
P. Pečar, M. Janež, N. Zimic, M. Mraz, I. Lebar Bajec. The Ternary Quantum-dot Cellular Automata Memorizing Cell. In Proc. of ISVLSI 2009, Tampa, FL, pg. 223–228.
doi:10.1109/ISVLSI.2009.32 c© 2009 IEEE

The Ternary Quantum-dot Cellular Automata Memorizing Cell

Primož Pečar Miha Janež Nikolaj Zimic Miha Mraz
Iztok Lebar Bajec

University of Ljubljana, Faculty of Computer and Information Science, Ljubljana, Slovenia
primoz.pecar@fri.uni-lj.si

Abstract

Quantum-dot Cellular Automata (QCA) were demon-
strated to be a possible candidate for the implementation
of a future multi-valued processing platform. Recent papers
show that the introduction of adiabatic switching and the el-
egant application of the adiabatic pipelining concept in the
QCA logic design can be used to efficiently solve the issues
of the elementary ternary QCA logic primitives. The ar-
chitectures of the resulting ternary QCAs become similar to
their binary counterparts and thus the design rules for large
circuit design remain similar to those developed for the bi-
nary QCA domain. In spite of this the design of the binary
QCA SR memorizing cell cannot be directly transferred to
the ternary domain, mostly because the control logic cannot
properly handle the third value. We here propose a ternary
QCA memorizing cell that efficiently exploits the pipelining
mechanism at a wire level. It is centered on the circulating
memory model (i.e. the memory in motion concept), which
proved to be an efficient concept in memorizing cell design
in the binary QCA domain. The proposed memorizing cell
is capable of serving as one trit (ternary digit) of memory
and represents a step forward to the ternary register, one of
the basic building blocks of a ternary processor.

1. Introduction

The theoretical advantages of ternary logic based pro-
cessing have been extensively researched over the past five
decades [17,5,8,18,7,3,4]. Unfortunately the actual work-
able platform designs are unable to keep up with the the-
oretical advancement. The main obstacle is the shortage
of building blocks that could offer native ternary support.
Currently known solutions are built mostly on CMOS tech-
nology, which is in itself based on a two state device, the
transistor. Hence even simple ternary logic gates and mem-
orizing elements use complex designs, which in a way at-
tenuates the efficiency of a ternary processing platform im-
plementation.

The new, emerging processing platforms, alternative to
CMOS, should not explicitly impose limits to only two
states. One such possible future processing platform is the
quantum-dot cellular automaton (QCA). The concept was
introduced in the early 1990s by Lent et. al [13, 21] and
demonstrated in a laboratory environment in the following
years by Bernstein et. al [1]. What followed was an ex-
hilarating period with the development of the functionally
complete set of logic functions, as well as more complex
processing structures, however all in the realm of binary
logic.

The first advancement of QCAs to native ternary pro-
cessing was performed by Lebar Bajec et. al [9, 10, 11].
The authors have redesigned the fundamental unit, a binary
QCA (bQCA) cell, to allow for the representation of three
logic values and named it simply the ternary QCA (tQCA)
cell. The subsequent research preformed by Pečar et. al
[15, 16] shows that the introduction of adiabatic pipelining
is essential for an elegant implementation of basic ternary
logic gates. The similarity of the architecture of the tQCA
logic gates proposed by Pečar et. al to the architecture of the
corresponding bQCA logic gates opens up the possibility to
use design rules similar to those developed for the binary
domain.

The initial results are encouraging but the design of com-
plex processing elements is still at its first steps. Indeed,
although the approach was fruitful for the design of basic
logic gates, one can not simply replicate (or translate) the
designs proposed for the bQCA platform. The designs pro-
posed for the ternary CMOS platform can not be relied upon
as well. These typically employ primitives, like the TXOR
gate, for which there are no current tQCA equivalents, or do
not rely on logic but represent ad-hoc solutions exploiting
physical effects.

Here we present the design of one of the most ba-
sic ternary processing elements, which can store one trit
(ternary digit) of data, the ternary memorizing cell. It re-
lies on proven approaches from bQCA design and efficient
use of the currently available tQCA primitives (ternary in-
verter, ternary majority voting gate, ternary wire). Its core

1

http://dx.doi.org/10.1109/ISVLSI.2009.32 


is centered on the memory in motion concept, which has
proved to be effective at the design of the bQCA memo-
rizing cell [6, 22]. The control logic is, on the other hand,
designed to promote an efficient implementation of an n-trit
register that is based on an array of n ternary memorizing
cells.

In section 2 we present a brief overview of the principal
ternary building blocks. In section 3 we describe the design
of the tQCA memorizing cell. Section 4 concludes with the
analysis of its behavior.

2. Building blocks overview

In general, a QCA is a planar array of quantum-dot
(QCA) cells [13]. The fundamental unit of a ternary QCA,
is a tQCA cell [9]. It comprises eight quantum dots arranged
in a circular pattern and two mobile electrons. The Coulomb
interaction between the electrons causes them to localize in
quantum dots that ensure their maximal separation (ener-
getic minimal state). The four arrangements, which cor-
respond to energetic minimal states (ground states), are
marked as A, B, C and D (see Fig. 1). Relying on the prin-

Figure 1. The four possible arrangements
that ensure maximal separation of electrons
are mapped to balanced ternary values -1, 0
and 1.

ciple of ground state computing, the four states can be inter-
preted as logic values. We here employ the balanced ternary
logic, so A is interpreted as logic value−1, B as logic value
1 and C and D as 0. The arrangement D is typically not al-
lowed (desired) for input or output cells [10,11,15]. Placing
one or more cells in the observed cell’s neighborhood, usu-
ally causes one of the arrangements to become the favored
ground state. The cell to cell interaction is strictly Coulom-
bic and involves only rearrangements of electrons within
individual cells, thus it enables computation. With specific
planar arrangements of cells it is possible to mimic the be-
havior of interconnecting wires as well as logic gates [20].
By interconnecting such building blocks more complex de-
vices capable of processing can be constructed.

The reliability of the behavior of a QCA device depends
foremost on the reliability of the switching process, i.e.
the transition of a cell’s state that corresponds to one logic
value to a state that corresponds another and vice versa. It

is achieved by means of the adiabatic switching concept,
where a cyclic signal, namely adiabatic clock, is used to
control the cells’ switching dynamic [19, 15]. The signal
comprises four phases. The switch phase serves the cells’
gradual update of the state with respect to their neighbors.
The hold phase is intended for the stabilization of the cells’
states when they are to be accessed by the neighbors that are
in the switch phase. The release phase and the relax phase
support the cells’ gradual preparation for a new switch.

Research by Pečar et. al [16] shows that the correct be-
havior of tQCA logic gates requires a synchronized data
transfer, which can be achieved with a pipelined architec-
ture. The four phased nature of the adiabatic clock en-
ables the desired architecture. Indeed, this property of the
clock signal allows any tQCA to be decomposed to smaller
stages, or subsystems, controlled by phase shifted signals,
each defining its own clocking zone. Let 0 denote the clock-
ing zone controlled by the base signal (usually the clocking
zone of the input cells) and i = {0, 1, 2, 3} the clocking
zone controlled by the base signal phase shifted by i phases.
Subsystems that are in the hold phase act as inputs for sub-
systems that are in the switch phase. A subsystem, after
performing its computation, can thus be designed to lock
its state and act as the input for another subsystem. As the
transaction is finished the second subsystem can start pro-
cessing while the first is ready for processing on new inputs.
With the correct assignment of cells to clocking zones, the
direction of data flow can be controlled. Large regions of
nearby cells are usually assigned to the same clocking zone
in order to eliminate the challenges that would be caused by
attempting to deliver a separate clock signal to every cell.

The latency of a QCA circuit is determined by the num-
ber of clocking zones along its critical path. A sequence of
four clocking zones causes the delay of one clock cycle.
Consequently minimizing the number of clocking zones
leads to better designs [14].

The tQCA memorizing cell, to be presented in the next
section, is based on currently available primitives: the
ternary wire, the ternary inverter and the ternary majority
voting gate. The ternary wire is a sequence of tQCA cells
that enables propagation of data from the input cell to the
output cell (see Fig. 2). When the input cell’s state is A
(logic value −1) or B (logic value 1) all cells propagate
the same state. However, when the input cell’s state is C
(logic value 0) the cells propagate the state in an alternat-
ing fashion. This effectively means that wires have to be of
odd lengths [11]. Having that in mind the tQCA wire can
be described as a processing element performing the logic
function:

y = w(x) = x, (1)

where x ∈ {−1, 0, 1} corresponds to the state of cell X and
y ∈ {−1, 0, 1} corresponds to the state of cell Y. The cor-
rect behavior of the corner wire and fan-out is ensured by

2



Figure 2. Efficient use of clocking zones for
a robust tQCA wire: straight wire (a), corner
wire (b) and fan-out (c).

means of a pipeline of two stages, as presented on Figs. 2b
and 2c. The first stage ensures the propagation of the input
value to the corner, and the second stage ensures its propa-
gation towards the output cell.

Currently there exist two implementations of the ternary
inverter [16], both relying on the fact that two cells arranged
diagonally assume alternate states when one is in state A
or B and the same state when one is in state C or D. We
here use the basic implementation presented in Fig. 3. It
is a two staged pipeline, where the input ternary wire and
the inverting core (the two cells arranged diagonally) are
assigned to one clocking zone and the output ternary wire
to another clocking zone. The given structure evaluates the

Figure 3. The ternary inverter.

logic function

y = i(x) = x ≡ −x, (2)

where x ∈ {−1, 0, 1} corresponds to the state of cell X and
y ∈ {−1, 0, 1} corresponds to the state of cell Y.

The ternary majority voting gate is currently, due to the
lack of implementations of other multi-input ternary logic
functions, the fundamental building block in tQCA design.
It is constructed as a crossing of three ternary wires and
can be implemented in two possible ways [16]. We here
use the diagonal ternary majority voting gate presented in
Fig. 4. The structure has three input cells denoted X1, X2

and X3, a device cell in the center and an output cell Y. It
acts as majority voting logic; the output reflects either the

Figure 4. A pipeline implementation of the di-
agonal ternary majority voting gate.

logic value that has been present at the majority of the inputs
or logic value 0 if the majority can not be determined (e.g.
in the case of the input combination x1 = −1, x2 = 1, x3 =
0). The described behavior can only be achieved through an
elegant assignment of clocking zones. The one employed
in this work, designates the input cells to clocking zone 0,
but designates the device cell and output cells to clocking
zone 1. The gate’s behavior can be described with the logic
function:

y = m(x1, x2, x3) = x1x2 ∨ x2x3 ∨ x1x3, (3)

where x1, x2, x3 ∈ {−1, 0, 1} correspond to the states of
input cells X1, X2, X3 and y ∈ {−1, 0, 1} corresponds to
the state of the output cell Y. The ternary AND and OR
logic functions can be expressed as

x1x2 ≡ min(x1, x2), x1 ∨ x2 ≡ max(x1, x2), (4)

where x1, x2, y ∈ {−1, 0, 1}. A closer look at equation (3)
reveals that the ternary AND logic function can be imple-
mented by fixing one input logic value of the ternary major-
ity voting gate to−1, and the ternary OR logic function can
be implemented by fixing one input logic value to 1.

3. Design of the ternary QCA memorizing cell

The adiabatic pipelining mechanism, described in sec-
tion 2, when used at the wire level, allows for the con-
struction of a delay (latch) wire. The ‘memory in motion’
concept takes advantage of this property in order to con-
struct a memorizing element. The basis of this concept is a
pipelined delay loop consisting of four successive clocking
zones, as proposed in the design of the H-memory mod-
ule [2, 6, 22]. Each individual clocking zone represents a
delay of one quarter of the clocking signal cycle, hence the
complete pipelined delay loop serves for a delay of one full
cycle. The memorized data remains circulating the loop up
until a data write instruction has been carried out and new
data enters the loop. The data read instruction, on the other
hand, does not alter the data that is circulating the loop.

3



A typical example of the application of the pipelined de-
lay loop is the bQCA implementation of the SR memorizing
cell. The control logic consists of an inverter and two ma-
jority voting gates. The latter two are used to implement the
binary AND (middle input fixed to the binary logic value 0)
and OR (middle input fixed to the binary logic value 1) logic
functions. The behavior of the binary SR memorizing cell
is described by the logic function

D1q = rq ∨ s, (5)

where s, r ∈ {0, 1} are the inputs and q ∈ {0, 1} is the out-
put of the memorizing cell. In the bQCA implementation
the condition rs = 0, known from the CMOS domain, is no
longer applicable, as it does not lead to a conflicting situa-
tion, but serves as a redundant input combination for setting
the memorizing cell (memorizing the logic value 1).

Unfortunately the promotion of the SR memorizing cell
to the ternary domain by the simple substitution of the
bQCA delay loop and the bQCA majority voting gates with
the tQCA delay loop and tQCA majority voting gates re-
spectively, would prove to be unproductive. Indeed, as-
suming that s, r, q ∈ {−1, 0, 1} and evaluating equation
(5) one obtains table 1. As it can be noticed the promo-

Table 1. Behavior of the SR memorizing cell
in the ternary domain.

s r D1q
-1 -1 q
-1 0 0q
-1 1 -1
0 -1 0 ∨ q
0 0 0
0 1 0
1 -1 1
1 0 1
1 1 1

tion to the ternary domain leads to ‘problematic’ input com-
binations.These combinations are those, where one of the
input variables s, r ∈ {−1, 0, 1} is 0. The reason why
such combinations can be termed as ‘problematic’ is due
to the fact that the design of the set and reset operations
of the binary SR memorizing cell, eq. (5), exploits two
fundamental laws of binary logic; the law of contradiction
(xx = 0, x ∈ {0, 1}) and the law of excluded middle
(x∨x = 1, x ∈ {0, 1}). As these two laws are not available
in the ternary domain (xx = 0 and x∨x = 0, when x = 0)
this has undesirable effects on the set and reset operations.

We bypassed this issue with a different interpretation of
the memorizing cell’s control logic. Instead of using two
control inputs, set and reset, we voted for one control and

one data input. The control input specifies if a write or
read operation is to be executed, hence only two (−1 and
1) of the three logic values are allowed. The data input,
on the other hand, accepts all three logic values (−1, 0 and
1). By employing this approach we were able to design a
ternary memorizing cell capable of all classical data opera-
tions: reading, writing and arbitrarily long memorizing.

Figure 5 presents the schematics of the ternary memo-
rizing cell. Data memorizing has been achieved by means

Figure 5. The schematics of the tQCA im-
plementation of the ternary memorizing cell.
The symbol D denotes where the actual delay
is achieved (the pipelined delay loop).

of a pipelined delay loop, where a trit (ternary digit) of data
is kept circulating as long as the control input, w, and data
input, x, remain −1. During all this time the lower ternary
majority voting gate, designed to execute a ternary AND of
the inverted control input (in this case 1) and the delayed
logic value q, only transmits the delayed logic value q to its
output. The upper ternary majority voting gate, designed
to execute a ternary OR of the data input (in this case −1)
and the output of the lower ternary majority voting gate (in
this case the delayed logic value q), again only transmit the
delayed logic value q to its output (the output of the mem-
orizing cell). This way it is ensured that the logic value q
enters the delay loop one more time, from where it shall
return to the lower ternary majority voting gate.

From the point of view of the control input reading
equals memorizing, after all the memorizing cell’s output
logic value q is the logic value that is kept circulating in-
side the delay loop. Writing is, on the other hand, executed
when the control input is applied the logic value −1. In
this case the lower ternary majority voting gate clears the
delayed logic value and transmits the logic value −1 to its
output. This enables the upper ternary majority voting gate,
designed to execute a ternary OR of the data input (in this
case x) and the output of the lower ternary majority voting
gate (in this case −1), to transmit the new data value, x,
to its output (the output of the memorizing cell), and from
there into the delay loop. The memorizing cell’s logic func-
tion can be described as

D1q = m(x, 1,m(w,−1, q)) = x ∨ wq, (6)

where x ∈ {−1, 0, 1} is the data input logic value, w ∈

4



{−1, 1} is the control input logic value, x = −1 whenever
w = −1 and q ∈ {−1, 0, 1} is the output logic value of the
ternary memorizing cell. One can easily notice that equa-
tion (6) is identical to equation (5) with the exception that
the variables assume different roles.

By taking advantage of the adiabatic pipeline concept the
schematics presented in Fig. 5 can be directly translated to
the tQCA platform. The pipelined delay loop is a bit harder

Figure 6. The layout of the ternary QCA mem-
orizing cell.

to spot in the layout presented in Fig. 6, mostly due to its
extreme compactness. Its most prominent element (serving
also as its input) is the memorizing cell’s output cell, Q,
which is actually also the output cell of the upper ternary
majority voting gate. The loop continues diagonally down-
wards towards the input of the lower ternary majority vot-
ing gate. The complete pipelined delay loop (the delay of a
complete clock cycle), is thus constructed from: the device
and output cells of the upper ternary majority voting gate;
one cell providing a delay of a quarter of a cycle; and the
input, device and output cells of the lower ternary majority
voting gate. As the output cell of the lower ternary majority
voting gate serves also as the input of the upper ternary ma-
jority voting gate this closes the loop. The clocking zones
(marked in the lower right corner of each tQCA cell) are
assigned so as to achieve the necessary data flow, as well
as to keep as many cells in the same clocking zone in order
to avoid the challenges that would be caused by attempting
to deliver a separate clock signal to every cell. The control
and data signals arrive at the memorizing cell from the left
through tQCA cells marked X and W, respectively. The
two cells, that are not assigned to a clocking zone are fixed
to specific states corresponding to logic values −1 and 1

and serve only as selectors of the logic function performed
by the ternary majority voting gates (i.e. AND and OR re-
spectively). The layout of the memorizing cell allows it to
be easily placed inside an array of other equivalent memo-
rizing cells. Due to the fact, that the proposed memorizing
cell is capable of serving as one trit of memory, an array of
n such cells forms an n-trit register.

4. Analysis of the ternary QCA memorizing
cell

The analysis was carried out using the ICHA simulation
approach [12, 16]. It was based on the following param-
eters: quantum dots have a diameter of 10 nm, distance
between adjacent quantum dots is 20 nm, cell centers are
placed on a 110 nm grid. All other relevant parameters
were evaluated for a GaAs/AlGaAs material system. The
results presented on Fig. 7 have been obtained with the fol-

Figure 7. The ternary memorizing cell tQCA
simulation results. The grey strip marks an
example of writing the logic value −1.

lowing sequence of read/write operations: read, write (-1),
write (-1), read, write (1), read, write (0), write (1), read,
write (0), read, read. The first curve, marked ‘Clock’, is
the waveform of the adiabatic clock signal, which is used
to control the tQCA cells assigned to clocking zone 0, and
thus specifies the start of the read/write operation. The cells
contain valid data only when the correspondingly shifted
clock signal is in the hold phase (H). As the adiabatic clock
starts with a switch phase, this means that at this instant
only cells assigned to clocking zone 3 contain valid data.
The second and third curve represent the waveforms of the

5



control, w, and data, x, input signals, respectively. The last,
fourth, curve, on the other hand, corresponds to the mem-
orizing cell’s output q (only intervals with valid data are
displayed). One can notice that the presented memorizing
cell provides a delay of exactly one clock cycle from the in-
stant at which data is input into the memorizing cell (cells X
and W) to the instant at which it appears at the memorizing
cell’s output (cell Q). The memorized logic value circulates
the pipelined delay loop and keeps appearing at the output
cell Q up until the moment when new data is written into the
memorizing cell. The behavior of the ternary memorizing
cell is thus comparable to its binary counterpart.

5. Conclusion

The paper presents a novel design of a ternary QCA
memorizing cell that is capable of storing one trit of data.
The proposed design exploits the well known approach used
for the design of memorizing cells in the binary QCA do-
main, but solves the binary to ternary transition problems
with a reinterpretation of the input signals. Its compact im-
plementation places it into the set of basic ternary building
blocks that could be used to build complex processing plat-
forms of the future.

Acknowledgment

The work presented in this paper was done at the Com-
puter Structures and Systems Laboratory, Faculty of Com-
puter and Information Science, University of Ljubljana,
Slovenia and is part of a PhD thesis that is being prepared
by P. Pečar. It was funded in part by the Slovenian Research
Agency (ARRS) through the Pervasive Computing research
programme (P2-0395).

References

[1] G. Bernstein, G. Bazan, M. Chen, C. Lent, J. Merz, A. Orlov,
W. Porod, G. Snider, and P. Tougaw. Practical issues in the
realization of quantum-dot cellular automata. Superlattices
and Microstructures, 20:447–559, 1996.

[2] D. Berzon and T. Fountain. Computer memory structures
using QCA. Technical report, University College London,
1998.

[3] E. Dubrova, Y. Jamal, and J. Mathew. Non-silicon non-
binary computing: Why not? In 1st Workshop on Non-
Silicon Computation, pages 23–29, Boston, Massachusetts,
2002.

[4] M. Fitting and E. Orlowska, editors. Beyond two: Theory
and applications of multiple-valued logic. Physica-Verlag,
Heidelberg, 2003.

[5] G. Frieder and C. Luk. Ternary computers: Part 1: Moti-
vation for ternary computers. In 5th annual workshop on

Microprogramming, pages 83–86, Urbana, Illinois, septem-
ber 1972.

[6] S. Frost, A. Rodrigues, A. Janiszewski, R. Raush, and
P. Kogge. Memory in motion: A study of storage struc-
tures in QCA. In 8th International Symposium on High
Performance Computer Architecture (HPCA–8), First Work-
shop on Non-Silicon Computation (NSC–1), Boston, Mas-
sachusetts, 2002.

[7] B. Hayes. Third base. American Scientist, 89(6):490–494,
2001.

[8] D. E. Knuth. The Art of Computer Programming, volume 2.
Addison-Wesley, Reading, 2 edition, 1981.

[9] I. Lebar Bajec and M. Mraz. Towards multi-state based com-
puting using quantum-dot cellular automata. In C. Teucher
and A. Adamatzky, editors, Unconventional Computing
2005: From Cellular Automata to Wetware, pages 105–116,
Beckington, 2005. Luniver Press.

[10] I. Lebar Bajec, N. Zimic, and M. Mraz. The ternary
quantum-dot cell and ternary logic. Nanotechnology,
17(8):1937–1942, 2006.

[11] I. Lebar Bajec, N. Zimic, and M. Mraz. Towards the bottom-
up concept: extended quantum-dot cellular automata. Mi-
croelectronic Engineering, 83(4-9):1826–1829, 2006.

[12] C. Lent and P. Tougaw. Lines of interacting quantum-
dot cells: A binary wire. Journal of Applied Physics,
74(10):6227–6233, 1993.

[13] C. Lent, P. Tougaw, W. Porod, and G. Bernstein. Quantum
cellular automata. Nanotechnology, 4:49–57, 1993.

[14] M. T. Niemier and P. M. Kogge. Problems in designing with
QCAs: Layout = timing. International Journal of Circuit
Theory and Applications, 29:49–62, 2001.

[15] P. Pecar, M. Mraz, N. Zimic, M. Janez, and I. L. Bajec.
Solving the ternary QCA logic gate problem by means of
adiabatic switching. Japanese Journal of Applied Physics,
47(6):5000–5006, 2008.

[16] P. Pecar, A. Ramsak, N. Zimic, M. Mraz, and I. Lebar Ba-
jec. Adiabatic pipelining: A key to ternary computing with
quantum dots. Nanotechnology, 19(49):495401, 2008.

[17] D. I. Porat. Three-valued digital systems. Proceedings of
IEE, 116(6):947 – 954, 1969.

[18] D. C. Rine, editor. Computer science and multiple-valued
logic: Theory and applications. North-Holland, Amster-
dam, second edition, 1984.

[19] P. Tougaw and C. Lent. Dynamic behaviour of quantum
cellular automata. Journal of Applied Physics, 80(8):4722–
4736, 1996.

[20] P. D. Tougaw and C. S. Lent. Logical devices imple-
mented using quantum cellular automata. Journal of Applied
Physics, 75(3):1818–1825, 1994.

[21] P. D. Tougaw, C. S. Lent, and W. Porod. Bistable saturation
in coupled quantum-dot cell. Journal of Applied Physics,
74(5):3558–3566, 1993.

[22] K. Walus, A. Vetteth, G. A. Jullien, and V. S. Dimitrov.
RAM design using quantum-dot cellular automata. In Nan-
otech 2003, volume 2, pages 160–163, San Francisco, Cali-
fornia, februar 2003.

6


	. Introduction
	. Building blocks overview
	. Design of the ternary QCA memorizing cell
	. Analysis of the ternary QCA memorizing cell
	. Conclusion

