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Abstract

Traditionally the systematic study of animal behaviour using simulations requires
the construction of a suitable mathematical model. The construction of such mod-
els in most cases requires advanced mathematical skills and exact knowledge of the
studied animal’s behaviour. Exact knowledge is rarely available. Usually it is avail-
able in the form of the observer’s linguistic explanations and descriptions of the
perceived behaviour. Mathematical models thus require a transition from the lin-
guistic description to a mathematical formula that is seldom straightforward. The
substantial increase of the processing power of personal computers has had as a
result a notable progress in the field of fuzzy logic. In this paper we present a novel
approach to the construction of artificial animals (animats) that is based on fuzzy
logic. Our leading hypothesis is, that by omitting the transition from linguistic de-
scriptions to mathematical formulas, ethologists would gain a tool for testing the
existing or forming new hypotheses about ‘why’ and ‘how’ animals behave the way
they do.
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1 Introduction

In nature there exists a phenomenon of aggregation. Most of our surround-
ings, both inanimate and animate, represent different forms of aggregations.
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At the most basic level, an aggregation is a collection of parts or units which
form some coherent, often cohesive, whole (Parrish et al., 1997). For example,
at the most basic level, the landscape in which we live is an aggregation of
inanimate objects of all shapes and sizes that was mainly formed by physi-
cal sorting. On the other hand, within the animate world, aggregations can
result from physical sorting (i.e. passive aggregation) or can form around an
attractive source (i.e. active aggregation) (Parrish et al., 1997). In the latter
case the aggregation may be formed and maintained by the mutual attraction
of members. In such cases, when the source of attraction is the group itself,
we define this behaviour as congregation (Turchin, 1997; Parrish et al., 1997).
Examples of animal congregations abound, but the most commonly known
are flocks of birds, schools of fish and swarms of insects.

Some of the holy grails of animal congregation research are represented by
the search for the ‘why’, the ‘how’ and the three-dimensional structure of
congregations. Although all of the above questions still remain largely un-
solved, many features shared by animal congregations, regardless of species or
circumstance, are readily known (Parrish et al., 1997):

• congregations have usually very distinct edges ,
• many types of animal congregations, particularly when on the move (e.g.

flocks, schools, herds) have fairly uniform densities ,
• congregations which exist largely as groups of uniform density are often also

polarized , with all members facing in the same direction,
• within the volume of the group, polarized or not, individuals have the free-

dom to move with respect to their neighbours,
• many congregations display coordinated movement patterns of an almost

balletic nature.

1.1 Flocks on the wing

Most of the animal congregation research is highly dependent on collecting
(Jaffe, 1997; Heppner, 1997) large sets of four-dimensional data (i.e. three in
space and one in time). For reasons of easier and more fruitful tracking of
confined objects (Parrish et al., 1997; Heppner, 1997), fish congregations have
been a frequent research theme. On the other hand, bird congregations, for
obvious reasons of highly difficult and almost luck-dependent data collection
(Heppner, 1997), are among the most widely observed, yet least understood
phenomena (Heppner, 1974). According to Heppner (1997), this may be one
of the reasons why there is a current of imaginative speculation, and lively
controversy in literature on bird congregation structure and internal dynamics.

To help conquer this, Heppner (1974), in his pioneering work, defined the terms
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Fig. 1. Line formations: column, front, echelon, ‘J’, ‘V’, inverted ‘J’ and inverted
‘V’ (Heppner, 1974).
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Fig. 2. Cluster formations: front cluster, globular cluster, extended cluster (Heppner,
1974).

flight aggregation 1 and flight flock 2 , and used them to devise a taxonomy of
flight formations . According to his study there are two major classes of flight
formations: line formations and cluster formations .

Line formations (Fig. 1) are groups of relatively large birds, such as waterfowl
and pelicans, flying in a single line, or joined single lines. Typically they are
approximately two-dimensional and show a rather high degree of regularity in
spacing and alignment. In line formations birds fly in a single line, one behind
the other (column), one beside the other (front) or staggered stepwise from the
bird at the head of the formation (echelon). In line formations birds also fly
in joined single lines; left and right echelons joined at the tip of the formation
(‘J’ and ‘V’ ) or at the tail of the formation (inverted ‘J’ and inverted ‘V’ ). In
a ‘V’ and inverted ‘V’ formation the left and right echelon are approximately
the same size, whereas in a ‘J’ and inverted ‘J’ formation one is considerably

1 A group of flying birds, lacking coordination in turning, spacing, velocity, flight
direction of individual birds and time of take-off or landing, assembled in a given
area. For reasons of consistency hereafter a bird aggregation.
2 A group of flying birds, coordinated in one or more of the following parameters
of flight: turning, spacing, velocity, and flight direction of individual birds, and
time of take-off and landing. Hereafter bird congregation and flock will be used
interchangeably.
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larger.

Cluster formations (Fig. 2) are relatively large flocks of small birds, like sand-
pipers, characterized by development in the third dimension, and rapid, appar-
ently synchronous turns. In cluster formations birds are typically distributed
over a three-dimensional space of an irregular spheroidal shape that is: as wide
as it is long (globular cluster), wider than it is longer (front cluster), or longer
than it is wider (extended cluster). Birds flying in globular clusters generally
fly in apparent close order and can be seen making very rapid turns. Simi-
larly, front clusters tend to have very precise spacing and turning. However,
birds flying in extended clusters tend to be rather disorganized, with frequent
breakoffs and shifts of position.

While observing line formations, one is impressed by the precision with which
relatively small numbers of large birds maintain themselves in accurate spatial
alignment and angular orientation with their flockmates. On the other hand,
while observing cluster formations, the attention is drawn to the coordina-
tion that enables large numbers of small birds, flying in close order, to wheel
and turn without suffering mid-air collisions. As a result, bird congregation
research is mostly driven by the questions ‘why’ and ‘how’ (Heppner, 1997).
The former is usually expressed in association with line formations, whereas
the latter in conjunction with cluster formations. In the first case the pri-
mary interest is the functional significance of formation flight. In the second
the attention is given to the synchrony, or apparent synchrony, in the turning
movements and the necessity or presence of a leader guiding these manoeu-
vres. However, the formidable technical challenges at data collection pushed
researchers into thinking of new ways to explore the dynamic beauty of bird
congregations – new ways of studying their structure and dynamics, and new
ways to test hypotheses about ‘why’ and ‘how’ birds congregate.

1.2 Simulating flocks

In the mid 1980s, different papers appeared, suggesting that coordination in
flocks might be achieved by the application of the mathematics of nonlinear
dynamics (Okubo, 1986) and that flocking might be an emergent property
arising from individuals following simple rules of movement (Heppner, 1987).
At the same time, but working in another field of study, namely computer
graphics, Reynolds (1987) published a ground-breaking seminal paper that
first presented a computer flight flock simulation. In his study a collection of
individuals whose behaviour is governed by three simple rules based on geo-
metrical calculations, demonstrates flocking behaviour that is typical for flying
birds. Without knowing about Reynolds’s work, Heppner joined forces with
a mathematician Grenander and published a paper (Heppner and Grenander,
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1990) presenting a computer flight flock simulation. In their work the flock
was a self-organizing collection of individuals, whose behaviour was based
on stochastic nonlinear differential equations. Both simulations base their as-
sumptions on common grounds and model the behaviour of individuals on the,
at times contradictory, clues of attraction and repulsion.

With the exception of some work on evolution of flocking behaviour (Reynolds,
1993a,b, 1994; Spector and Klein, 2002; Spector et al., 2003), and Heppner’s
unpublished work on flock take-off and landing (Heppner, 1997), papers re-
garding computer flock simulations subsided after 1990. We believe that the
primary reason lies hidden in the mathematical nature of these simulations
as well as in the amount of work required to master the effects that parame-
ter changes have on the displayed behaviour. Even Heppner and Grenander
(1990) admit that the interesting patterns were discovered serendipitously and
that considerable trial-and-error experimentation was needed before flock-like
behaviour was produced. Beside this, one can hardly imagine that congregat-
ing birds flying at speeds of 150km/h (Heppner, 1997) have the time or the
ability to perform sophisticated or time-intensive mathematical calculations.
Even Parrish et al. (1997) state that there must be simple traffic rules for
species’ engaging in collective movement. To continue, we can hardly imagine
that birds are able to perceive precise (i.e. crisp) information (e.g. distance)
on which all of the existing mathematical models are based. Furthermore, the
animal congregation research audience is predominantly composed by ethol-
ogists, not mathematicians. This means that the mathematical nature of the
existing models makes them difficult to understand by the audience they were
designed for. Even if one makes them as black-box modules and allows etholo-
gists only to change the values of parameters, this would not suffice for truth-
testing. Truth-testing any sort of simulation that purports to represent natural
behaviour is extremely difficult, and has not often been done, especially in be-
haviour. Models are usually too crude, or have too many special conditions to
be readily tested with real-world data. We believe this is why ethologists have
difficulties in using the models for testing the existing hypotheses or forming
new ones.

We feel that flock-like behaviour could be much more easily described by using
simple linguistic descriptions (e.g. collections of if-then rules). In fact, the ex-
isting knowledge about the behaviour of flocks is usually available in the form
of the observer’s linguistic descriptions and explanations of the perceived be-
haviour 3 . The existing models were arrived at by approximating such linguis-
tic descriptions using mathematical models. Moreover, considerable amounts

3 “It seems likely that if a bird, say, to the left and in front of another bird turned
suddenly in front of the trailing bird, the trailing bird would have time to react, and
turn in the same direction, avoiding collision.” From personal correspondence with
Frank Heppner.
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of advanced mathematical skills were required for the transition from the lin-
guistic descriptions to a mathematical model. Fuzzy logic (Zadeh, 1965) is a
very popular, successful and widely spread approach for modelling processes,
for example fire spread prediction (Mraz et al., 1999; Vakalis et al., 2004a,b),
which are too complex for classical mathematical methods. We feel that by
using fuzzy logic to describe the simulated animal’s behaviour we could make
the transition from the linguistic description to the actual behaviour much
shorter and much more understandable. This way the animal congregation
research audience would gain a tool that enabled them to construct simulated
animals through which they could form hypotheses and test their theories
about ‘why’ and ‘how’ animals congregate.

In the following paper we will, by using the study case of flight flocks, present
the current state of the fuzzy animat construction framework . This frame-
work will eventually allow ethologists to construct artificial counterparts of
the animals they are interested in by using simple linguistic descriptions. In
section two we will present the simulated bird, the universe it lives in, the way
it perceives it, its drives, and show the way it behaves. In section three we
will show that by using fuzzy logic and common sense about the behaviour
of flocking birds we were able to achieve a comparable and in certain cases
more natural behaviour than by using the traditional mathematical models.
We will conclude the paper with a short discussion about the usability of such
a tool and present our future work.

2 Methods

Simulating animal behaviour is a complex task, requiring thorough knowledge
about the behaviour of the modelled animal. However, the behavioural reper-
toire displayed by an animal is typically so large that even ethologists are
at times unable to form hypotheses about the actions guiding the displayed
behaviour, not to mention the reasons that initiated it. Exact knowledge is
thus usually not available, and in cases when knowledge is available, it usu-
ally cannot be truth-tested. The linguistic descriptions and explanations of
the perceived behaviour generally bear a fair amount of influence by the ob-
server and are consequently uncertain or ambiguous per se. Knowledge about
an animal’s behaviour can as a consequence be best described as uncertain,
ambiguous or fuzzy. This is where fuzzy logic, with its ability to model using
uncertain knowledge and process uncertain data, shows its potential.
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2.1 The artificial bird

Regardless of the method used when modelling an animal, we first need to
abstract its basic characteristics. Most of us accept or infer that every animal
exists in time and space, and is surrounded by inanimate and animate objects
(i.e. the universe). We also presume that animals have senses (i.e. sight, hear-
ing, smell, etc.) through which they have the ability to perceive the current
state of the universe. An animal is, through actions (e.g. movement), capable
of influencing its internal state and the state of the universe. Regarding the
animal’s current internal state (e.g. fear) only certain data from the universe
(e.g. predator location) are important and the animal’s drive is to optimize
(e.g. minimize) the rate of their occurrence. The animal selects actions (e.g.
fleeing) that satisfy its drives. Regarding its current internal state and the
most pressing drives the animal performs a sequence of movements that will
accomplish a combination of these actions (action selection). A model that
takes into account the above characteristics is commonly referred to as artifi-
cial animal or animat (Wilson, 1985).

According to the above discussion, our artificial bird’s state at a point in time
is given by its current position in space 4 , flight direction, flight speed and
internal state. The artificial bird’s next state is derived through a three-stage
transition function that simulates perception of the universe, drives and action
selection (see Lebar Bajec (2002); Lebar Bajec et al. (2003a,b); Mraz et al.
(2004) for a detailed discussion).

2.2 The universe

Reynolds (1987) in his study modelled the universe as a collection of animats 5

and obstacles representing inanimate objects. He states that obstacles and the
animats’ attempts to navigate around them increase the apparent complexity
of the displayed behaviour. In his paper he suggests that the complexity of
real flocks might be due largely to the complexity of the natural environment
(Reynolds, 1987). More recently 6 , however, he has acknowledged that the life-
like, unpredictable behaviour of animats emerges from the complex adaptive
nature of the model. Heppner and Grenander (1990), on the other hand, mod-

4 Although it is relatively easy to extend our model to three-dimensions we, for
reasons of simpler explanation and presentation, in this paper assume that the
space is a two-dimensional plane.
5 Reynolds refers to his simulated bird like, “bird-oid” objects generically as boids,
but in this paper we shall refer to them simply as animats. The proof that a boid
is a specialized animat can be found in (Lebar Bajec, 2002).
6 http://www.red3d.com/cwr/boids/applet/
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elled the universe as a collection of animats and excluded inanimate objects,
but added a special influence which is intended to simulate the effects of wind
gusts and random local disturbances. They state that the latter was of crucial
importance for flock-like behaviour (Heppner and Grenander, 1990).

Since we are interested in producing a self-organizing flight flock, we model
the universe as a collection of animats. At this stage of our fuzzy animat
construction framework we also omit obstacles. We justify their omission with
the fact that flocks form and exist also in open spaces, where there are no
obstacles. For the time being we are inclined not to simulate the effects of
wind gusts and random local disturbances, but it would be interesting to
test the effect of their inclusion. Similarly to Reynolds (1987) and Heppner
and Grenander (1990), we assume a constant universe – even though every
animat’s state changes through time the number of simulated animats stays
constant.

2.2.1 Modelling perception

Heppner and Grenander (1990) give each animat complete and precise in-
formation about the universe. In doing so they make an unrealistic assump-
tion because real birds have limited and imperfect perceptive capabilities (e.g.
nearby flockmates hide those far away, thus the bird can not visually perceive
them). Reynolds (1987), admitting that a bird’s perception of the world is
severely limited by occlusion, models perception using a volume, within which
the animat has the ability to sense flockmates. But the sensed information is
precise – giving the animat precise information about the state of the flock-
mates (i.e. their exact distance, position, flight speed and flight direction).
Even though Reynolds (1987) states that his perception model tries to make
available approximately the same information that is available to a bird as the
end result of perceptual and cognitive processes, we believe that his approach,
although better, is still unrealistic. We believe that a bird’s visual percep-
tion is not limited only by occlusion, but also by the fact that the ability to
sense distance, apart from being affected by the degree of binocular overlap,
decreases with distance itself.

Even though it is likely that as hydrodynamic perception is important in
fish, aerodynamic perception is important in birds, we currently model only
visual perception. Although it is still an unrealistic model, we adopt a slightly
modified Reynolds’s (1999) approach of localized visual perception. The main
difference is in the returned information. We model visual perception as a
visual volume defined by the visual range VR and per eye visual field VFOV

of the animat (see Fig. 3). At the time being we are using the visual range
of seven body lengths and the per eye visual field of 150◦ with no binocular
overlap. The animat thus has a blind area of 60◦ behind it, which corresponds
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Fig. 3. Localized perception. The black arrow represents the flight direction. The
shaded area represents the visual volume defined by the visual range VR and per
eye visual field VFOV. The perceived flockmates are depicted in a dark grey colour.

closely to the values reported by Heppner et al. (1985). Instead of giving
full information about the perceived flockmates we give only their distance,
angular offset, relative difference in flight direction and relative difference in
flight speed. We justify this by the fact that using visual perception, a bird can
sense only distance and angular offset of a flockmate, but through cognitive
processes and tracking it can judge the relative difference in flight speed (i.e.
if the flockmate is moving faster, slower or with the same speed) and their
relative difference in flight direction (i.e. if the flockmate is flying more to the
left, more to the right or in the same direction) 7 . We reserve the modelling
of the binocular overlap and imperfect visual perception for our future work.

2.3 Modelling drives

Even though in his latest studies (Reynolds, 1999, 2001) presented drives 8

through the combination of which we can achieve complex behaviours, he
states that flight flock behaviour can be achieved using only three drives,

7 It could be argued that by using this information one can calculate the same
precise information as in Reynolds’s (1999) case, but we strongly object to any
mentioning that a bird has precise or full information about its global position in
space, absolute flight speed or absolute flight direction.
8 In his paper he uses the name steering behaviours, but for reasons of consistency
and clarity we shall use the term drives.
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namely separation, cohesion and alignment . Cohesion simulates attraction
toward flockmates and is modelled as the animat’s tendency to fly towards
the centroid of the perceived flockmates. Separation simulates repulsion away
from flockmates and is modelled as the animat’s tendency to fly away from
the perceived flockmates. These two drives represent the so-called attraction-
repulsion scheme. Alignment, on the other hand, tries to produce polarization
and is modelled as the animat’s tendency to change its flight direction and
flight speed, so that it corresponds to the average flight direction and flight
speed of its perceived flockmates. We agree with the three drives, but find
Reynolds’s (1987) use of the centroid of the perceived neighbours somewhat
questionable. The centroid of the perceived neighbours is a mathematical con-
struct and it is difficult to believe that a bird has knowledge of such constructs
or uses them to compute its action. It was Pliny (Rackham, 1933; Heppner,
1997) who noted that “it is a peculiarity of the starling kind that they fly in
flocks and wheel round in a sort of circular ball, all making towards the centre
of the flock”. However, in our opinion, birds might not have any idea about
the centre of the flock and their making towards it might be just an emergent
property by itself.

Heppner and Grenander (1990) also modelled three, but different, drives, na-
mely homing , velocity regulation and interaction. Homing simulates the at-
traction of the roosting point and is modelled as the animat’s tendency to fly
toward the roosting point. This tendency drops to zero if the animat is close
enough (i.e. a predefined distance) or too far away (i.e. a predefined distance)
from the roosting point (see Heppner and Grenander, 1990, Fig. 1). Velocity
regulation is modelled as the animat’s tendency to fly at a certain predefined
preferred speed (see Heppner and Grenander, 1990, Fig. 2). Interaction, on
the other hand, combines the attraction-repulsion scheme in one single drive
and simulates the actual interaction between animats. If two animats are too
close (i.e. a predefined distance) they are repelled, if they are too far (i.e. a
predefined distance) they do not influence each other and if they are anywhere
in between, they are attracted (see Heppner and Grenander, 1990, Fig. 3).

Attraction towards and repulsion from the flockmates feel natural after all,
their mutual coexistence and importance for the congregation’s structure has
already been suggested by Okubo (1980). On the other hand, velocity regu-
lation used by Heppner and Grenander (1990) feels somewhat strange. This
drive is derived from aerodynamic theory; with a given power output and con-
figuration, an aircraft will maintain a constant speed, it will return to that
speed if perturbed. A real bird would not have to make decision about this.
In our opinion this drive has a questionable effect. Take, for example, an an-
imat that slowed down because it was too close to one of its flockmates. It
will speed up. But not because it is trying to catch up with its flock, but
because it is returning to its predefined preferred speed. In our opinion this
behaviour resembles more to an aggregation of birds that happen to be flying
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together than to a flock of birds that are trying to fly together. Furthermore,
it is hardly believable that a bird has a predefined preferred flight speed. Even
if it does we hardly believe it is constant in time. We do believe that birds
tend to change their flight speed regardless of the speed of the flock, but this
might be primarily caused by fatigue or other distractions (e.g. wind gusts). If
one wanted to simulate this it would be much better to model fatigue as well
(i.e. extend the animat’s internal state and take into account energy consump-
tion). Another important feature of groups of uniform density is polarization.
Heppner and Grenander (1990) did not model it specifically, but they men-
tion that in certain cases organized flocks maintaining straight direction of
flight emerged. We believe that this might be caused by the perception model
they used (i.e. all animats have complete and perfect information about the
universe). Reynolds (1987), however, tries to model polarization through the
drive of alignment.

According to the above discussion we model the three primary drives, the
attraction to flockmates , the repulsion from flockmates and polarization with
flockmates . In the following subsections we will discuss them in greater detail.
When modelling attraction to flockmates we do not use a predefined pre-
ferred position like the centroid (Reynolds, 1987). Similarly, when modelling
polarization with flockmates we do not use a predefined preferred flight speed
(Heppner and Grenander, 1990). Instead we let these properties emerge on
their own.

As discussed in subsection 2.2.1, our animat perceives the state of the universe
through visual perception only. At any point in time the animat perceives only
information about a localized subset of the universe. Since we model the uni-
verse as a collection of animats, the animat thus perceives information about
its nearby flockmates. The perceived information includes only distance, angu-
lar offset, relative difference in flight direction and relative difference in flight
speed of the nearby flockmates. At the time being the perceived information
is precise and we reserve modelling imperfect perception for our future work.
Furthermore, we shall suppose that the animat can act only by changing its
flight speed and/or flight direction.

2.3.1 Attraction to flockmates

The primary motive of the attraction drive is to stay close to nearby neigh-
bours. Now, imagine a bird that perceives only one neighbour. How would
you, in the simplest way possible, describe the action that will keep it close to
the perceived neighbour? Assuming that the bird can act only by changing its
flight speed and/or flight direction and using common sense most of us would
probably state the following:
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(1) in general do not change flight speed or flight direction;
(2) when the perceived neighbour is ‘close enough’, change neither flight

speed nor flight direction;
(3) when the perceived neighbour is ‘too far’ and ‘in front’, speed up;
(4) when the perceived neighbour is ‘too far’ and anywhere to the ‘left or

behind’, turn toward it and slow down;
(5) when the perceived neighbour is ‘too far’ and anywhere to the ‘right or

behind’, turn toward it and slow down.

If we look carefully at our description we notice that the resulting action de-
pends only on the perceived neighbour’s distance (i.e. ‘close enough’, ‘too far’)
and position (i.e. ‘in front’, ‘left or behind’, ‘right or behind’). But what do
‘close enough’, ‘too far’, ‘in front’, etc. mean? Does ‘in front’ perhaps address
the precise moment when the perceived neighbour is positioned at an angular
offset of 0◦? What about 5◦, is the perceived neighbour then not ‘in front’?
As we can see ‘in front’ is an imprecise property and constructing a mathe-
matical model from a description that builds on such imprecise properties is a
challenging task, which usually requires advanced mathematical skills. Then
again, because ‘close enough’, ‘too far’, ‘in front’, etc. are imprecise properties
and do not represent crisp values like 0◦ or 5◦ we can label them as vague
or fuzzy values . Thanks to Zadeh (1965), who introduced fuzzy sets (see Ap-
pendix A), we can define such values 9 . Constructing a model now becomes
simple. All that we have to do is rewrite the description as a collection of
easily understandable if-then rules and the necessary action can be computed
by applying fuzzy logic (see Appendix B).

Consider, for example, the fuzzy value ‘close enough’. As already said, we can
represent it with a fuzzy set. In other words, this means that a fuzzy value is
uniquely defined by its membership function (see Appendix A). In our case,
the latter provides the degree to which a real number satisfies the property
‘close enough’ (i.e. its degree of membership). But because the interpretation
of ‘close enough’ is subjective, there is no unique membership function; it is
left to the modeller to decide what it should be like. Thus the question is: what
did we have in mind with ‘close enough’? Let us assume that we consider the
perceived neighbour as ‘close enough’ if its distance is 40% of the visual range
or less. As the distance increases we consider the perceived neighbour less and
less ‘close enough’ and eventually, when it gets out of the visual range, we
do not consider it as ‘close enough’ at all. This translates in the membership
function that is presented on Fig. 4a. However, this is only one of the many
possible interpretations of ‘close enough’ and an interesting question is: when
does a bird consider its neighbour to be ‘close enough’? Here comes into play
the expertise of field ornithologists, which, with a tool such as this, can easily

9 In fact, according to the latest fuzzy sets related literature (Lee et al., 2004) a
fuzzy value is a fuzzy set defined in the real number domain.
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Fig. 4. Membership functions of the fuzzy values ‘close enough’, ‘too far’ (a), ‘in
front’, ‘left or behind’, ‘right or behind’ (b) ‘turn left’, ‘keep direction’, ‘turn right’
(c) ‘decelerate’, ‘keep speed’, ‘accelerate’ (d) for the case of the attraction drive.

translate their observational knowledge into simulation models.

In a similar fashion we define the fuzzy values ‘too far’, ‘in front’, ‘left or be-
hind’ and ‘right or behind’ (Fig. 4a,b). If we introduce the fuzzy values ‘keep
direction’, ‘turn left’, ‘turn right’, ‘keep speed’, ‘accelerate’ and ‘decelerate’
(Fig. 4c,d) to represent the actions of keeping the same flight direction, per-
forming a left turn, etc. our description can be rewritten in the form of the
following set of if-then rules:

a1: if (distance is close enough) then
(flight direction is keep direction),

a2: if (distance is too far) then
(flight direction is keep direction),

a3: if (distance is close enough) then
(flight speed is keep speed),

a4: if (distance is too far) then
(flight speed is keep speed),

a5: if (distance is too far) and (position is in front) then
(flight speed is accelerate),

a6: if (distance is too far) and (position is left or behind) then
(flight direction is turn left),

a7: if (distance is too far) and (position is left or behind) then
(flight speed is decelerate),

a8: if (distance is too far) and (position is right or behind) then
(flight direction is turn right),
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a9: if (distance is too far) and (position is right or behind) then
(flight speed is decelerate).

The first four rules (a1–a4) model the assumption that a bird in general tends
not to change its flight direction or flight speed; item (1) in our description.
Rules a2 and a4 model the assumption that a bird, in order to keep close to
a neighbour that is already close enough, does not need to do anything; item
(2). Rule a5 models the assumption that a bird, in order to catch up with a
neighbour that is in front of it but too far, needs only to speed up; item (3).
The last four rules (a6–a9) model the assumption that a bird, in order to get
close to a neighbour that is too far but positioned sideways or behind, needs
to turn toward it and slow down; items (4) and (5).

Together the rules can be used to model the animat’s attraction drive. When
the animat perceives only one neighbour, its action is computed by apply-
ing fuzzy logic (see Appendix B) on each of the rules and combining the
rule outputs. The resulting action will keep the animat close to the perceived
neighbour. When the animat perceives more than one neighbour the rules are
evaluated for each neighbour independently (i.e. as if the animat perceived
only that neighbour) and all outputs are combined (see Appendix C). The
resulting action is a combination that will satisfy the animat’s drive to keep
close to all of the perceived neighbours. In any case the resulting action is
the required change in flight direction (given as the angle of turning) and the
required change in flight speed (given as the % of maximal speed).

2.3.2 Repulsion from flockmates

The primary motive of the repulsion drive is to stay away from collisions. We
shall again assume that our hypothetical bird perceives only one neighbour,
except that this time we are interested in the action that will keep it away
from colliding with that neighbour. Using common sense most of us would
describe the bird’s behaviour in the following way:

(1) in general do not change flight speed or flight direction;
(2) when the perceived neighbour is ‘far enough’, change neither flight speed

nor flight direction;
(3) when the perceived neighbour is ‘too close’ and anywhere ‘behind’, speed

up;
(4) when the perceived neighbour is ‘too close’ and ‘in front or right’, turn

away from it and slow down;
(5) when the perceived neighbour is ‘too close’ and ‘in front or left’, turn

away from it and slow down.

Once more we can notice that in our description the resulting action depends
only on the perceived neighbour’s distance and position. Therefore, as we did
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Fig. 5. Membership functions of the fuzzy values ‘too close’, ‘far enough’ (a), ‘be-
hind’, ‘in front or left’, ‘in front or right’ (b) ‘turn left’, ‘keep direction’, ‘turn right’
(c) ‘decelerate’, ‘keep speed’, ‘accelerate’ (d) for the case of the repulsion drive.

for the case of the attraction drive (subsection 2.3.1), we first define the fuzzy
values ‘far enough’, ‘too close’, ‘behind’, ‘in front or right’ and ‘in front or left’
(Fig. 5a,b). Then we introduce the fuzzy values that represent the actions of
keeping the same flight direction, performing a left turn, etc. (Fig. 5c,d). After
completing these two steps our description can be rewritten in the form of the
following set of if-then rules:

r1: if (distance is far enough) then
(flight direction is keep direction),

r2: if (distance is too close) then
(flight direction is keep direction),

r3: if (distance is far enough) then
(flight speed is keep speed),

r4: if (distance is too close) then
(flight speed is keep speed),

r5: if (distance is too close) and (position is behind) then
(flight speed is accelerate),

r6: if (distance is too close) and (position is in front or left) then
(flight direction is turn right),

r7: if (distance is too close) and (position is in front or left) then
(flight speed is decelerate),

r8: if (distance is too close) and (position is in front or right) then
(flight direction is turn left),

r9: if (distance is too close) and (position is in front or right) then
(flight speed is decelerate).
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For each of the perceived neighbours our animat applies fuzzy logic to the
above set of rules and works out the action that should be taken to keep away
from colliding with that neighbour. These actions are then combined into a
single resulting action (see Appendix C), which satisfies the animat’s drive to
stay away from colliding with any of the perceived neighbours. The resulting
action gives the required changes in flight direction and flight speed.

2.3.3 Polarization with flockmates

The polarization drive’s motive is to keep approximately the same flight speed
and flight direction as the perceived flockmates. If we yet again assume that
the hypothetical bird perceives only one neighbour then we can describe the
actions that will keep the bird flying in approximately the same direction and
with approximately the same speed as the neighbour:

(1) in general do not change flight speed or flight direction,
(2) when the perceived neighbour is ‘too far’ or ‘too close’, change neither

flight speed nor flight direction;
(3) when the perceived neighbour is at a ‘good’ distance and flying in the

‘same direction’, keep flight direction;
(4) when the perceived neighbour is at a ‘good’ distance but flying more to

the ‘left’, turn left;
(5) when the perceived neighbour is at a ‘good’ distance but flying more to

the ‘right’, turn right;
(6) when the perceived neighbour is at a ‘good’ distance and flying with the

‘same speed’, keep flight speed;
(7) when the perceived neighbour is at a ‘good’ distance but flying ‘slower’,

slow down;
(8) when the perceived neighbour is at a ‘good’ distance but flying ‘faster’,

speed up.

As a contrast to the attraction and repulsion drives (sections 2.3.1 and 2.3.2)
we notice that in this case the action depends on the perceived neighbour’s
distance, difference in flight direction and difference in flight speed. By defining
and introducing the required fuzzy values (Fig. 6) we can rewrite the above
description in the form of a set of if-then rules:

p1: if (distance is too far) then
(flight direction is keep direction),

p2: if (distance is too close) then
(flight direction is keep direction),

p3: if (distance is too far) then
(flight speed is keep speed),
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Fig. 6. Membership functions of the fuzzy values ‘too close’, ‘good’, ‘too far’ (a),
‘left’, ‘same direction’, ‘right’ (b) ‘slower’, ‘same speed’, ‘faster’ (c) ‘turn left’, ‘keep
direction’, ‘turn right’ (c) ‘decelerate’, ‘keep speed’, ‘accelerate’ (d) for the case of
the polarization drive.

p4: if (distance is too close) then
(flight speed is keep speed),

p5: if (distance is good) and (direction is same direction) then
(flight direction is keep direction),

p6: if (distance is good) and (direction is left) then
(flight direction is turn left),

p7: if (distance is good) and (direction is right) then
(flight direction is turn right),

p8: if (distance is good) and (speed is same speed) then
(flight speed is keep speed),

p9: if (distance is good) and (speed is slower) then
(flight speed is decelerate),

p10: if (distance is good) and (speed is faster) then
(flight speed is accelerate),
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Using fuzzy logic on the above set of rules, our animat works out the action
that should be taken in order to keep approximately the same flight speed
and flight direction as the perceived neighbours (see Appendix C). As for the
attraction and repulsion drives the resulting action gives the required changes
in flight direction and flight speed.

2.4 Modelling action selection

The action selection process simulates the animal’s neurological process of se-
lecting the sequence of muscular movements that will accomplish the actions
that result from its drives. This process combines, prioritizes, and arbitrates
between potentially conflicting actions. Since in our study we do not model the
musculoskeletal structure of the bird, we model the action selection mechanism
as a combination of the resulting actions. Thus, for each drive a vector is calcu-
lated that represents the force needed to accomplish the required action. These
forces are then combined by using a weighted sum. The weights are chosen to
give the highest priority to the separation drive, followed by the polarization
drive, and the lowest priority to the attraction drive. The resulting vector
is used to calculate the animat’s new flight speed and flight direction. This
calculation is subjected to a set of constraints modelling conservation of mo-
mentum, viscous damping and the animal’s finite amount of available energy.
The same approach named geometrical flight was used already by Reynolds
(1987, 1999). Heppner and Grenander (1990), who represented actions as vec-
tors, used a similar approach and modelled action selection as a simple sum.
But, apart from the Poisson process simulating the effects of wind gusts and
random local disturbances, they did not apply any additional constraints.

3 Results and Discussion

We verified our model by comparing it with the existing mathematical models
and by comparing the displayed behaviour with that seen in natural flocks.
Fortunately, Reynolds has recently made available the OpenSteer library 10

that includes an implementation of his model (Reynolds, 1999), but sadly the
model used by Heppner and Grenander (1990) is not available on-line 11 and
thus we had to content ourselves by comparing our and Reynolds’s model only.
We compared the two models through three sets of experiments, with which

10 http://opensteer.sourceforge.net
11 Recently, through personal correspondence, Heppner gave us a printout of the
source code used by Heppner and Grenander (1990) and thus a comparison with
their model is planned as our future work.
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leaderless flock

leader

leader flock

straggler

straggler

Fig. 7. A leader flock, a leaderless flock and two stragglers. Dashed lines represent
the range of potential influence. The shaded area thus encompasses the animats that
potentially influence each other and therefore represents the flock extents. The solid
line in the leader flock represents the visual volume of the leader and shows that
even though it potentially influences other members of the flock it is not influenced
by any of them.

we wanted to estimate the flocking ability of the modelled virtual birds and
resemblance of their behaviour to that seen in natural flocks.

When estimating the flocking ability we turned to counting the number of a-
nimat to animat collisions, the number of flocks, and the number of stragglers.
But, wanting to count them algorithmically, we stumbled in the definition of
the term flock . According to Heppner (1974), a flight flock is a group of flying
birds, coordinated in one or more of the following parameters of flight: turning,
spacing, velocity and flight direction of individual birds, and time of take-off
and landing. However meaningful and accurate from an ornithologist’s point
of view this definition is, it gives too little information from an algorithmic
point of view. For reasons of computational simplicity and assumptions used
when constructing the model, we decided to define a flock in terms of animat
proximity. We stated simply that two animats that are close enough to poten-
tially influence each other (i.e. in visual range) are members of the same flock
(see Fig. 7). With such an interpretation we can distinguish between flocks
and stragglers , where the latter are animats that are not members of any flock.
Moreover, by taking into account the perception model used, we can distin-
guish between leader flocks and leaderless flocks . A leader flock is a flock with
at least one leader (i.e. animat that is not influenced by any of its flockmates,
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but influences at least one), whereas a leaderless flock is a flock with no leader
(i.e. each animat is influenced by at least one of its flockmates). It should be
noted that these definitions represent merely a first-order approximation, but
even though they might not be accurate enough from an ornithologist’s point
of view, they are sufficiently accurate from an algorithmic point of view. It
should also be noticed that in no way they suggest or assume the existence
of a single and absolute leader, in the sense of a military marching formation.
In fact, as Pomeroy and Heppner (1992) reported, when pigeons make a turn,
the birds change position such that a bird at the head of a flock will be in the
rear of the flock if the flock turns 180◦. Therefore the hypothetical absolute
leader would be at the side or rear of the flock after a turn, which means that
such a model may not be appropriate at all. The distinction between leader
flocks and leaderless flocks was introduced only to help algorithmic evaluation
of the displayed behaviour. Because most real birds have a very good vision
to the rear, with the exception of a blind spot directly to the rear, it is very
likely that a bird at a head end of a flock will be influenced by trailers. It
is thus sound to assume that in nature mostly leaderless flocks exist and if
the animats are to display natural looking behaviour there should be mostly
leaderless flocks.

On the other hand, when estimating the resemblance of the emerged flocks to
natural flocks we turned to visual inspection of the flight formations (see Fig. 1
and 2) and the presence of the somewhat erratic, unsystematic behaviour seen
in natural flocks (Heppner and Grenander, 1990). We also estimated the level
of the flock’s polarization by measuring the flight speed and flight direction
standard deviations and the degree of uniform distribution by measuring the
nearest neighbour distance.

In our first set, consisting of eight experiments, 100 animats were initially
placed at random locations having random flight directions and flight speeds.
In this set of experiments we were primarily interested if our animats were
able to self-organize in flocks. To help self-organization (i.e. allow animats
to eventually meet other animats) we confined the animats using an invisi-
ble boundary (see grey circle in Fig. 9) 12 . Whenever an animat passed this
boundary it was forced to turn and eventually return in the confinement with-
out changing its flight speed. In a way this resembles modelling the roosting
area used by Heppner and Grenander (1990). Our animats were strikingly
good at avoiding collisions and self-organizing in flocks. While in our case in
most cases no collisions occurred, Reynolds’s model, summed over the whole
population of 100 animats, averaged 15.63± 4.5 collisions in 3000 simulation
steps (see Tab. 1). We also noticed, in our case, that, when collisions did oc-
cur, they occurred in short periods of time (e.g. 10 collisions in 200 simulation

12 Animated versions of Fig. 9, 12, and 13 are available in MPEG4 format at the first
author’s web site (http://lrss.fri.uni-lj.si/people/ilbajec/papers/ilb JTB05.htm).
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Fig. 8. The perception model that Reynolds used in the OpenSteer implementation
of his model (Reynolds, 1999). The black arrow represents the flight direction. The
shaded area represents the combined visual volume defined by the distinct sepa-
ration (VRs,VFOVs), cohesion (VRc,VFOVc) and alignment (VRa,VFOVa) drive visual
volumes. The perceived flockmates are depicted in a dark grey colour. The light
grey dashed line represents the visual volume used in our model.

steps in experiment 03) and were caused by extreme proximity of animats and
could be interpreted as side bumping. In Reynolds’s case, however, collisions
occurred randomly throughout the simulation and were mostly head-on colli-
sions, caused by the merging of flocks. Looking at the simulations in real-time
we noticed that in our case both classes of flock formations (i.e. line and cluster
formations) emerged, but mostly front cluster ones. Line formations in this set
of experiments did not persist for long periods of time. On the other hand, in
Reynolds’s case the majority of the emerged flocks was of the extended cluster
formation whereas line formations did not emerge at all. Figure 10 presents a
plot of the number of flocks in experiment 01 for our and Reynolds’s model.
By comparing the proportion of leaderless flocks it can be noticed that in our
case mostly leaderless flocks exist, whereas in Reynolds’s case mostly leader
flocks exist. This tendency was also noticed in the rest of the experiments (see
Tab. 1). The fact that in Reynolds’s model mostly leader flocks emerge is pri-
marily caused by the perception model used in OpenSteer (i.e. three distinct
visual volumes – one per drive). Not only that the combined visual volume
(Fig. 8) gives the animat a two times larger blind area than our model, it also
gives the animat a much larger blind area than the values reported by Heppner
et al. (1985). As a result it is relatively common that a trailing animat enters
the followed animat’s blind area and consequently does not influence it any
more. The followed animat thus becomes the trailer’s leader. If not influenced
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Fig. 9. A comparison of a series of time-equidistant frames from one of the eight
experiments for the estimation of flocking ability for Reynolds’s (1999) mathematical
model (top row) and our fuzzy model (bottom row). The black triangles represent
animats, with the apex indicating the flight direction. For reasons of print clarity
the triangles were scaled, which means that the apparent overlapping does not
necessarily imply a collision. The grey circle surrounding the animats represents
the roosting boundary. Whenever an animat crosses this boundary it is forced to
turn and eventually return into the roosting area. An animated version of this figure
is available at the first author’s web site.

by any of its flockmates, the leading animat, because no random local distur-
bances are modelled, keeps its flight speed and flight direction while all of the
flockmates only regulate their flight directions and flight speeds to follow it.
Therefore, if not confined, the group will eventually form a regularly distrib-
uted and stable extend cluster formation (see frames 667, 1000, and 1333 in
Fig. 12 and 1500, 2000 in Fig.13). According to Heppner (1974), the extended
cluster formations in nature may simply be bird aggregations in which birds
are flying independently toward a common destination. One might be tempted
to conclude that this is precisely what we are experiencing here. However, as
Heppner states, extended clusters tend to be rather disorganized, with fre-
quent breakoffs and shifts of position, but these features are not to be seen
in the leader flocks that emerge from Reynolds’s model. This is why we find
Reynolds’s use of three distinct visual volumes questionable.

In our second set of experiments we were interested if from an initial globular
cluster formation, where all animats have the same flight speed and flight direc-
tion, natural looking flocks emerge. We used three initial distribution patterns
(see Fig. 11), for which we changed the nearest neighbour distance (approxi-
mately 2, 4 and 6 body lengths) and initial flight speed (10%, 50% and 90%
of maximum flight speed), that is 27 initial states in all. Figure 12 presents a
comparison of a series of time-equidistant frames from one of the experiments.
In this set of experiments no roosting area was modelled. In Reynolds’s case
in most of the experiments one stable leader flock of the extended cluster
formation emerged, which, in the 10000 simulation steps, stabilized flying at
exactly maximum speed with the nearest neighbour distance matching the
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Fig. 10. Plot of the number of flocks (black line) and the contribution of leaderless
flocks (grey line) for one of the eight experiments used to estimate the flocking
ability of Reynolds’s (1999) mathematical model (top chart) and our fuzzy model
(bottom chart). Note that because in Reynolds’s case the area of potential influence
is larger, the number of flocks is lower to begin with and the values cannot be
directly compared. However, since the number of flocks in both cases decreases
through time we can conclude that the two models present flocking ability. Beside
this, it can also be noticed that the fuzzy model produces mostly leaderless flocks
whereas Reynolds’s model mostly leader flocks.

2.88±5.28 0.25±0.46 3.88±1.55 82.26±16.415.63±4.5 2.5±2.14 4.63±1.19 26.89±17.49avg

0 0 6 84±2208 18 7 5 26±16

0 0 3 77±1507 14 4 6 23±16

8 0 2 83±1706 10 1 31±184

0 1 5 82±1705 13 0 5 23±19

0 0 3 80±1404 14 2 5 27±18

14 0 3 90±1203 14 2 5 29±18

1 0 3 77±1402 25 2 5 30±17

0 1 6 83±1401 17 2 2 29±19

collisions stragglers flocks

proportion
of leaderless
flocks (avg)

Reynolds’s model

collisions stragglers flocks

proportion
of leaderless
flocks (avg)

fuzzy model

Table 1
A comparison of the number of collisions, number of stragglers and number of flocks
after 3000 simulation steps and the average proportion of leaderless flocks in the
eight experiments used for the estimation of flocking ability for Reynolds’s (1999)
mathematical model and our fuzzy model. Note that because in Reynolds’s case the
area of potential influence is larger, the number of flocks is lower to begin with and
the values cannot be directly compared.
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Fig. 11. Initial globular cluster distribution patterns used in the second set of ex-
periments.

visual range used for the separation drive. The emerged flocks were regularly
distributed and highly stable with no position shifting, which is, as already
mentioned, the opposite of what can be seen in nature. In the rare cases when
position shifting occured, it originated from the centre of the flock, subsided
fast, and the flock stabilized immediately afterwards. The initial flock on av-
erage broke off to 1.3 ± 0.61 flocks and 0.44 ± 1.09 stragglers, with the first
breakoff occurring at simulation step 500 ± 395.85. In our case, the initial
flock on average broke off to 2.33 ± 0.83 flocks and no stragglers, with the
first breakoff occurring in simulation step 3838.96 ± 1680.98. In all cases the
animats from the initial flock formation started shifting positions and chang-
ing flock formation. The emerged front cluster formations were stable, but
when animats due to position shifting and somewhat erratic and unsystem-
atic behaviour reorganized into an extended cluster formation, they usually
became disorganized and eventually broke off. With breakoffs flock formations
from both major classes emerged. The resulting stable cluster flocks were of
the front, globular and in few cases even extended cluster formation. The ex-
tended cluster formations were disorganized with frequent shifts of position.
On the other hand, the resulting stable line flocks were of the ‘V’, echelon
and inverted ‘V’ formation. In all cases these flocks were small, consisting of
only two or three members and, with the only exception of the inverted ‘V’
formation, they were all leader flocks. The above described behaviour is strik-
ingly similar to natural flocks. If this bears up in future work it will make
a very important point. In fact, all previous hypotheses about ‘V’ formation
flight assume a functional advantage: aerodynamics, visibility, communication
(Heppner, 1974, 1997). The behaviour present in our experiments seems to
suggest instead that even the ‘V’ formation might be an emergent property.

In our third set of experiments we were interested if from a front line for-
mation, where all animats have the same flight speed and flight direction,
line formation flocks emerge. We used three initial distributions in which the
animats were evenly spaced (approximately 2, 4 and 6 body lengths) and we
changed the initial flight speed (10%, 50% and 90% of maximum flight speed),
that is nine initial states in all. Figure 13 presents a comparison of a series of
time-equidistant frames from one of the experiments. In this set of experiments
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Fig. 12. A comparison of a series of time-equidistant frames from one of the 27
experiments with a globular cluster initial formation for Reynolds’s mathematical
model (top row) and our fuzzy model (middle and bottom row). The black triangles
represent animats, with the apex indicating the flight direction. They were scaled for
reasons of presentation clarity and their overlapping does not necessarily represent
a collision. An animated version of this figure is available at the first author’s web
site.
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Fig. 13. A comparison of a series of time-equidistant frames from one of the nine
experiments with an initial line formation for Reynolds’s mathematical model (top
row) and our fuzzy model (bottom row). The black triangles represent animats, with
the apex indicating the flight direction. They were scaled for reasons of presentation
clarity, which means that overlapping does not necessarily represent a collision.
Notice that in the fuzzy model the ends of the flock trail away in a curve. This is a
very natural behaviour. An animated version of this figure is available at the first
author’s web site.
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no roosting area was modelled. In Reynolds’s case the initial flock broke off
on average to 1.78± 1.3 flocks and 1± 1.8 stragglers and there were 0.33± 0.5
collisions. Most of the emerged flocks were of the extended cluster formation,
regularly distributed and highly stable with no position shifting, but in some
rare cases stable, regularly distributed column line formations emerged too.
All of the emerged flocks were flying at maximum speed. In our case the initial
flock broke off on average to 3.22± 0.83 flocks and 1.11± 1.17 stragglers with
no collisions. All of the emerged flocks were of a formation that is similar to the
‘V’ and front line formation type flying at approximatelly 71% of maximum
speed.

4 Conclusion

In this paper we present a novel approach to the construction of artificial ani-
mals - animats , which is based on fuzzy logic. We believe that ethologists could
use our method to gain additional insight into the behaviour of the animals of
their interest. Knowledge about animal behaviour is usually available only in
the form of the observer’s linguistic descriptions and explanations of the per-
ceived behaviour. Traditional approaches to modelling artificial animals are
based on mathematical simulations. Their construction usually requires ad-
vanced mathematical skills and exact knowledge about the studied animal’s
behaviour. Our approach, on the other hand, is based on fuzzy logic, which
allows us to model using uncertain knowledge and does not require the tran-
sition from linguistic descriptions to mathematical formulas. In section two
we presented our approach through the study case of bird flocking. In section
three, by comparing our model with Reynolds’s (1987) mathematical model,
we show that we can achieve comparable and in some aspects better and more
natural behaviour even by using common sense knowledge about the behav-
iour of flocking birds. As our model currently uses unrealistic perception and
action selection models our future work will focus on them as well as on ex-
tending our model to three dimensions. What is more, since we have recently
attained the source code of the mathematical model used by Heppner and
Grenander (1990), we plan a comparison with their model as our future work.
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A Fuzzy Sets

Fuzzy sets are a natural outgrowth and generalization of conventional (or
crisp) sets. Recall that a crisp set in a universe of discourse (i.e. a collection
of objects that represents allowable values for a variable) can be defined by
stating all of its members or by specifying the precise properties required for
membership. Take for example the set of real numbers ‘from 3 to 5’ denoted as
C. In this case the universe of discourse is the set of real numbers R and C is a
crisp set. We define this set by writing C = {r ∈ R|3 ≤ r ≤ 5}. Equivalently,
a crisp set can be described by specifying its membership function that maps
from the universe of discourse to the set {0, 1}. The membership function
returns 1 for all objects from the universe of discourse that satisfy the required
properties and 0 for those that do not. In our case the membership function
returns 1 for all real numbers that satisfy the property ‘from 3 to 5’ and 0 for
all other (Fig. A.1a). If we use µC to denote the membership function of crisp
set C, then:

µC(r) =





1, if 3 ≤ r ≤ 5

0, otherwise.
(A.1)

Fuzzy sets, on the contrary, contain elements that satisfy imprecisely defined
properties . Zadeh (1965) proposed describing them using a generalized mem-
bership function that maps from the universe of discourse to the entire unit
interval [0, 1]. This is the basic idea in fuzzy set theory; the membership func-
tion provides the degree to which an object from the universe of discourse
satisfies the imprecisely defined properties (Bezdek and Pal, 1992). It pro-
vides the object’s degree of membership. Take for example the ‘set’ of real
numbers that are ‘close to 4’. Because the property ‘close to 4’ is imprecise,
the ‘set’ of real numbers that are ‘close to 4’ is a fuzzy set. Let us denote it
by F̃. The universe of discourse is the set of real numbers R again and the
membership function µF̃ provides the degree of membership of a real number
in the fuzzy set F̃; the nearer the value of µF̃(r) to unity the higher the de-
gree of membership of r in F̃. This means that µF̃(r) provides the measure
of the degree of consistency between r and our interpretation of ‘close to 4’.
However, since the property ‘close to 4’ is imprecise and its interpretation is
subjective, there is not a unique membership function for F̃. Rather, it is left
to the modeller to decide what µF̃ should be like. In our particular case, with
respect to the property ‘close to 4’, it seems plausible that:

(1) the degree of membership of number 4 is unity,
(2) the closer a number is to 4, the closer its degree of membership is to 1,
(3) numbers equally far left and right of 4 have equal memberships.
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Fig. A.1. Membership functions of a crisp set of real numbers ‘from 3 to 5’ (a) and
a fuzzy set of real numbers ‘close to 4’ (b).

Given these intuitive constraints, a useful representation of the fuzzy set of
numbers ‘close to 4’ might be the fuzzy set F̃ that is presented in Fig. A.1b
and is described by the membership function

µF̃(r) = max(0, 1− |r − 4|). (A.2)

A.1 Set Theoretic Operations for Fuzzy Sets

In order to manipulate fuzzy sets Zadeh (1965) generalized the classical set
theoretic operations (i.e. intersection, union and complement) and introduced
fuzzy intersection, fuzzy union, and fuzzy complement . Let fuzzy sets F̃1 and
F̃2, defined on the universe of discourse X, be described by their membership
functions µF̃1

and µF̃2
. The fuzzy set theoretic operations are then defined

using the following operators:

• fuzzy intersection:
· minimum: µF̃1∩F̃2

(x) = min(µF̃1
(x), µF̃2

(x)),
· algebraic product : µF̃1∩F̃2

(x) = µF̃1
(x) · µF̃2

(x),
• fuzzy union:
· maximum: µF̃1∪F̃2

(x) = max(µF̃1
(x), µF̃2

(x)),
· algebraic sum: µF̃1∪F̃2

(x) = µF̃1
(x) + µF̃2

(x)− µF̃1
(x) · µF̃2

(x),
• fuzzy complement: µ

F̃1
(x) = 1− µF̃1

(x).

The minimum fuzzy intersection, maximum fuzzy union and fuzzy complement
are also known under the names standard fuzzy intersection, standard fuzzy
union and standard fuzzy complement. Later Klir and Yuan (1995) showed
that by using a strong axiomatic basis many more operators can be defined.
They even gave an axiomatic definition for the complement of a fuzzy set,
but in engineering applications, most people prefer to use the standard fuzzy
complement defined by Zadeh (1965).
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B Fuzzy Logic

The membership function of a crisp set maps real numbers to two values (0
or 1). Hence crisp sets correspond to two-valued logic. In logic we work with
statements such as ‘distance is from 3 to 5?’. This statement can be either true
or false; there is no ambiguity in it. Let d denote the value of distance and C
denote the set of numbers ‘from 3 to 5’. Then the question of the statement’s
truth becomes a question of membership ‘is d in C?’ and the answer is true if
µC(d) = 1 and false if µC(d) = 0.

On the other hand, the value of µF̃(r) provides the degree of membership of r
in fuzzy set F̃. Therefore fuzzy sets correspond to continuously valued logic.
Take for example the statement ‘distance is close to 4?’. Because ‘close to 4’
is an imprecisely defined property, this statement is not crisp at all; we can
not really tell if it is true or false. However, we can use a similar approach
as in two-valued logic, denote the value of distance by d, but define ‘close
to 4’ as a fuzzy set F̃. Then the question of the statement’s truth becomes
again a question of membership ‘is d in F̃?’ but the value µF̃(d) now answers
the statement’s degree of truth. The answer can be true (µF̃(d) = 1), false
(µF̃(d) = 0) or anywhere in between (0 < µF̃(d) < 1). Furthermore, in fuzzy
logic the value of distance can be a fuzzy set D̃ too. The statement’s truth
then becomes a question of similarity ‘is D̃ similar to F̃?’ and the answer is
given by the highest degree of membership of objects that are common to both
sets (supr µD̃∩F̃(r)).

Two-valued logic allows joining simple statements to form more complex ones.
This is achieved through standard logical operators, namely ‘and’, ‘or’ and
‘not’. An example of a complex statement could be ‘(distance is from 3 to
5 ) and (speed is 20m/s)’. Evaluating such statements involves computing the
truths of the substatements and applying the logical operators. In two-valued
logic the compound statement is true:

• when all of the substatements are true (logical operator ‘and’),
• when at least one of the substatements is true (logical operator ‘or’),
• when the substatement is false (logical operator ‘not’).

However, in fuzzy logic the constraint of the absolute truth or falsity of a
statement is relaxed and this influences the interpretation of logical opera-
tors. Nevertheless, as fuzzy logic is a superset of standard two-valued logic,
if we keep the degrees of truth at the extremes of 1 (completely true), and
0 (completely false), standard logical operators will hold. The most common
interpretation is to use the operators that Zadeh (1965) used to define fuzzy
intersection (logical operator ‘and’), fuzzy union (logical operator ‘or’), and
fuzzy complement (logical operator ‘not’). In other words this means that to
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resolve the truth of the statement ‘A and B’, where A and B are statements
and T (A), T (B) their corresponding degrees of truth, we evaluate the function

• minimum fuzzy intersection T (A and B) = min(T (A), T (B)),
• algebraic product fuzzy intersection T (A and B) = T (A) · T (B).

The degree of truth of ‘A or B’ becomes equivalent

• maximum fuzzy union T (A or B) = max(T (A), T (B)),
• algebraic sum fuzzy union T (A or B) = T (A) + T (B)− T (A) · T (B).

Finally, the degree of truth of ‘not A’ is computed as

• standard fuzzy complement T (not A) = 1− T (A).

Typically most fuzzy logic applications make use of these operators. But any
combination of fuzzy union, fuzzy intersection and fuzzy complement opera-
tors can be used as far as we make sure that we either do not use DeMorgan’s
laws or that fuzzy union and fuzzy intersection are dual with respect to the
chosen fuzzy complement (Klir and Yuan, 1995). This means that the different
operators that are available to us in fuzzy set theory provide us with a plethora
of richness, but also with some (tough) choices that have to be made (Mendel,
2001). In this paper we interpret the logical operator ‘and’ as product fuzzy
intersection, the logical operator ‘or’ as maximum fuzzy union and ‘not’ as
the standard fuzzy complement.

B.1 The if-then Rule

In logic we often use a special statement known as if-then rule, which assumes
the form ‘if A then C’, where A and C are statements. The if-part of the rule
(i.e. statement A) is called the antecedent or premise, while the then-part (i.e.
statement C) is called the consequent or conclusion. The antecedent can always
be written as a set of statements connected using the logical operator ‘and’
(Mendel, 2001), which means that we can read the rule as a set of conditions
that must be met for a certain consequence. However, this also means that
antecedents of if-then rules that have the same conclusion can be joined using
the logical operator ‘or’ and interpreted as a single if-then rule.

Interpreting an if-then rule involves evaluating the truth of the antecedent
and applying that result to the consequent (known as implication). In the case
when the antecedent has multiple parts, their degrees of truth are calculated
simultaneously and the truth of the antecedent is resolved by applying the
logical operators. In two-valued logic the interpretation of the if-then rule is
simple. Whenever the premise is true the conclusion is true too. However, if
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Fig. B.1. Graphical representation of the minimum (a) and product (b) fuzzy im-
plication. The dashed grey line represents the original output fuzzy set while the
black solid line represents the modified output fuzzy set.

the premise is false we can not say anything about the conclusion. Since in
fuzzy logic the truth of the antecedent is a matter of degree, the interpretation
of the if-then rule is less restricted. Whenever the antecedent is true to some
degree, the consequent is also true to that same degree.

However, because in fuzzy logic the consequent specifies a fuzzy set to be
assigned to the output, implication modifies this set to the degree specified by
the antecedent. The most common ways to modify the output fuzzy set are
chopping it off (i.e. minimum fuzzy implication) or squashing it (i.e. product
fuzzy implication). Let T (A) denote the antecedent’s degree of truth and F̃
be the output fuzzy set defined on the real numbers domain. Let µF̃ denote
the membership function of the output fuzzy set and µF̃′ the membership
function of the modified output fuzzy set. Then minimum fuzzy implication
is computed as

µF̃′(r) = min(T (A), µF̃(r)) (B.1)

and product fuzzy implication as

µF̃′(r) = T (A) · µF̃(r). (B.2)

Take for example the if-then rule whose consequent is ‘direction is turn left ’
and let the degree of truth of its antecedent be T (A) = 0.11. The minimum
fuzzy implication’s effect of chopping off the output fuzzy set can be seen in
Fig. B.1a while the squashing effect of the product fuzzy implication can be
seen in Fig. B.1b.

C Computing the Animat’s Action

Let there be an animat that perceives only two neighbours, one of which is
80% of the visual range away and has an angular offset of −30◦ (N0) and the
other is 60% of the visual range away and has an angular offset of −110◦ (N1)
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Fig. C.1. The animat perceives two neighbours, one of which is 80% of the visual
range away with an angular offset of −30◦ (N0), and the other is 60% of the visual
range away with an angular offset of −110◦ (N1). The black arrow represents the
animat’s current flight direction. The dashed grey arrow represents the flight direc-
tion change that the animat obtained by applying fuzzy logic to the rule base of the
attraction drive.

(see Fig. C.1). For reasons of simplicity we shall assume that all are flying in
the same direction and with the same flight speed.

By applying fuzzy logic on the attraction, repulsion and polarisation drive
if-then rule bases the animat computes three independent actions (i.e. flight
direction and flight speed changes). Together, these actions will satisfy its
drives to stay close to the perceived neighbours, keep away from colliding
with them and fly in approximately the same direction and flight speed. The
animat combines, prioritizes and arbitrates these actions and computes the
flight direction and flight speed change to be taken in the following time step.

Even though all rule bases can be evaluated simultaneously, let us start with
the attraction drive. For each of the perceived neighbours the rule base is
evaluated independently (i.e. as if the animat perceived only one neighbour)
and all outputs are later combined. Now, recall that the action that satisfies
the attraction drive depends only on the perceived neighbour’s distance and
position. Because all of the perceived information is precise, for neighbour N0,
distance is the crisp value 80% of the visual range and position is the crisp
value −30◦.

First let us compute the necessary change in flight direction (i.e. evaluate
rules a1,a2,a6 and a8). It is easy to notice that rules a1 and a2 have the same
consequent (i.e. ‘distance is keep direction’). Because of this their antecedents
can be joined, using the logical operator ‘or’, and interpreted as a single
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rule. To assess the degree of truth of the compound antecedent we must first
compute the degrees of truth of the individual antecedents and then apply the
fuzzy logic operator ‘or’.

Let A1 denote the antecedent of rule a1 (i.e. ‘distance is close enough’) and
A2 the antecedent of rule a2 (i.e. ‘distance is too far ’). Recall that as distance
is a crisp value, the degrees of truth of A1 and A2 are given by the degree of
membership of distance in the corresponding fuzzy sets. Therefore, if we use d
to denote the value of distance, C̃ to denote the fuzzy set ‘close enough’ and
F̃ the fuzzy set ‘too far’, then

T (A1) = µC̃(d) = µC̃(80) = 0.33,

T (A2) = µF̃(d) = µF̃(80) = 0.67.
(C.1)

Since we interpret the logical operator ‘or’ as maximum fuzzy union, the
degree of truth of the compound antecedent is

T (A1 or A2) = max(T (A1), T (A2)) = max(0.33, 0.67) = 0.67. (C.2)

Recall that the degree of truth of the antecedent implies the degree of truth
of the conclusion, and that fuzzy implication modifies the output fuzzy set. In
this paper we use product fuzzy implication, which modifies the output fuzzy
set by squashing it. Let µK̃ denote the fuzzy set ‘keep direction’. Then the
membership function of the modified output fuzzy set that results from rules
a1 and a2 is given by

µK̃′(r) = T (A1 or A2) · µK̃(r) = 0.67 · µK̃(r). (C.3)

A graphical representation of the above described evaluation process is pre-
sented in Fig. C.2. The left half shows the evaluation of the antecedents’
degrees of truth, while the right shows the modification of the output fuzzy
set.

Rules a6 and a8 have different consequents, which means that, even though
they can be evaluated simultaneously, they can not be treated as a single rule.
However, we notice that their antecedents have multiple parts. In both cases
the antecedent is composed of two conditions joined by the logical operator
‘and’. This means that to evaluate the degree of truth of the antecedent
we must first compute the degrees of truth of the individual conditions and
then apply the fuzzy logic operator ‘and’. A graphical representation of the
evaluation process is presented in Fig. C.3.

For rule a6 let A61 denote condition ‘distance is too far ’ and A62 condition
‘position is left or behind ’. Then, if we use d to denote the value of distance,
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Fig. C.2. Graphical representation of the evaluation of rules a1 and a2 for the case
when the perceived neighbour is 80% of the visual range away with an angular offset
of −30◦. The left half shows the evaluation of the degrees of truth of the antecedents
and the right part the modification of the output fuzzy set.

p to denote the value of position, F̃ the fuzzy set ‘too far’ and L̃ the fuzzy set
‘left or behind’, we can write

T (A61) = µF̃(d) = µF̃(80) = 0.67,

T (A62) = µL̃(p) = µL̃(−30) = 0.17,
(C.4)

and, because we use product fuzzy intersection to interpret the logical operator
‘and’, the degree of truth of the antecedent of rule a6 is

T (A61 and A62) = T (A61) · T (A62) = 0.67 · 0.17 = 0.11. (C.5)

This means that, if we use T̃L to denote the fuzzy set ‘turn left’, the mem-
bership function of the modified output fuzzy set that results from rule a6

is

µT̃′L
(r) = T (A61 and A62) · µT̃L

(r) = 0.11 · µT̃L
(r). (C.6)

Similarly for rule a8 we denote condition ‘distance is too far ’ as A81 and
condition ‘position is right or behind ’ as A82. Then, if we denote the fuzzy set
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of −30◦. The left half shows the evaluation of the degrees of truth of the antecedents
and the right part the modification of the output fuzzy sets.

‘right or behind’ as R̃, we can write

T (A81) = µF̃(d) = µF̃(80) = 0.67,

T (A82) = µR̃(p) = µR̃(−30) = 0,
(C.7)

and the degree of truth of the antecedent of rule a8 is

T (A81 and A82) = T (A81) · T (A82) = 0.67 · 0 = 0, (C.8)

which means that the antecedent is false.

For neighbour N1 the membership function of the modified output fuzzy set
that results from rules a1 and a2 is given by

µK̃′(r) = T (A1 or A2) · µK̃(r) = max(µC̃(60), µF̃(60)) · µK̃(r) =

= max(0.67, 0.33) · µK̃(r) = 0.67 · µK̃(r),
(C.9)

the modified output fuzzy set that results from rule a6 is

µT̃′L
(r) = T (A61 and A62) · µT̃L

(r) =

= (µF̃(60) · µL̃(−110)) · µT̃L
(r) =

= (0.33 · 0.61) · µT̃L
(r) = 0.2 · µT̃L

(r),

(C.10)

whereas the antecedent of rule a8 is again false.
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Fig. C.4. The modified output fuzzy sets that result from active rules. They were
obtained by evaluating the attraction drive rule base for the case when the only
two perceived neighbours are 80% of the visual range away with an angular offset
of −30◦ (N0), and 60% of the visual range away with an angular offset of −110◦

(N1). The combined fuzzy set is the algebraic sum fuzzy union of the modified
output fuzzy sets. The defuzzified value, obtained by using the centroid method, is
−37.485◦.

Rules whose antecedents are true to a non-zero degree are active rules. The
modified output fuzzy set that results from the consequent of an active rule
represents the flight direction change according to that rule, expressed in the
form of a fuzzy set. But because in fuzzy logic more than one rule can be
active at a time and because we evaluate the rules for each perceived neighbour
individually, all of the modified output fuzzy sets have to be combined into
a single fuzzy set (Fig. C.4). This is done by computing the fuzzy union of
the modified output fuzzy sets and, in this paper, we use the algebraic sum
fuzzy union (see Appendix A). The combined fuzzy set that was obtained
by evaluating the rule base for the two perceived neighbours is presented in
Fig. C.4.

However, even though the combined fuzzy set represents the flight direction
change that will help satisfy the attraction drive it is still a fuzzy set. Therefore,
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in the final step, it has to be converted into a single (crisp) value that, in some
sense, is the best representative of the fuzzy set. This conversion is called
defuzzification.

A number of defuzzification methods leading to distinct results were proposed
in literature, but the most commonly used, and also the one used in this paper,
is called the centroid method. In this method, which is sometimes called the
centre of gravity or centre of area method, the defuzzified value is defined as
the crisp value, for which the area under the graph of the membership function
of the combined fuzzy set is divided into two equal subareas. Let D̃ denote
the combined fuzzy set, then the centroid defuzzified value is calculated using
the formula

cog(D̃) =

∫
r · µD̃(r)dr∫
µD̃(r)dr

. (C.11)

If we return to our example, the defuzzified value resulting from the combined
fuzzy set presented in Fig. C.4 is −37.485◦. This means that in order to sa-
tisfy the attraction drive the animat should turn to the left by 37.485◦. By
computing the necessary change in flight speed we find out that, in order to
satisfy the attraction drive, the animat should also increase its flight speed by
17.3489% of max speed. The repulsion drive will be satisfied with a turn to
the right by 11.078◦ and a speed increase of 4.3825% of max speed. However,
since the animat and the perceived neighbours have the same flight direction
and flight speed, polarization drive does not require any changes.

By combining, prioritizing, and arbitrating between these actions, action se-
lection selects the actual change in flight direction and flight speed to be taken.
Since we do not model the musculoskeletal structure of the bird, the animat
is based on a point mass approximation. The same approach, named a point
mass vehicle model, was used by Reynolds (1999). The animat’s physics is
thus based on forward Euler integration. At each simulation step for each
drive a vector is calculated that represents the force needed to accomplish
the required action. These forces are combined by using a weighted sum and
the resulting force (limited by the animat’s available force) is applied to the
animat’s point mass. This produces an acceleration equal to the force divided
by the animat’s mass. The acceleration is then added to the animat’s current
velocity vector and truncated by the maximum achievable speed. Finally the
animat’s new position is computed by adding the new velocity vector to the
animat’s current position.
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