzy Attraction Drive

The primary motive of the attraction drive is to stay close to nearby neighbours. Now,

imagine a bird that perceives only one neighbour. How would you, in the simplest way

possible, describe the action that will keep it close to the perceived neighbour? Assuming

that the bird can act only by changing its flight speed and/or flight direction and using
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common sense most of us would probably state the following:

1. in general do not change flight speed or flight direction;

2. when the perceived neighbour is ‘close enough’, change neither flight speed nor

flight direction;

3. when the perceived neighbour is ‘too far’ and ‘in front’, speed up;

4. when the perceived neighbour is ‘too far’ and anywhere to the ‘left or behind’, turn

toward it and slow down;

5. when the perceived neighbour is ‘too far’ and anywhere to the ‘right or behind’,

turn toward it and slow down.

Looking carefully at this description, it can be noticed that the resulting action de-

pends only on the perceived neighbour’s distance (i.e. ‘close enough’, ‘too far’) and posi-

tion (i.e. ‘in front’, ‘left or behind’, ‘right or behind’). But what do ‘close enough’, ‘too

far’, ‘in front’, etc. mean? Does ‘in front’ perhaps address the precise moment when the

perceived neighbour is positioned at an angular offset of 0◦? What about 5◦, is the per-

ceived neighbour then not ‘in front’? As it can be seen, ‘in front’ is an imprecise property

and constructing a mathematical model from a description that builds on such imprecise

properties is a challenging task, which usually requires advanced mathematical skills.

Then again, because ‘close enough’, ‘too far’, ‘in front’, etc. are imprecise properties and

do not represent crisp values like 0◦ or 5◦, they can be labelled as vague or fuzzy values.

Thanks to Zadeh [90], who introduced fuzzy sets (see section 4.1), such values can be

formally defined.6 Constructing the attraction drive now becomes simple. All that needs

to be done is to rewrite the description as a collection of easily understandable if-then

rules (section 4.2.1) and the necessary action can be afterwards computed by applying

fuzzy logic (section 4.2).

Consider, for example, the fuzzy value ‘close enough’. As already said, it can be

represented with a fuzzy set. In other words, this means that a fuzzy value is uniquely

defined by its membership function. In this case, the latter provides the degree to which

a real number satisfies the property ‘close enough’ (i.e. its degree of membership). But

because the interpretation of ‘close enough’ is subjective, there is no unique membership
6In fact, according to the latest fuzzy sets related literature [41] a fuzzy value is a fuzzy set defined

in the real number domain.
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function; it is left to the modeller to decide what it should be like. Thus the question

is: what did we have in mind with ‘close enough’? I shall assume that the perceived

neighbour is considered as ‘close enough’ if its distance is 40% of the visual range or

less. As the distance increases, the perceived neighbour is considered less and less ‘close

enough’ and eventually, when it gets out of the visual range, it is not considered as ‘close

enough’ at all. This translates in the membership function that is presented on Fig. 5.2a.

However, this is only one of the many possible interpretations of ‘close enough’ and an
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Figure 5.2 Membership functions of the fuzzy values ‘close enough’, ‘too far’ (a), ‘in front’, ‘left or behind’, ‘right or behind’

(b), ‘turn left’, ‘keep direction’, ‘turn right’ (c), ‘decelerate’, ‘keep speed’, ‘accelerate’ (d) for the case of the

attraction drive.

interesting question is: when does a bird consider its neighbour to be ‘close enough’?

Here comes into play the expertise of field ornithologists, who could use a tool such as

this to translate their observational knowledge into simulation models.

In a similar fashion the fuzzy values ‘too far’, ‘in front’, ‘left or behind’ and ‘right

or behind’ can be defined (Figs. 5.2a and b). Furthermore, by introducing the fuzzy

values ‘keep direction’, ‘turn left’, ‘turn right’, ‘keep speed’, ‘accelerate’ and ‘decelerate’

(Figs. 5.2c and d) to represent the actions of keeping the same flight direction, performing

a left turn and performing a right turn, keeping the same flight speed, accelerating and

decelerating, the initial description can be rewritten in the form of a set of if-then rules

denoted as the attraction fuzzy rule base.

a1: if (distance is close enough) then (flight direction is keep direction),
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a2: if (distance is too far) then (flight direction is keep direction),

a3: if (distance is close enough) then (flight speed is keep speed),

a4: if (distance is too far) then (flight speed is keep speed),

a5: if (distance is too far) and (position is in front) then (flight speed is accelerate),

a6: if (distance is too far) and (position is left or behind) then (flight direction is turn left),

a7: if (distance is too far) and (position is left or behind) then (flight speed is decelerate),

a8: if (distance is too far) and (position is right or behind) then (flight direction is turn right),

a9: if (distance is too far) and (position is right or behind) then (flight speed is decelerate).

The first four rules from the attraction fuzzy rule base (i.e. rules a1–a4) model the

assumption that a bird in general tends not to change its flight direction or flight speed;

item (1) in the description on page 58. Rules a2 and a4 model the assumption that a

bird, in order to keep close to a neighbour that is already close enough, does not need

to do anything; item (2). Rule a5 models the assumption that a bird, in order to catch

up with a neighbour that is in front of it but too far, needs only to speed up; item (3).

Finally, the last four rules (a6–a9) model the assumption that a bird, in order to get

close to a neighbour that is too far but positioned sideways or behind, needs to turn

toward it and slow down; items (4) and (5).

The attraction fuzzy rule base can be used to model the fuzzy animat’s attraction

drive. When the fuzzy animat perceives only one neighbour, its uncertain action (i.e.

the changes in flight direction and/or flight speed as fuzzy sets) is computed by applying

fuzzy logic on each of the rules and combining the rule outputs. The resulting action will

keep the animat close to the perceived neighbour. When the fuzzy animat perceives more

than one neighbour the rules are evaluated for each neighbour independently (i.e. as if the

animat perceived only that neighbour) and all outputs are combined (see section 5.2.4).

The resulting action is a combination that will satisfy the fuzzy animat’s drive to keep

close to all of the perceived neighbours. In any case the resulting uncertain action is

given through the fuzzy set representing the required uncertain change in flight direction

and the fuzzy set representing the required uncertain change in flight speed.

Recall that my fuzzy animat uses only one fuzzy perception function (i.e. the fuzzy

visual perception function – definition 5.7). This means that the set representing uncer-

tain information that can be obtained from the current perceivable state of the universe

is F(P) = F(Pv) = F(Nn) × F(Iv)n and that Iv = R4. Furthermore, recall that the

perception is accurate, which means that the fuzzy neighbourhood
〈
Ñ, Õ

〉 ∈ F(P) is

crisp (i.e. the fuzzy sets Ñ ∈ F(Nn) and Õ ∈ F(Iv)n represent crisp sets). This means
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that the uncertain information about fuzzy animat B̃i is actually represented by the

quadruple 〈εi, ϕi, ςi, ϑi〉 ∈ F(Iv) (i.e. the crisp distance, crisp angular offset, crisp differ-

ence in flight speed and crisp difference in flight direction between the observed fuzzy

animat and fuzzy animat B̃i). In addition it also means that the fuzzy set of indexes of

the relevant fuzzy animats is a crisp set (i.e. µÑ(i) ∈ {0, 1} for all i ∈ Nn).

As discussed earlier, my fuzzy animat can act only by changing its flight direction

and/or flight speed. In other words: the set representing all possible actions is A = R2.

The uncertain action (i.e. the required uncertain flight direction change given as the

fuzzy set D̃ ∈ F(R) and the required uncertain flight speed change given as the fuzzy

set S̃ ∈ F(R)) that with respect to the perceived uncertain information about the state

of the universe
〈
Ñ, Õ

〉 ∈ F(P) and the current state of the fuzzy animat q satisfy the

attraction drive is therefore given as Ãa = 〈D̃a, S̃a〉 ∈ F(A).

Definition 5.8: Let the fuzzy neighbourhood returned by the visual perception function

be P̃v =
〈
Ñ, Õ

〉
∈ F(P), where Ñ is the fuzzy set of indexes of the relevant fuzzy animats

and Õ ∈ F(Iv)n represents uncertain information about the existing fuzzy animats. The

fuzzy attraction drive function D̃a : F(P)×Q 7→ F(A) can therefore be written as

D̃a(P̃v, q) =
⊎

∀i(µ
Ñ

(i)=1)

La(〈εi, ϕi, ςi, ϑi〉), (5.13)

where La : F(Iv) 7→ F(A) denotes the application of fuzzy logic on the attraction fuzzy rule

base with distance = εi and position = ϕi.

The Fuzzy Repulsion Drive

The primary motive of the repulsion drive is to stay away from collisions. I shall again

assume that the hypothetical bird perceives only one neighbour, except that this time

I am interested in the action that will keep it away from colliding with that neighbour.

Using common sense, most of us would describe the bird’s behaviour in the following

way:

1. in general do not change flight speed or flight direction;

2. when the perceived neighbour is ‘far enough’, change neither flight speed nor flight

direction;

3. when the perceived neighbour is ‘too close’ and anywhere ‘behind’, speed up;
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4. when the perceived neighbour is ‘too close’ and ‘in front or right’, turn away from

it and slow down;

5. when the perceived neighbour is ‘too close’ and ‘in front or left’, turn away from it

and slow down.

Once more it can be noticed that in the description the resulting action depends

only on the perceived neighbour’s distance and position. Therefore, as in the case of the

attraction drive, I shall first define the fuzzy values ‘far enough’, ‘too close’, ‘behind’, ‘in

front or right’ and ‘in front or left’ (Figs. 5.3a and b). Then, assuming that the bird can
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Figure 5.3 Membership functions of the fuzzy values ‘too close’, ‘far enough’ (a), ‘behind’, ‘in front or left’, ‘in front or

right’ (b), ‘turn left’, ‘keep direction’, ‘turn right’ (c), ‘decelerate’, ‘keep speed’, ‘accelerate’ (d) for the case of

the repulsion drive.

act only by changing its flight direction and/or flight speed, I shall introduce the fuzzy

values that represent the actions of keeping the same flight direction, performing a left

turn, etc. (Figs. 5.3c and d). After completing these two steps the initial description can

be rewritten in the form of a set of if-then rules that I shall denote as the repulsion fuzzy

rule base.

r1: if (distance is far enough) then (flight direction is keep direction),

r2: if (distance is too close) then (flight direction is keep direction),

r3: if (distance is far enough) then (flight speed is keep speed),

r4: if (distance is too close) then (flight speed is keep speed),
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r5: if (distance is too close) and (position is behind) then (flight speed is accelerate),

r6: if (distance is too close) and (position is in front or left) then (flight direction is turn right),

r7: if (distance is too close) and (position is in front or left) then (flight speed is decelerate),

r8: if (distance is too close) and (position is in front or right) then (flight direction is turn left),

r9: if (distance is too close) and (position is in front or right) then (flight speed is decelerate).

As in the case of the attraction drive, the repulsion fuzzy rule base can be used

to model the fuzzy animat’s repulsion drive. In other words, for each of the perceived

neighbours the fuzzy animat applies fuzzy logic on each of the rules from the repulsion

fuzzy rule base and works out the uncertain action that should be taken to keep away

from colliding with any of the perceived neighbours (see section 5.2.4).

Definition 5.9: Let the fuzzy neighbourhood returned by the visual perception function

be P̃v =
〈
Ñ, Õ

〉
∈ F(P), where Ñ is the fuzzy set of indexes of the relevant fuzzy animats

and Õ ∈ F(Iv)n represents uncertain information about the existing fuzzy animats. The

fuzzy repulsion drive function D̃r : F(P)×Q 7→ F(A) can therefore be written as

D̃r(P̃v, q) =
⊎

∀i(µ
Ñ

(i)=1)

Lr(〈εi, ϕi, ςi, ϑi〉), (5.14)

where Lr : F(Iv) 7→ F(A) denotes the application of fuzzy logic on the repulsion fuzzy rule

base with distance = εi and position = ϕi.

The Fuzzy Alignment Drive

The alignment drive’s motive is to achieve polarization with flockmates (i.e. to keep

approximately the same flight speed and flight direction as the perceived flockmates). If

it is yet again assumed that the hypothetical bird perceives only one neighbour then the

necessary actions can be described as follows:

1. in general do not change flight speed or flight direction;

2. when the perceived neighbour is ‘too far’ or ‘too close’, change neither flight speed

nor flight direction;

3. when the perceived neighbour is at a ‘good’ distance and flying in the ‘same direc-

tion’, keep flight direction;

4. when the perceived neighbour is at a ‘good’ distance but flying more to the ‘left’,

turn left;
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5. when the perceived neighbour is at a ‘good’ distance but flying more to the ‘right’,

turn right;

6. when the perceived neighbour is at a ‘good’ distance and flying with the ‘same

speed’, keep flight speed;

7. when the perceived neighbour is at a ‘good’ distance but flying ‘slower’, slow down;

8. when the perceived neighbour is at a ‘good’ distance but flying ‘faster’, speed up.
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Figure 5.4 Membership functions of the fuzzy values ‘too close’, ‘good’, ‘too far’ (a), ‘left’, ‘same direction’, ‘right’ (b),

‘slower’, ‘same speed’, ‘faster’ (c), ‘turn left’, ‘keep direction’, ‘turn right’ (d), ‘decelerate’, ‘keep speed’, ‘accel-

erate’ (e) for the case of the alignment drive.

As a contrast to the attraction and repulsion drives it can be noticed that in this case

the action depends on the perceived neighbour’s distance, difference in flight direction

and difference in flight speed. After the definition and introduction of the required fuzzy

values (Fig. 5.4) the initial description can be rewritten in the form of the alignment

fuzzy rule base.
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p1: if (distance is too far) then (flight direction is keep direction),

p2: if (distance is too close) then (flight direction is keep direction),

p3: if (distance is too far) then (flight speed is keep speed),

p4: if (distance is too close) then (flight speed is keep speed),

p5: if (distance is good) and (direction is same direction) then (flight direction is keep direction),

p6: if (distance is good) and (direction is left) then (flight direction is turn left),

p7: if (distance is good) and (direction is right) then (flight direction is turn right),

p8: if (distance is good) and (speed is same speed) then (flight speed is keep speed),

p9: if (distance is good) and (speed is slower) then (flight speed is decelerate),

p10:if (distance is good) and (speed is faster) then (flight speed is accelerate).

Yet again the alignment fuzzy rule base can be used to model the fuzzy animat’s

alignment drive. That is, by applying fuzzy logic on it, the fuzzy animat can work out

the uncertain action that should be taken in order to keep approximately the same flight

speed and flight direction as the perceived neighbours (see section 5.2.4).

Definition 5.10: Let the fuzzy neighbourhood returned by the visual perception function

be P̃v =
〈
Ñ, Õ

〉
∈ F(P), where Ñ is the fuzzy set of indexes of the relevant fuzzy animats

and Õ ∈ F(Iv)n represents uncertain information about the existing fuzzy animats. The

fuzzy alignment drive function D̃p : F(P)× Q̃ 7→ F(A) can therefore be written as

D̃p(P̃v, q) =
⊎

∀i(µ
Ñ

(i)=1)

Lp(〈εi, ϕi, ςi, ϑi〉), (5.15)

where Lp : F(Iv) 7→ F(A) denotes the application of fuzzy logic on the alignment fuzzy rule

base, where distance = εi, speed = ςi and direction = ϑi.

5.2.3 Modelling Action Selection

As already discussed, the action selection process simulates the animal’s neurological

process of selecting the sequence of muscular movements that will accomplish the actions

that result from its drives. This process combines, prioritizes, and arbitrates between

potentially conflicting actions. Similar to Reynolds [64, 68] (section 3.3.1) and Heppner

and Grenander [28] (section 3.3.2), in my study I do not model the musculoskeletal

structure of a real bird and model the action selection mechanism as a simple combination

of the actions that result from the animat’s drives. In other words, for each of the animat’s

drives a vector is calculated that represents the force needed to accomplish the required

action. These forces are then combined by using a weighted sum and the resulting vector
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used to calculate the animat’s new flight speed and flight direction. This calculation is

subjected to a set of constraints modelling conservation of momentum, viscous damping

and the animal’s finite amount of available energy. The same approach named geometrical

flight was already used by Reynolds [64, 68] (see section 3.3.1). Heppner and Grenander

[28], who represented actions as vectors (see section 3.3.2), used a similar approach and

modelled action selection as a simple weighted sum. However, apart from the Poisson

stochastic process modelling the effects of wind gusts and random local disturbances,

they did not apply any additional constraints.

To sum up, my fuzzy animat is based on a point mass approximation. The same

approach, named a point mass vehicle model, was used by Reynolds [64, 68] (see sec-

tion 3.3.1). This means that my fuzzy animat’s physics is also based on forward Euler

integration [54, 68]. As said, for each of the fuzzy animat’s three fuzzy drives (i.e. the

fuzzy attraction, fuzzy repulsion and fuzzy alignment drive) a vector is calculated that

represents the force needed to accomplish the required action. However, in my case, the

uncertain action resulting from a fuzzy drive gives the required uncertain change in flight

direction and the required uncertain change in flight speed as fuzzy sets. This means

that each of the two fuzzy sets needs first to be converted into a single (crisp) value

which, in some sense, is the best representative of the fuzzy set. This is achieved through

defuzzification (see section 4.2.2). The defuzzified values are then used to compute the

forces required to initiate the desired changes and these are afterwards combined by using

a weighted sum. The weights have been chosen so as to give the highest priority to the

fuzzy repulsion drive, followed by the fuzzy alignment drive, and the lowest priority to

the fuzzy attraction drive. The resulting vector is used to calculate the fuzzy animat’s

new flight speed and flight direction. In other words, the resulting force (limited by the

fuzzy animat’s available force) is applied to the fuzzy animat’s point mass. This produces

an acceleration equal to the force divided by the fuzzy animat’s mass. The acceleration is

then added to the fuzzy animat’s current velocity vector and truncated by the maximum

achievable speed. Finally the fuzzy animat’s new position is computed by adding the

new velocity vector to the fuzzy animat’s current position.

Let a ∈ E be a vector. Then since I am using the two-dimensional Euclidean vector

space E = R2 the rotation of vector a for the angle α is defined as

R(a, α) = (ax cos α + ay sin α) ei + (−ax sin α + ay cos α) ej, (5.16)
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where ei, ej are the x and y axis unit vectors of the Cartesian coordinate system.

Furthermore, if a ∈ R+ is used to represent the maximal size of vector a, equa-

tion (3.21) still holds, and truncation of vector a so that its size is lower or equal a is

computed as

baea = min(‖a‖ , a)a0.

Let Ã = 〈D̃, S̃〉 ∈ F(A) represent the desired uncertain action returned by one of

the fuzzy drive functions from definitions 5.8–5.10. Let the fuzzy set D̃ represent the

desired uncertain flight direction change and let the fuzzy set S̃ the desired uncertain

flight speed change. Let the current state of the observed fuzzy animat be q = 〈p,v, s〉,
where p is the fuzzy animat’s current position in space, v its velocity and s the modelled

animal’s internal state defined by definition 5.5. Then the mapping F : F(A)×Q 7→ E

given by equation (5.17) computes the force required to initiate the desired change in

flight speed and/or flight direction.

F (Ã, q) =
⌊
max(‖v‖+ cog S̃, 0)R(v0, cog D̃)

⌉vM − v. (5.17)

Definition 5.11: Let the current state of the fuzzy animat be q = 〈p,v, s〉, where the

modelled animal’s internal state s is defined by definition 5.5. Let the computed desired

uncertain actions be 〈Ãa, Ãr, Ãp〉. Let wa, wr and wp represent the weight of the fuzzy

attraction, fuzzy repulsion and fuzzy alignment drive respectively and let dt represent the

simulation step. Then the fuzzy weighted sum action selection function S̃ws : F(A)×Q 7→ Q

is defined as

Sws(〈Ãa, Ãr, Ãp〉, q) = 〈p′,v′, s〉, (5.18)

v′ =

⌊
v +

⌊
waF (Ãa, q) + wrF (Ãr, q) + wpF (Ãp, q)

⌉fM

m
dt

⌉vM

, (5.19)

p′ = p + v′dt. (5.20)

5.2.4 A Wingbeat of the Fuzzy Digital Bird

In the previous sections a formal definition of a fuzzy digital bird was presented. With a

collection of the latter, a fuzzy model for a computer simulation of bird flocking can be

constructed. This section provides an example of the steps taken in processing a single

decision. The main emphasis is given to the computation of the fuzzy drives.
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Let the current state of the digital universe be such that the observed fuzzy animat

perceives only two neighbours. Let neighbour B̃1 be 80% of the observed fuzzy animat’s

visual range away with an angular offset of −30◦ and neighbour B̃2 60% of the visual

range away with an angular offset of −110◦ (Fig. 5.5). For reasons of simplicity I shall

assume that they are all flying in the same direction and with the same flight speed.

B
2

~

B
1

~

Figure 5.5 The observed fuzzy animat perceives two neighbours, one of which is 80% of the visual range away with an

angular offset of −30◦ (B̃1), and the other is 60% of the visual range away with an angular offset of −110◦

(B̃2). All fuzzy animats have the same flight direction and flight speed (black and blue arrows).

By computing the fuzzy attraction, fuzzy repulsion and fuzzy alignment drive (i.e.

applying fuzzy logic on the attraction, repulsion and alignment fuzzy rule bases) the

observed fuzzy animat computes three independent actions (i.e. uncertain flight direc-

tion and/or flight speed changes). These actions together will satisfy its drives to stay

close to the perceived neighbours, keep away from colliding with them and fly in ap-

proximately the same direction and flight speed. With the fuzzy weighted sum action

selection function the fuzzy animat then combines, prioritizes and arbitrates these ac-

tions and computes the flight direction and/or flight speed change to be taken in the

following time step.

Even though all fuzzy drives can be computed simultaneously, let me start with

the fuzzy attraction drive. For each of the perceived neighbours the fuzzy rule base is

evaluated independently (i.e. as if the fuzzy animat perceived only one neighbour) and all

outputs are later combined. Now, recall that the action that satisfies the fuzzy attraction

drive depends only on the perceived neighbour’s distance and position. Because all of
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the perceived information is precise, for neighbour B̃1, distance is the crisp value 80% of

the visual range and position is the crisp value −30◦.

First let me compute the necessary change in flight direction (i.e. evaluate rules a1,

a2, a6 and a8 from the attraction fuzzy rule base). It is easy to notice that rules a1

and a2 have the same consequent (i.e. ‘distance is keep direction’). Because of this their

antecedents can be joined, using the logical operator ‘or’, and interpreted as a single

rule. To assess the degree of truth of the compound antecedent the degrees of truth of

the individual antecedents must first be computed and then the fuzzy logic operator ‘or’

must be applied.

Let A1 denote the antecedent of rule a1 (i.e. ‘distance is close enough’) and A2 the

antecedent of rule a2 (i.e. ‘distance is too far ’). Recall that as distance is a crisp value,

the degrees of truth of A1 and A2 are given by the degree of membership of distance in

the corresponding fuzzy sets (see section 4.2). Therefore, if d is used to denote the value

of distance, C̃ to denote the fuzzy set ‘close enough’ and F̃ the fuzzy set ‘too far’, then

T (A1) = µC̃(d) = µC̃(80) = 0.33,

T (A2) = µF̃(d) = µF̃(80) = 0.67.
(5.21)

Since in this dissertation the logical operator ‘or’ is interpreted as maximum fuzzy union,

the degree of truth of the compound antecedent is

T (A1 or A2) = max(T (A1), T (A2)) = max(0.33, 0.67) = 0.67. (5.22)

Recall that the degree of truth of the antecedent implies the degree of truth of the

conclusion, and that fuzzy implication modifies the output fuzzy set (see section 4.2.1).

Let µK̃ denote the fuzzy set ‘keep direction’. Then, as this dissertation makes use of

product fuzzy implication, which modifies the output fuzzy set by squashing it, the

membership function of the modified output fuzzy set that results from rules a1 and a2

is given by

µK̃′(r) = T (A1 or A2) · µK̃(r) = 0.67 · µK̃(r). (5.23)

A graphical representation of the above described evaluation process is presented in

figure 5.6. The left half shows the evaluation of the antecedents’ degrees of truth, while

the right shows the modification of the output fuzzy set.

Rules a6 and a8 have different consequents, which means that they, even though they

can be evaluated simultaneously, cannot be treated as a single rule. It can be noticed,
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Figure 5.6 Graphical representation of the evaluation of rules a1 and a2 for the case when the perceived neighbour is 80%

of the visual range away with an angular offset of −30◦. The left half shows the evaluation of the degrees of

truth of the antecedents and the right part the modification of the output fuzzy set.
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however, that their antecedents have multiple parts. In both cases the antecedent is

composed of two conditions joined by the logical operator ‘and’. This means that to

evaluate the degree of truth of the antecedent the degrees of truth of the individual

conditions must first be computed and then the fuzzy logic operator ‘and’ must be

applied. A graphical representation of the evaluation process is presented in figure 5.7.
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Figure 5.7 Graphical representation of the evaluation of rules a6 and a8 for the case when the perceived neighbour is 80%

of the visual range away with an angular offset of −30◦. The left half shows the evaluation of the degrees of

truth of the antecedents and the right part the modification of the output fuzzy sets.

For rule a6 let A61 denote condition ‘distance is too far ’ and A62 condition ‘position

is left or behind ’. Then, if d is used to denote the value of distance, p to denote the value

of position, F̃ the fuzzy set ‘too far’ and L̃ the fuzzy set ‘left or behind’

T (A61) = µF̃(d) = µF̃(80) = 0.67,

T (A62) = µL̃(p) = µL̃(−30) = 0.17,
(5.24)

and, because this dissertation uses product fuzzy intersection to interpret the logical

operator ‘and’, the degree of truth of the antecedent of rule a6 is

T (A61 and A62) = T (A61) · T (A62) = 0.67 · 0.17 = 0.11. (5.25)

This means that, if T̃L is used to denote the fuzzy set ‘turn left’, the membership function

of the modified output fuzzy set that results from rule a6 is

µT̃′L
(r) = T (A61 and A62) · µT̃L

(r) = 0.11 · µT̃L
(r). (5.26)

Similarly for rule a8 condition ‘distance is too far ’ is denoted as A81 and condition

‘position is right or behind ’ as A82. Then, if the fuzzy set ‘right or behind’ is denoted as
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R̃, it can be written that

T (A81) = µF̃(d) = µF̃(80) = 0.67,

T (A82) = µR̃(p) = µR̃(−30) = 0,
(5.27)

and the degree of truth of the antecedent of rule a8 is

T (A81 and A82) = T (A81) · T (A82) = 0.67 · 0 = 0, (5.28)

which means that the antecedent is false.

For neighbour B̃2 the membership function of the modified output fuzzy set that

results from rules a1 and a2 is given by

µK̃′(r) = T (A1 or A2) · µK̃(r) = max(µC̃(60), µF̃(60)) · µK̃(r) =

= max(0.67, 0.33) · µK̃(r) = 0.67 · µK̃(r),
(5.29)

the modified output fuzzy set that results from rule a6 by

µT̃′L
(r) = T (A61 and A62) · µT̃L

(r) =

= (µF̃(60) · µL̃(−110)) · µT̃L
(r) =

= (0.33 · 0.61) · µT̃L
(r) = 0.2 · µT̃L

(r),

(5.30)

whereas the antecedent of rule a8 is again false.

Rules whose antecedents are true to a non-zero degree are usually denoted as active

rules. In my case the modified output fuzzy set that results from the consequent of

an active rule represents the uncertain flight direction change according to that rule,

expressed in the form of a fuzzy set. But because in fuzzy logic more than one rule can

be active at a time and because the rules are evaluated for each perceived neighbour

individually, all of the modified output fuzzy sets have to be combined into a single fuzzy

set (see section 4.2.2). This is done by computing the fuzzy union of the modified output

fuzzy sets. This dissertation makes use of the algebraic sum fuzzy union (see Chapter 4).

The combined fuzzy set that was obtained by evaluating the fuzzy rule base for the two

perceived neighbours is presented in figure 5.8.

Even though the combined fuzzy set represents the flight direction change that will

help satisfy the attraction drive it is still a fuzzy set. Therefore, in the final step, it has to

be converted into a single (crisp) value that is, in some sense, the best representative of

the fuzzy set. This is achieved through defuzzification. In this dissertation the centroid

defuzzification method is used, which returns the single (crisp) value, for which the area
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Figure 5.8 The modified output fuzzy sets that result from active rules and represent the flight direction change candidates.

They were obtained by evaluating the attraction drive fuzzy rule base for the case when the only two perceived

neighbours are 80% of the visual range away with an angular offset of −30◦ (B̃1), and 60% of the visual range

away with an angular offset of −110◦ (B̃2). The combined fuzzy set is the algebraic sum fuzzy union of the

modified output fuzzy sets. The defuzzified value, obtained by using the centroid method, equals −37.485◦.
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under the graph of the membership function of the combined fuzzy set is divided into

two equal subareas (see section 4.2.2).

If I return to the example: the defuzzified value resulting from the combined fuzzy

set presented in figure 5.8 is −37.485◦. This means that in order to satisfy the fuzzy

attraction drive, the fuzzy animat should turn to the left by 37.485◦. By computing

the necessary change in flight speed it can be found out that the fuzzy animat, in order

to satisfy the fuzzy attraction drive, should also increase its flight speed by 17.3489%

of its maximal achievable flight speed.7 The fuzzy repulsion drive would be satisfied

with a turn to the right by 11.078◦ and a speed increase of 4.3825% of its maximal

achievable flight speed. Since the fuzzy animat and the perceived neighbours have the

same flight direction and flight speed, the fuzzy alignment drive does not require any

changes (Fig. 5.9).

Figure 5.9 The defuzzified desired flight direction and flight speed changes in the case when the observed fuzzy animat

perceives only two neighbours. One neighbour is 80% of the visual range away with an angular offset of −30◦,

and the other 60% of the visual range away with an angular offset of −110◦. All have the same flight direction

and flight speed. The orange arrow represents the flight direction and flight speed change that would satisfy the

fuzzy attraction drive, while the green arrow represents the flight direction and speed change that would satisfy

the fuzzy repulsion drive.

7It is important to note that if the fuzzy animat is already flying at its maximal achievable flight

speed, it will keep on flying at this speed and the desired increase will remain unaccomplished. This will

happen due to the truncation of the flight speed in the fuzzy weighted sum action selection function.



6 Behaviour Analysis

6.1 Metrics

In Chapter 3 the formal definition of the animat was presented. Its potential as a con-

struction framework for modelling the dynamics of organized groups of moving animals

was shown, by using it to reproduce Reynold’s [64, 68] and Heppner and Grenander’s [28]

computer model of bird flocking. By introducing fuzziness into the animat in Chapter 5

the construction of a simulated animal was made possible even when only ambiguous

knowledge is available. The fuzzy animat was then used to construct a fuzzy model for

the computer simulation of bird flocking. In this chapter attention is given to the quality

of the simulated flocking behaviour. First I shall present a set of metrics with which the

flocking behaviour of a group of animats can be objectively measured and judged, and

then I shall use it to compare and analyse my and Reynolds’s model.

As said, the primary objective of all of the presented models is to simulate the char-

acteristic behaviour of birds, namely flocking (see Chapter 1). Thus the first question

that arises when analysing the displayed behaviour is, “What is a flock?”. As discussed

in section 2.2.1, with the term flock, Reynolds refers to a group of entities that exhibit a

75
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general class of aligned, noncolliding, aggregate motion [64]. On the other hand, accord-

ing to Heppner (definition 2.2), a flock is a group of flying birds coordinated in one or

more of the following parameters of flight: turning, spacing, velocity, flight direction of

individual birds, and time of takeoff and landing [24]. Since Heppner is an ornithologist,

his definition is meaningful and accurate from an ornithologist’s point of view. Regard-

less to that, both definitions, Heppner’s and Reynolds’s, give too little information from

an algorithmic point of view. Thus an algorithmically viable interpretation is needed.

For reasons of computational simplicity and the assumptions used when constructing

the models, I decided to define a flock in terms of animat to animat proximity. I stated

simply that two animats that are close enough to potentially influence each other (i.e. in

perceptive range) are members of the same flock (see Fig. 6.1). With such an interpreta-

leaderless flock

leader

leader flock

straggler

straggler

Figure 6.1 A leader flock, a leaderless flock and two stragglers. Dashed lines represent the range of potential influence. The

shaded areas thus encompass the animats that potentially influence each other and therefore represent the flocks’

extents. The solid line in the leader flock represents the visual volume of the leader and shows that even though

it potentially influences other members of the flock it is not influenced by any of them.

tion one can distinguish between flocks and stragglers, where the latter are animats that

are not members of any flock. Moreover, by taking into account the perception model
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used, one can distinguish also between leader flocks and leaderless flocks. I interpret a

leader flock as a flock with at least one leader (i.e. animat that is not influenced by any

of its flockmates, but influences at least one), whereas a leaderless flock is a flock with

no leader (i.e. each animat is influenced by at least one of its flockmates).

It should be noted that these definitions represent merely a first-order approximation,

but even though they might not be accurate enough from an ornithologist’s point of view,

they are sufficiently accurate from an algorithmic point of view. It should also be noticed

that they in no way suggest or assume the existence of a single and absolute leader, in the

sense of a military marching formation. Indeed, as Pomeroy and Heppner [60] reported,

when pigeons make a turn, the birds change position so that a bird at the head of a

flock will be in the rear of the flock if the flock turns 180◦. Therefore the hypothetical

absolute leader would be at the side or rear of the flock after a turn, which means that

such a model may not be appropriate at all.

The distinction between leader flocks and leaderless flocks was introduced only to

help algorithmic evaluation of the simulated behaviour. Because most real birds have a

very good vision to the rear, with the exception of a blind spot directly to the rear, it is

very likely that a bird at the head end of a flock will be influenced by trailers. It is thus

sound to assume that in nature mostly leaderless flocks exist and if the animats are to

display natural looking behaviour, there should be mostly leaderless flocks.

Let the digital universe consist of n animats. Recall from sections 3.2, 3.3.1, 3.3.2,

and 5.2 that in all of the study cases qi = 〈pi,vi, s〉 denotes the current state of animat

i, where pi ∈ E and vi ∈ E denote the animat’s current position in space and velocity,

for all i = 1, . . . , n. In addition, recall that the current perceivable state of the universe

is given as u = 〈y1, . . . , yn〉 and that the current perceivable data about animat i is

yi = λ(qi) = 〈pi,vi〉, for all i = 1, . . . , n.

Let ξj denote the maximal distance between the observed animat and another animat

that still allows a ‘potential direct influence’ between them (i.e. the maximal distance of

animat i such that it might still be perceived as relevant by at least one of the perception

functions of the observed animat j). Then, based on the current perceivable state of

the universe u, the set M ⊆ Yn ×Yn, which represents the relation of potential direct

influence between animats, can be computed

M = {(j, i)| j, i ∈ Nn, ‖pi − pj‖ ≤ ξj} . (6.1)
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Recall that rs, ra and rc denote the separation, alignment and cohesion perception

distances of Reynolds’s digital bird (definition 3.6). Then, since in Reynolds’s case all

digital birds are created equal, ξj = max(rs, ra, rc), for all j ∈ Nn. Similarly, recall that

rv denotes the visual range of the fuzzy digital bird (definition 5.5) and since in my case

all digital birds are also created equal ξj = rv, for all j ∈ Nn. Therefore the relation

of potential direct influence is in fact a set of ordered index pairs (j, i), where animat i

is close enough to be treated as relevant by at least one of the perception functions of

animat j.

Let g = g0 . . . gm, where gi ∈ Nn(i = 1, . . . ,m), denote a series of indexes. The set

representing the relation of potential direct or indirect influence between animats is then

defined as

M? =
{
(j, k)| j, k ∈ Nn, ∃g(

g0 = j, gm = k, (gi−1, gi) ∈ M, ∀i ∈ Nm

)}
. (6.2)

For all j = 1, . . . , n let Gj denote the set of indexes of animats that potentially directly

or indirectly influence animat j or are potentially directly or indirectly influenced by it.

Then Gj is defined as

Gj =
{
k| k ∈ Nn,

(
(j, k) ∈ M? or (k, j) ∈ M?

)}
. (6.3)

Let a straggler be an animat that is neither potentially directly or indirectly influenced

by any other animat nor does it potentially directly or indirectly influence any of them,

and let a flock be a set of animats that potentially directly or indirectly influence one or

another. Then the set of stragglers is defined as

S = {Gj | |Gj | = 1} , (6.4)

and the set of flocks as

F = {Gj | |Gj | > 1} . (6.5)

As discussed in section 2.2.2, one of the key questions when studying bird flocks is

the existence or necessity of a leader [29]. Let a leader be an animat that is a member

of a flock but is not directly affected by any of the flock’s members. In other words, a

leader is an animat that is a member of a flock but all of its perception functions find all

members of the flock irrelevant. However, since it is a member of the flock, the animat

has a potential direct or indirect influence on at least one another member of the flock.
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Let j be the index of the observed animat and let the perceived state of the universe be

u. Then the input of animat j is x = u. As the fuzzy animat is a generalization of the crisp

animat (see Chapter 5), a crisp perception function (definition 3.3) can be represented

as a fuzzy perception function (definition 5.2) and it is safe to assume that the animat’s

k perception functions return k fuzzy neighbourhoods denoted P̃1, . . . , P̃k. Recall that

P̃i =
〈
Ñi, Õi

〉 ∈ F(Pci), for all i = 1, . . . , k. In addition recall that Ñi ∈ F(Nn) denotes

the fuzzy set of indexes of animats that are according to characteristic ci relevant to the

observed animat. Let Ñj denote the set Ñ1 ∪ · · · ∪ Ñk, then animat j is a leader if and

only if µÑj
(i) = 0 ∀i ∈ Nn, i 6= j and the set of leader flocks is defined as

FL =
{
G| G ∈ F, ∃j ∈ G

(
µÑj

(i) = 0 ∀i ∈ Nn, i 6= j
)}

. (6.6)

Definition 6.1: Let S(t), F(t) and FL(t) denote the sets of stragglers, flocks and leader

flocks computed from the perceivable state of the universe at the discrete time step t ∈ T.

Then equations (6.7)–(6.9) are metrics of the number of stragglers, the number of flocks and

the proportion of leaderless flocks at the discrete time step t ∈ T.

s(t) = |S(t)| , (6.7)

f(t) = |F(t)| , (6.8)

f`(t) = 1− |FL(t)|
f(t)

. (6.9)

When measuring and judging the flocking behaviour of a group of animats one should

first estimate their flocking ability and then the resemblance of their behaviour to that

seen in natural flocks. The best choice to estimate the flocking ability is to turn to

counting the cumulative number of collisions between animats and to observe the tem-

poral dependency of the number of stragglers and the number of flocks. Since collisions

in nature occur rarely, the metrics of cumulative collisions is fairly important and the

lower it is, the better the flocking ability. On the other hand, when observing the tem-

poral dependency of the number of flocks the temporal dependency of the proportion of

leaderless flocks should always be monitored as well.

A common anomaly when simulating natural phenomena is the lack of similarity to the

real thing. For this reason the resemblance of the behaviour of a group of animats should

always be compared to that seen in natural flocks. A classical work on the behaviour of
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flocks and flock formations in general is that of Heppner [24] and thus when estimating

the resemblance of the simulated behaviour to that seen in nature, it seems safe to turn

to visual inspection of the emerged flocks and their comparison to those presented in

Heppner’s work (see Chapter 2). In addition to that it seems the best option to turn also

to observing the temporal dependency of the average nearest neighbour distance and the

flight direction and flight speed standard deviations in flocks. Indeed these metrics are

the ones that are the most commonly employed by ornithologists [20, 26, 60].

6.2 Experiments

I compared my fuzzy model with Reynolds’s through three sets of experiments. I wanted

to estimate the flocking ability of the simulated birds and the resemblance of the displayed

behaviour to that seen in natural flocks.

When estimating the flocking ability I turned to counting the number of animat to

animat collisions, the dynamics of the number of stragglers, the dynamics of the number

of flocks, and the dynamics of the proportion of leaderless flocks.

On the other hand, when estimating the resemblance of the simulated flocks to natural

flocks I turned to visual inspection of the emerged flight formations (see Figs. 2.1 and

2.2) as well as the presence of the somewhat erratic, unsystematic behaviour seen in

natural flocks [28]. I also estimated the level of alignment in flocks by measuring the

flight speed and flight direction standard deviations. Furthermore I also observed the

degree of uniform distribution by measuring the nearest neighbour distances.

6.2.1 Flocking Ability

In the first set, which consisted of eight experiments, 100 animats were initially placed

at random locations having random flight directions and flight speeds.1 In this set of

experiments I was primarily interested if the animats are able to self-organize in flocks. To

help self-organization (i.e. allow animats to eventually meet other animats) I confined the

animats using an invisible boundary (see green circle in Fig. 6.2). Whenever an animat

passed this boundary it was forced to turn and eventually return into the confinement

without changing its flight speed. In a way this resembles modelling the roosting area

used by Heppner [28] (see sections 2.2.2 and 3.3.2).

1Animated versions of the experiments are available in MPEG-4 format on the appended DVD-ROM.
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Figure 6.2 A comparison of a series of time-equidistant frames from one of the eight experiments for the estimation of

flocking ability for Reynolds’s model [68] (left) and my fuzzy model (right). The triangles represent animats,

with the apex indicating the flight direction, and the green circle surrounding the animats represents the roosting

boundary. Whenever an animat crosses this boundary it is forced to turn and eventually return into the roosting

area. For reasons of print clarity the animats’ images have been enlarged, which means that their apparent

overlapping does not necessarily imply a collision. Furthermore, grey triangles depict stragglers, blue triangles

flocking animats and dark blue triangles flock leaders. Orange triangles represent colliding animats.
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My animats were strikingly good at avoiding collisions and self-organizing in flocks.

While in my case in most cases no collisions occurred, Reynolds’s model, summed over the

whole population of 100 animats, averaged 15.63± 4.5 collisions in 3000 simulation steps

(see Tab. 6.1). In my case I also noticed that, when collisions did occur, they occurred

in short periods of time (e.g. 10 collisions in 200 simulation steps in experiment 03) and

were caused by extreme proximity of animats and could be interpreted as side bumping.

In Reynolds’s case, however, collisions occurred randomly throughout the simulation and

were mostly head-on collisions, caused by the merging of flocks.

Looking at the simulations in real-time I noticed that in my case both classes of flock

formations (i.e. line and cluster formations) emerged, but mostly front cluster ones. Line

formations in this set of experiments did not persist for long periods of time. On the

other hand, in Reynolds’s case the majority of the emerged flocks was of the extended

cluster formation whereas line formations did not emerge at all.

2.88±5.28 0.25±0.46 3.88±1.55 82.26±16.415.63±4.5 2.5±2.14 4.63±1.19 26.89±17.49avg

0 0 6 84±2208 18 7 5 26±16

0 0 3 77±1507 14 4 6 23±16

8 0 2 83±1706 10 1 31±184

0 1 5 82±1705 13 0 5 23±19

0 0 3 80±1404 14 2 5 27±18

14 0 3 90±1203 14 2 5 29±18

1 0 3 77±1402 25 2 5 30±17

0 1 6 83±1401 17 2 2 29±19

collisions stragglers flocks

proportion
of leaderless
flocks (avg)

Reynolds’s model

collisions stragglers flocks

proportion
of leaderless
flocks (avg)

fuzzy model

Table 6.1 A comparison of the number of collisions, number of stragglers and number of flocks after 3000 simulation steps

and the overall average proportion of leaderless flocks in the eight experiments used for the estimation of flocking

ability for Reynolds’s [68] model and my fuzzy model. Note that because in Reynolds’s case the area of potential

influence is larger, the number of flocks is lower to begin with, so the values cannot be directly compared.

Figure 6.3 presents a plot of the number of flocks in experiment 01 for my and

Reynolds’s model. By comparing the proportion of leaderless flocks it can be noticed

that in my case mostly leaderless flocks exist, whereas in Reynolds’s case mostly leader

flocks exist. This tendency was also noticed in the rest of the experiments (see Tab. 6.1).

The fact that in Reynolds’s model mostly leader flocks emerge is, in my opinion,

primarily caused by the perception model used in OpenSteer v0.8 (i.e. three distinct

visual volumes – one per drive; see section 3.3.1). Not only that the combined perception
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Figure 6.3 Plot of the number of flocks (blue line) and the contribution of leaderless flocks (orange line) for one of the

eight experiments used to estimate the flocking ability of Reynolds’s model [68] (top chart) and my fuzzy model

(bottom chart). Note that because in Reynolds’s case the area of potential influence is larger, the number of

flocks is lower to begin with, so the values cannot be directly compared. However, since the number of flocks in

both cases decreases through time it can be concluded that the two models present flocking ability. Beside this,

it can also be noticed that the fuzzy model produces mostly leaderless flocks whereas Reynolds’s model mostly

leader flocks.
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volume (Figs. 3.2, 5.1 and 6.4) gives the animat a two times larger blind area than my

model, it also gives the animat a much larger blind area than the values reported by

Heppner et al. [26]. As a result it is relatively common that a trailing animat enters

Figure 6.4 Comparison of the combined perception volume that Reynolds used in the OpenSteer v0.8 implementation of his

model [68] (blue line) and the visual perception volume used in my model (orange line).

the followed animat’s blind area and consequently does not influence it any more. The

followed animat thus becomes the trailer’s leader. Since it is not influenced by any of

the flockmates, the leading animat, because no random local disturbances are modelled,

keeps its flight speed and flight direction while all of the flockmates only regulate their

flight directions and flight speeds to follow it. Therefore, if not confined, the group

will eventually form a regularly distributed and stable extended cluster formation (see

frames 556–1000 in Fig. 6.6 and 1333–2000 in Fig. 6.7). According to Heppner [24], the

extended cluster formations in nature may simply be bird aggregations in which birds are

flying independently toward a common destination. One might be tempted to conclude

that this is precisely what is being experienced here. However, as Heppner states [24],

extended clusters tend to be rather disorganized, with frequent breakoffs and shifts of
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position, but these features are not to be seen in the leader flocks that emerge from

Reynolds’s model. This is why I find Reynolds’s use of three distinct visual volumes

questionable.

6.2.2 Cluster Flocks

In the second set of experiments I was interested if from an initial globular cluster forma-

tion, where all animats have the same flight speed and flight direction, natural looking

flocks emerge. In this set of experiments no roosting area was modelled. However, I used

three initial distribution patterns (see Fig. 6.5), for which I changed the nearest neigh-

bour distance (approximately two, four and six body lengths) and initial flight speed

(10%, 50% and 90% of maximum flight speed). In other words, there were 27 initial

states in all.2

Figure 6.5 Initial globular cluster distribution patterns used in the second set of experiments.

Figure 6.6 presents a comparison of a series of time-equidistant frames from one of

the experiments. In Reynolds’s case in most of the experiments one stable leader flock of

the extended cluster formation emerged, which, in the 10000 simulation steps, stabilized

flying at exactly maximum speed with the nearest neighbour distance matching the visual

range used for the separation drive. The emerged flocks were regularly distributed and

highly stable with no position shifting, which is, as already mentioned, the opposite

of what can be seen in nature. In the rare cases when position shifting occurred, it

originated from the centre of the flock, subsided fast, and the flock stabilized immediately

afterwards. The initial flock on average broke off to 1.3 ± 0.61 flocks and 0.44 ± 1.09

stragglers, with the first breakoff occurring at simulation step 500± 395.85.
2Animated versions of the experiments are available in MPEG-4 format on the appended DVD-ROM.
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Figure 6.6 A comparison of a series of time-equidistant frames from one of the 27 experiments with a globular cluster initial

formation for Reynolds’s model [68] (left) and my fuzzy model (right). The triangles represent animats, with

the apex indicating the flight direction. The light grey checker board represents a measurement aid with a tile

being five body lengths in size. The animats’ images have been enlarged for reasons of print clarity and their

overlapping does not necessarily represent a collision. Furthermore, blue triangles depict flocking animats and

dark blue triangles flock leaders.
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In my case, on the other hand, the initial flock on average broke off to 2.33±0.83 flocks

and no stragglers, with the first breakoff occurring in simulation step 3838.96± 1680.98.

In all cases the animats from the initial flock formation started shifting positions and

changing flock formation. The emerged front cluster formations were stable, but when

animats, due to position shifting and somewhat erratic and unsystematic behaviour,

reorganized into an extended cluster formation, they usually became disorganized and

eventually broke off. With breakoffs flock formations from both major classes emerged.

The resulting stable cluster flocks were of the front, globular and in few cases even

extended cluster formation. The extended cluster formations were disorganized with

frequent shifts of position. On the other hand, the resulting stable line flocks were

of the ‘V’, echelon and inverted ‘V’ formation. In all cases these flocks were small,

consisting of only two or three members and, with the only exception of the inverted ‘V’

formation, they were all leader flocks. The above described behaviour is strikingly similar

to natural flocks. If this bears up in future work it will make a very important point. In

fact, all previous hypotheses about ‘V’ formation flight assume a functional advantage:

aerodynamics [4, 5, 21, 22, 42], visibility [24, 26], communication [20, 25], and kinship

structure [2] (for a review, see [29, 72]). The behaviour present in my experiments seems

to suggest instead that even the ‘V’ formation might be an emergent property.

6.2.3 Line Flocks

In the third set of experiments I was interested if from a front line formation, where all

animats have the same flight speed and flight direction, line formation flocks emerge.

In this set of experiments no roosting area was modelled. However, I used three initial

distributions in which the animats were evenly spaced (approximately two, four and six

body lengths) and I changed the initial flight speed (10%, 50% and 90% of maximum

flight speed). In other words, there were nine initial states in all.3

Figure 6.7 presents a comparison of a series of time-equidistant frames from one of

the experiments. In Reynolds’s case the initial flock broke off on average to 1.78 ± 1.3

flocks and 1 ± 1.8 stragglers and there were 0.33 ± 0.5 collisions. Most of the emerged

flocks were of the extended cluster formation, regularly distributed and highly stable

with no position shifting, but in some rare cases stable, regularly distributed column line

formations emerged too. All of the emerged flocks were flying at maximum speed. In my
3Animated versions of the experiments are available in MPEG-4 format on the appended DVD-ROM.
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Figure 6.7 A comparison of a series of time-equidistant frames from one of the nine experiments with an initial line formation

for Reynolds’s model [68] (left) and my fuzzy model (right). The triangles represent animats, with the apex

indicating the flight direction. The light grey checker board represents a measurement aid with a tile being five

body lengths in size. For reasons of print clarity the animats’ images have been enlarged, which means that their

apparent overlapping does not necessarily imply a collision. Furthermore, blue triangles depict flocking animats

and dark blue triangles flock leaders. Notice that in the fuzzy model the ends of the flock trail away in a curve,

which is a very natural behaviour.
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case, on the other hand, the initial flock broke off on average to 3.22 ± 0.83 flocks and

1.11 ± 1.17 stragglers with no collisions. All of the emerged flocks were of a formation

that is similar to the ‘V’ and front line formation – a ‘U’ line formation – flying at

approximately 71% of maximum speed. This behaviour is very surprising. As already

stated, all previous hypotheses assume a functional advantege of ‘V’ formation flight

(for a review, see [29, 72]), with the most pronounced one being energy saving due to

aerodynamic reasons. However, even though the latter is supported both theoretically

and empirically [4, 5, 21, 22, 42, 72], it still cannot be supported undisputedly. Mostly

because not all large long-distance migrants use formation flight and furthermore because

some birds often use acute ‘V’ formations, where the trailing birds, in contrast with the

bird at the head of the formation, may make substantial energy savings, while others use

more obtuse or bow formations, in which the bird at the head is only a little ahead of its

neighbours, and energy savings are probably more equable [2]. It is thus impressive that

in my experiments, where no aerodynamical aspects as well as no kinship relations [2]

are taken into account, ‘U’ formations emerge. If by any chance in future work, after the

inclusion of a proportion of informed individuals [14], ‘V’ formation flocks will emerge

this will represent a remarkable discovery.



7 Conclusion

7.1 Principal Scientific Contributions

In this section I briefly summarize the principal scientific contributions. With each

contribution I list the dissertation sections where the topic is discussed. In addition I

also list the references to the publications that discuss the topic and of which I was the

first author or co-author. Note that the listed references were presented on international

conference meetings or published in internationally renowned scientific journals and were

thus internationally reviewed and discussed.

Design and formal definition of an extended Moore automaton (animat)

So as to achieve syntactical clarity in future studies of the dynamics of organized

groups of moving animals a formal definition of the animat was introduced. The

latter is an extension of the Moore automaton, taking into account a certain set of

animal characteristics (i.e. perception, drives, action selection). The animat can be

used to construct a digital (or simulated) animal and thus, by using a collection of

animats, the study of the dynamics of a group of moving animals is made possible.

Drafts of the animat definition were published in [37, 38, 39, 50].

90
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Design and formal definition of a fuzzy extended Moore automaton (fuzzy animat)

In Chapter 5, to simplify the construction of digital animals, fuzziness was intro-

duced into the animat and the fuzzy animat was presented. The latter enables the

construction of digital animals using ambiguous (uncertain, vague, etc.) knowledge

and data. With this the transition from linguistic description to mathematical for-

mulae that is required in the traditional approach is omitted. Drafts of the fuzzy

animat definition were published in [38, 39, 50].

Application of the fuzzy animat to the problem of the simulation of bird flocking

The usability of the fuzzy animat is shown in section 5.2 by applying it to the study

case of modelling bird flocking. The design of the fuzzy digital bird was based on

common knowledge about the behaviour of real birds. Drafts of the presented

model were published in [38, 39, 40].

Design and formal definition of a set of metrics used for comparing the simulation

results from different computer models of bird flocking

In an attempt to promote an analytical comparison of different models section 6.1

presents a set of metrics that allow the comparison of the simulation results ob-

tained using different computer models of bird flocking. The metrics are such that,

in the case when the required data is available, they allow also a comparison of the

simulated results to the dynamics of a real flock. Drafts of the presented metrics

were published in [37, 38, 39, 40].

Comparison and analysis of the simulation results obtained by using different com-

puter models of bird flocking

Section 6.2 utilizes the metrics that were introduced in section 6.1 to compare and

analyse the simulation results obtained by using the fuzzy model with those ob-

tained by using Reynolds’s [64, 68] model. Analogous to other fields of modelling

[47, 49], the analysis shows that by using simple fuzzy logic rules, for which no type

of rule fitting or learning [10] has ever been used, comparable and in a way more

‘natural’ results can be achieved. Drafts of the presented results were published in

[37, 38, 39, 40].
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7.2 Future Research Directions

As already discussed in the dissertation, my foremost step in future research directions

will be to extend the fuzzy model for a computer simulation of bird flocking to three

dimensions. This will require rewriting the knowledge-bases for all of the fuzzy animat’s

fuzzy drives. Another important step in the future research of the topic is modelling

inaccurate visual perception while taking into account the binocular overlap.

More distant steps are the inclusion of environmental obstacles in the digital universe

and modelling obstacle avoidance. This will definitely have a great impact on the overall

behaviour. In my opinion the simple fuzzy weighted sum action selection function will

no longer be satisfactory and new improved techniques will have to be developed. Good

starting points are the prioritized action selection proposed by Reynolds [64] and the

multiple objective action selection proposed by Pirjanian [59].

Nevertheless, even in the current state of the fuzzy model, it would be interesting to

use it as the input for the physics-based method for synthesis of bird flight animations,

developed by Wu and Popović [89]. I assume that by combining my model and their

musculoskeletal structure and animation method a completely different and in my opinion

highly natural behaviour could be achieved. This is primarily because their method would

complement my behaviour model with locomotoric constraints that have a substantial

effect on the displayed behaviour. Unfortunately this is still highly impractical because

the method used by Wu and Popović is very time-consuming and thus not suitable for

real-time simulation. Nevertheless it would be possible to use it for a non-real-time,

rendered application.

To conclude, I believe that the animat construction framework is very suitable as a

bottom-up approach to modelling quantum dot cellular automata [84]. The first drafts

of research on this subject were presented in [50] as well as in the recent BSc thesis by

Pečar [57], who is currently preparing an extended article about the topic [58].
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