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Abstract

Computational biology is an emerging scientific field whichpdoys computational
methods in the study of various biological systems. Thigptrapresents a review of
methods that have been introduced to the fields of synthaticsgstems biology in
recent years. Approaches presented mainly rely on thelisstatent of computational
models. These models allow us to observe the behaviour afaircbiological system
in a given environment. Exact kinetic data that describeedythg dynamics are
usually necessary to establish accurate computationa¢isiodinetic data are on the
other hand hard or even impossible to obtain experimentabpme cases. Parameter
estimation techniques that also rely on computational @ggres can be used to
accurately evaluate missing kinetic data. With the esthbient of computational
models, computational analyses can be conducted, suchfasnpance, robustness,
sensitivity or stability analysis. These techniques candes further on to reduce the
amount of experimental work and enable straightforwardgtesf novel biological
systems in the context of synthetic biology.

Keywords: Computational modelling, computer simulation, network inference, parame-
ter estimation techniques, performance evaluation, sensitivity analysiditptabalysis,
computational design

1. Introduction

Use of engineering tools that rely on various computational approacheeris and
more common in the field of systems biology [1]. Being a combination of chemistiy, b
ogy and engineering [2], these approaches gained even larger tbie field of synthetic
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biology. Computational approaches used in these two disciplines are magdgl ba the
establishment of various computational models. Given a predicted envinbrand ini-
tial conditions, these models are capable to mimic the behaviour of an arbitoéwyibal
system. Regarding their design, two main approaches existiopedownandbottom-up
approach. Top-down design approach is a basis for the establishitentputational mod-
els using experimentally measured data from existent biological systenalyusitained
using DNA microarrays) [3, 4, 5]. This approach is also knowmetsvork inferencend
is based on reverse engineering of the computational model from exp¢aligeneasured
data. The complementary, i.e. bottom-up approach, is on the other hantbusiaglify
the design of novel biological systems with predefined functionalities. €l'resdels are
usually constructed with the association of biological modelling primitives, wbéhbe
obtained with the top-down approach [6].

The accuracy of computational models is tightly correlated with the accufg@ram-
eter values, which define the dynamic and behavioural properties efvaasbiological
systems. These parameters are sometimes very hard or even impossiblentineéetecu-
rately. In order to bypass this problem, several parameter estimation teelrugn be used
[7, 8] for bottom-up modelling. There are also several top-down modelfipgaaches that
aim to reconstruct an existent biological system from experimental datawtitfying to
estimate the parameter values (for example with the employment of fuzzy logic asetho
[9]).

Established models that reflect a satisfactory accuracy can be fudedrto get the
specific insights into the behaviour of a certain biological system. When eveealing
with reverse engineered models, these systems already exists. The nmededtahlished
to perform various analyses and deduct behavioural properties ef/ttem which are hard
or even impossible to obtain experimentally [10]. Moreover, modelling resatt9e used
to optimize the behaviour of observed biological system with certain modificafidl].
On the other hand, bottom-up models can be applied to the computational débign o
logical systems, thus reducing the quantity of experimental work. Sevenaputational
approaches for automatic design already exist, such as heuristic optimitstioriques
which seek for optimal solutions regarding the given objective functidk [These func-
tions can be established in different ways, e.g. with the evaluation of spewfrics that
are able to quantify the behaviour of biological system [13].

In this chapter we review the computational approaches in the field of systeths
synthetic biology. We especially focus gene regulatory network@GRNSs), but most of
the presented concepts can also be applied in the same wsigrmal transductiorand
metabolic networks First we present state of the art modelling approaches in the field.
We briefly review parameter estimation techniques that allow us to bridge tidepro
of parameter evaluation. Further on we present advanced model ianalgisniques for
performance, robustness and stability analysis of biological systemse anthwe present
computational methods for computer-aided design, automatic design and optmiz&a
biological systems.
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2. Computational Modelling Approaches

The development in the field of computational modelling of biological systems goe
in hand with the progress of systems and synthetic biology. One can seleogavari-
ous modelling approaches which were introduced recently, each with ithenefits and
its own potential applications. The decision for an appropriate modelling gyrégevital
and depends on several factors, i.e. the complexity of observed sybteavailability of
its kinetic data and the type of information the user would like to obtain. Seviasgdic
fications exist with the aim to organize the modelling approaches in differenpg and
consequently ease the decision of choosing the appropriate oneststhestinction can be
made amongtaticanddynamicmodels. Static models do not incorporate time component
and only yield topologies or qualitative networks of gene interactions. Djmgene net-
work models on the other hand describe the changes of gene expriestiina [14]. Both
of these two groups can be further classifiedontinuousanddiscretemodels. Continuous
models observe the abundances of chemical species as non-negalivalues with cer-
tain upper limits.Discrete modelfiowever observe the system on the molecular level and
therefore describe its current state with discrete quantity of molecular mamberther
distinction among dynamic models classifies thengumlitative modelgalso referred to
aslogical modelq15]), which are relatively simple and easy to infer even from imprecise
data [16], but can only answer qualitative questions, quantitative modelswhich are
able to reflect higher accuracy, but on the account of their complexitglamand accurate
values of kinetic data. These models are usually inappropriate for exating of more
complex biological systems, but are on the other hand more informative digosystem’s
properties when used in accordance with their limitations. Quantitative modelsedair-
ther divided amongleterministic modelgvhich are only able to capture average response
within a population of identical cells or average response in a single cealleolang time
period andstochastic modelg/hich also consider the probabilistic nature of chemical re-
actions and can thus be used for the modelling of population heterogeneigffants of
intrinsic noise [17]. Both modelling types yield similar results when we are dealitiy
large systems (high numbers of molecules and large cell volumes) with ¢asbger kinet-
ics [18]. Considerable attention has been devoted to the concept oastwdy in GRNs
since the advent of synthetic biology [17, 19]. More details about stiichapproaches in
synthetic biology can be found in [20]. Another distinction of modelling apphes can be
made regarding thievel of detailggranularity) they consider, i.e. parts, topology, control
logic [21] or coarse, average and fine grained models [22], whergyfaieed models can
mostly be applied only to small systems and coarse grained models to largerapléxo
systems.

Here we will present few examples of different modelling techniques lgaigrto dif-
ferent groups listed above (see Tab. 1). Since the field of computatioodelling has
expanded rapidly in last years, we will have to omit some of the modelling methoas f
this review.
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Table 1. Different modelling techniques classified in groups describedithin the
main text, where DG denotes Directed Graphs, (D)BYN (Dynamic) Bgesian
Networks, (P)BN (Probabilistic) Boolean Networks, ODE Ordinary Differential
Equations, TM Thermodynamic Models, CME Chemical Master Equations and PN
Petri Nets. ST denotes static and DN dynamic models, CT continusand DS discrete
models, QL qualitative and QN quantitative models, DT deterministic amd ST
stochastic models, LG large and SM small networks. Tab. 1 is a modifition of the
table presenting the summary of properties of different modelling érmalisms in [22].

ST/DN CT/DS, QL/QN, DT/ST, LG/SM
DG ST DS QL DT LG
BYN ST DS QN ST LG
DBYN DN DS QN ST LG
BN DN DS QL DT/ST LG
PBN DN DS QL ST LG
ODE DN CT ON DT/ST SM
™ ST CT QN DT SM
CME DN DS QN ST SM
PN ST/DN CT/DS QL/QN DT/ST SM

2.1. Directed Graphs

Directed graphg(DGs) can be regarded as the most basic presentation of biological
regulatory networks. Simplicity of this approach makes it applicable to the mogleifin
large biological systems (i.e. for several magnitudes larger than with othdelhmg ap-
proaches), but on the account of its static nature. Various graphtopes can be performed
on these models in order to make relevant predictions about the structubehaviour of
observed regulatory system, e.g. search for paths among two genegestigation of
existence of cycles that may point at possible feedback relations [22gviéw of such
approaches is presented in [23].

Mathematical description of DG is presented with two sets, i.e. set of veitieesl set
of edgesE. When dealing with gene regulatory networks, vertices usually referriegye
(or chemical species that are results of their expression) and edgesrections among
them. Each edge is defined @sz,r), wherey is the head and the tail of the edge. This
can be interpreted asregulates the expression @f Regulation type is defined in i.e.

y can be activated (+) or inhibited (=) hy(for graphical presentation see Fig. 1). Basic
graph presentation can be extended with hypergraphs, in which egelx isedefined as
(y,X,R) . Here X corresponds to the vertices that cooperatively regujaad R to the
types of regulation for each one of them.

Deduction of DGs can be made on the basis of existent knowledge or wittppiie a
cation of different automated inference procedures. Varaustering algorithmsan be
used, which are motivated by the fact that two genes may regulate eactootiay be
coregulated by a third gene if they both reflect similar expression pat@2hs\lany novel
alternative inference approaches were reported recently. We wiflybdescribe a solu-
tion which combinesartificial neural-networkswith genetic algorithmsparticle swarm
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Figure 1. Symbols used in graphical presentations of directed graphsnédgs. (a) and
(b) present a situation where tail vertex activates the expression dfveetex. Figs. (c)
and (d) present a situation where tail vertex, inhibits the expressioradfvertex. Fig. (a)
is compatible with Fig. (c), and Fig. (b) is compatible with Fig. (d).

optimization(PSO) anduzzy logicinto a multi-layer evolutionary trained neuro-fuzzy re-
current networK ENFRN) [24].

ENFRN is able to successfully extract the regulatory interactions fronsyndata
obtained with gene expression profiling. Evolutionary training of artificealmal network
based on the PSO automatically generates an adaptive number of temppyaiuies that
describe the relationships between the input and the output genes. inhmgtieiperformed
on the basis of gene expression profiles in two phases: (a) the str(topoéogy) learning,
in which fuzzy IF-THEN rules are generated and feedback confiiguras established, and
(b) parameter learning, in which free parameters which define the establishzy rules
are tuned. Trained ENFRN structure is able to determine if specified ingulates the
output, the kind of regulation and also provides a score, that specifiettielence in
retrieved relation.

2.2. Boolean Networks

Boolean network¢BNs) are the most basic dynamic extension of DG modelling ap-
proach in which a single gene is considered to be in one of two possible, statesn
or off. Direct regulatory interactions among genes are modelled as Booleatiohsc
[22]. Let's presume, that the state of the system in tiimie defined with the vector
x(t) = [21(t), 22(t),....en(t)]T, wherex;(t) is a boolean variable corresponding to ac-
tivity (presence) or inactivity (absence) of gen€or a chemical species that results in
its expression) in timeé. Model dynamics is determined with a set of Boolean functions
B = {b1,ba,....,bn }, Wherez;(t + 1) = b;(x(t)). BNs can be directly projected to DG
models. Direct projection cannot be made in both directions, since BNsic@uditional
information to directed and signed network diagrams [16]. For examplechf siwjection
see Fig. 2. While the number of possible states of the system is limite®N.@ossible
states for/V Boolean variables, all initial states may eventually reaskeady staté¢point
attractor) or sstate cyclgdynamic attractor). All possible system trajectories from an ini-
tial configuration can be analysed witlstate transition graphHowever, these graphs can
be constructed only for small systems or only for limited amount of initial cordigpns.

BNs do not consider intermediate levels of gene expression which resyltssible
information loss. In basic BNs, transitions between states, i.e. &@mto x(¢ + 1),
occur synchronously, meaning that all state changes happen simukgnand in deter-
ministic regime. Simplicity of this approach, its qualitative features and pararfneter-
nature makes it applicable for inference, dynamic modelling and efficiettysia of large
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Figure 2. An example of directed graph with two possible projections to Boales
works, i.e. B = {bs(z1,r2) = x1 ORzy, by(x3) = NOT z3} in Fig. (b) andB =
{b3($1,$2) = x1 AND z2, b4(l’3) = NOT 1'3} in Fig. (c).

scale regulatory networks [16]. Several simplifications can make thi®agpipinappropri-
ate for general modelling of biological systems [22]. However, BNs caexiended in
some degreeProbabilistic Boolean Network@”BNs) are able to incorporate the stochas-
tic nature of chemical reactions [25]. PBN annotation extends a set ofibms 5 into
B = {B1,Bs,...,By}, whereB; is a set of Boolean function@fl(l), fz(z),...,fl(’)}. It con-
tains all possible functions that may define the state of Boolean varigblEach of these
functions can be chosen to update the state vector in each iteration agcords proba-
bility. Moreover, basic and probabilistic BNs can be extended with the inttamuof non-
synchronous transition schemes, in which the states of the nodes atedijpddependence
on the time-scales of individual biological events regarding their underhggulatory pro-
cesses. These schemes can be further divided to deterministic andsstoohas. While
time-scales are fixed for each node in deterministic schemes, stochastiwescladomly
select a node to be updated or update all nodes in random order [16].

2.3. Bayesian Networks

Bayesian network@YNSs) (also referred to agrobabilistic networksare a combina-
tion of probability calculus, i.e. they incorporate the stochastic nature @& gegulation,
and graph theory [3]. BYNSs describe the regulatory interaction in régylaetworks with
directed acyclic graplpresentation, where each vertex has a similar interpretationdis in
rected graphpresentation (see section 2.1). Random variables that describe tlessgpr
levels correspond to each vertex. Conditional distribution is definedafcht eandom vari-
able, i.e.p(X;|parents(X;)), wherei is the vertex,X; random variable, that describes its
expression level angurents(X;) random variables describing direct regulators.dYN
description is therefore defined with the directed acyclic gr@@nd the conditional prob-
ability distributions®, which defines local conditional probability distributions for each
vertex in graph [22]. An example of a BYN graph is presented in Fig. . 3p®scribed
approach is also known asatic Bayesian networodelling. Its main disadvantages are
in the fact that it is unable to capture feedback loops in gene regulatioscaandnly be
used to analyse dependencies between genes. It is therefore nbliesiagtasimulation of
system’s dynamics.
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Dynamic Bayesian networK®BYNS) (also referred to adynamic probabilistic net-
workg are a temporal extension of BYNs, that separate input nodes fronutondales.
This modelling approach is therefore suitable for simulating the time-depedgaam-
ics of the system and is able to describe regulatory feedback loops withtediracyclic
graphs. DBYN can be defined with a pdiBy,B1), where By = (Gy,0¢) is initial
BYN and B; = (G1,0;) a transition BYN which specifies transition probabilities, i.e.
P(X(t)|X(t — 1)) [26]. An example of a transition graph is presented in Fig. 3(b).

X, X, X, (t—1)

)js Xz(t -
X, Xt =1)—>X,(1)
(@) (b)

Figure 3. Directed acyclic graphs presenting an example of static Bayesiaark (a) and
a transition graph of the dynamic Bayesian network for the same regulattwprk (b).

The main advantages of BYNs are in their capabilities to model large systetre bu
the account of their coarse granularity. These networks are alsd@asgonstruct, even
if incomplete knowledge about the system is available or from the combinatidiffeient
types of data. BYNs as such have many features which are suitable foratielling of
regulatory networks [22, 3]. While DBYN solve basic limitations of static BY blsnpu-
tational costs drastically increase when inferring these models fromimergrl data and
are therefore not suitable for large regulatory networks.

2.4. Ordinary Differential Equations

Ordinary differential equatiofODE) models consider the concentrations of observed
chemical species (such as mMRNAs and proteins) as time-dependantesfi2®]. Al-
though ODE based models are mainly deterministic, their extensions with the ictimdu
of Poisson random variables has also been reported [27]. Thesdsmualely rely on mass
action kinetics or on phenomenological representations of reaction nisaisi7]. Let's
presume, that state of the system in timis defined asx(t) = [z1(t), 22(t),...,zn (t)]7,
wherex;(t) is current abundance of chemical specdies non-negative real value. ODE
model can therefore be defined with a set of ordinary differential teapsof form:

d .

= Hix(Ou®):1<i< N, (1)
whereu(t) is a vector of concentrations of input components g{g) in most cases a
nonlinear function. Due to the nonlinearity of ODE models their solutions anallys
obtained numerically (e.g. with Euler method). Qualitative properties of theersysan
also be derived from these models (see Section 4).
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In the context of gene regulatory networks three main reaction type®aceiled with
the given set of differential equations, naméignscription translationanddegradation
While translation and degradation usually follow ordinary mass-action kinetarsscrip-
tion regulation, i.e. activation and repression, is in most cases modelled wisigtheid
shape functions, such as Hill functions [28]. Let’s consider that &medior X increases
the rate of transcription when it binds to its regulatory region. Promoteriigctian be
expressed as 5. x

fa(X) = I ED G (2)
where is maximal promoter activity/<,; dissociation constant andnonlinearity (Hill)
coefficient. Hill coefficient defines the steepness of the transitions aofteis interpreted
as cooperativity coefficient although it may also arise from other faf28isLet’s presume
that the expression of proteln is activated by transcription factd¢. Simplified model of
its dynamics can be presented by

vy  g.Xn

=t —§Y.
dt K5+X”+ﬁ0 af 3)

wheref, is basal transcription rate angrotein degradation/dilution rate. Complementary
regulation type of activation is repression of the transcription, whenm@i@r activity can
be expressed as
p
fr(X) =

1+(%)

Even though Hill equations are a relatively good approximation of trartgamgd activity,
they may reflect inappropriate results in some cases. They imply that thertpdios fac-
tors are bound to their corresponding binding sites simultaneously wherttiogierativity
is larger than 1 [30]. If oligomerisation rates are on the same time-scaleseag@diation
rates, different approaches, such as classical mass-action kihetiesto be used.

Several other approaches have been derived from ODE modelsHR®ewise linear
differential equation modelare obtained if sigmoid curves are approximated with step
functions and are used in order to simplify the qualitative analysis. ODE modalbe
extended with the transition ttelayed differential equatior(® DEs) [31] of the form

ddj’ — Ax(t— ()1 <i < N, (5)
wheret is an N dimensional non-negative vector of discrete time delays. This approach
allows us to model slow biochemical reactions, such as gene transcripticinaaislation
and protein diffusion, more precisely.

Models based on ODEs are relatively simple and therefore easy to atnstren ki-
netic rates of observed reactions are available. On the other hand fitg god quantity
of data needed to derive these rates makes them difficult to apply to pbarigaterized or
noisy systems. Even when precise data are available, number of pamthatareed to be
estimated may present major difficulties when inferring larger networkstelfénce is suc-
cessfully performed, high computational costs can present anothaepravhen dealing
with such networks. These models are therefore hard to scale up to nrmopéegsystems.

(4)
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2.5. Thermodynamic Modelling

Thermodynami€¢TD) or fractional occupancynodelling derives from the presumption,
that gene expression is proportional to the level of bound activatarsnaersely propor-
tional to the level of bound repressors [32]. It considers DNA bindind protein interac-
tions in equilibrium condition [33]. The benefit of TD modelling approach i ta can
predict occupancies of different binding site types very accuratajy,véhen transcription
factors are competing for overlapping binding sites or cooperativelyactieg at nearby
binding sites. It can also account for very specific nonlinear regulasyonses, such as
transcription synergy [34].

Given a set of binding sites, concentrations of transcription factorgtesid binding
affinities, relative probabilities of each binding site configuration can brulzded in the
first step. The probability of each configuration can be calculated dicepio its statistical
weight which depends on the number and affinities of occupied bindingisites config-
uration and interactions among bound transcription factors. Probabilitiemdihg sites
that lead to transcription activation can be summedractional occupancywhich may
also be expressed as a ratio of weights of binding site occupancies athéd leanscription
activation, to weights of all possible binding site occupancies.

In the second step gene expression level is calculated according tenihetérfrac-
tional occupancies, for which different techniques can be usedexXnple, calculation
can be performed with the product among fractional occupancy of gachoter and its
corresponding expression level.

TD models cannot describe dynamical nature of biological systems by thes§&3].
However, it is possible to combine them with the differential equation modellingdi@rdo
incorporate changes of gene expression over time. In each iteratatiofi@ occupancies
of binding sites and their corresponding expression levels are calciutetiegphendence of
transcription factors concentrations. Concentration values of chenpieales are on the
other hand derived from the set of ordinary differential equationadah¢ime step.

Let's again consider the same example as described in section 2.4, whtgie pf
activates the transcription. Its fractional occupancy may be expregfiedhe following
equation: o

fA - W> (6)
where K ; describes dissociation constant andonlinearity coefficient. Gene expression
can be therefore expressedfas 3, wheregs corresponds to maximal promoter activity. If
we combine this model with protein degradation and basal expressionmbpg equation
3 is obtained. If proteinX’ would have a complementary, i.e. repressible role, fractional
occupancy would be expressed as:

1
1+ (%) +xm
Even though fractional occupancy is able to precisely capture the dysamhien deal-
ing with different types of binding site occupancies, models obtained in tixassimple
examples obtained with TD modelling are the same as ODE based models.
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2.6. Single Molecule Level Models

Biological systems neither posses deterministic or continuous nature whictstymo
presumed by ODE and thermodynamic mod&mgle molecule levehodels on the other
hand describe their dynamics on the molecular level. Concentrations avetdsspecies
are thus presented with whole numbers. Moreover, reactions whidh #ftgr abundances
are determined stochastically. When we are dealing with large systems oviobse
system over longer periods of time the differences in response ofatiffapproaches are
negligible [17]. But if the molecular population is small or if the system is semsitinoise
effects, continuous deterministic models may lead us to wrong conclusiops [19

Similar as with deterministic models state of the system can be defined with a vector
x(t) = [21(t), 22(t),...,zn (t)]T, wherez;(t) is current abundance of chemical specses
as non-negative whole number. Each of the chemical species fromttf8,s6.,...,5x }
interacts with others through so called reaction chanf&ls Rs,...,Rys }, which are de-
fined by theirstate change vectomnd theirpropensities State change vector defines the
species and their quantities that are produced and consumed by eg@mrgan the form
vj = (v1j,15,...,vnj). Propensitiesd;(x(t))) can be derived from reaction rates and sys-
tem volume and are used to calculate the probability for each reaction toinectime step
dt. Dynamics of the system can be analysed with the establishment of so Cakdical
Master Equatiorj19]:

M M
Px(t) = —p(x(t) D aj(x(t)) + Y p(x(t) — vjit)a;(x(t) — ). (8)
j=1 j=1

This equation completely determines the probability of each state, but carvied sma-
lytically only for very small systems. Various numerical approximations anefoee used
instead, such aStochastic simulation algorithg8SA) [35], which can be described as:

1. Initialize the system.
2. Calculate current propensities(x(t)) and their sumag(x(t)).
3. Generate random valuesandrs,.

1

4. Determine next time step: = m In (i>

5. Determine next reactioR; to occur according to equation
) A
2 g1 4y (x(8)) < raa0(x(t)) < 325y ajr(x(t))-
6. Calculate state change(t + 7) = x(t) + v;.
7. Increase timet <t + 7.

8. Return to step 2 unless conditions for stopping the simulation are fulfilled.

Computational time increases drastically with the number of observed chermpeézés.
One of the solutions is to use another approximative approach, namegping, which
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does not calculate time steps in each iteration, but uses a fixed value thiheughole sim-
ulation. In order to obtain valid results, time step must be chosen carefullyr@pznsity
function should change its value significantly within defined time step).

Single molecule level models can be extended with the incorporation of time delays
in a similar way as ODE models are extended to DDE models. Here, time delaygcan b
assigned to each product of observed chemical reactions. Dynansastofodels can be
analysed wittDelayed SSAwhich can be presented with the following steps [36]:

1. Initialize the system. Clear the queue L, which will contain the chemical specie
representing queued products and their designated times of appearance

2. Determine next time stepand next reactiok; to occur in the same way as in basic
SSA.

3. Calculate state change: Lebe current time and.,;, be the lowest value in queue
L. If t + 7 < tmin, calculate the state change in the same way as in SSA, with an
exception of delayed products, which are inserted into L together with their fime o
appearance in the systemtH- > t.,;, release all the elements of the queue, with
their designated times of appearance lower than and accordingly update the state
vector.

4. Increase time: ‘
‘e { t+7, ift+7 < tmin

tmin, otherwise

5. Return to step 2 unless conditions for stopping the simulation are fulfilled.

The effectiveness of described approaches is drastically redwbeah, the number of
observed chemical reactions and chemical species increases. Hosexgral improve-
ments could be used to decrease the computational complexity of the algoriteetsdra
CME. Multi Time Scalanodelling approach [37] considers the fact that chemical reactions
occur in different time scales. The rates of transcription processexémnple are usually
significantly higher than the rates of DNA and RNA binding reactions, sscécaffold-
ing, dimerization, linking etc. The common kinetic-propensity approachespted above
may already take into consideration these differences. Nested simulatioeadiortime
scale reaction set may on the other hand improve the effectiveness of tangitee state
changes [37]. A simple application of this concept can be easily implemeniasiiny SSA
specifically for the reactions that occur in time scales of minutes or houra aested SSA
for the reactions that occur in time scales of seconds.

2.7. Petri Nets

Petri Nets(PNs) are in their most basic form used for modelling and analysis of v&riou
concurrent, asynchronous and distributed systems. The mathematikgtdnamd of PNs
enables us to analyse the system we are modelling, while a PN graph gitegraphical
representation. With recent development of different PN extensiogsatleecbecoming a
powerful tool for describing biological systems. PNs were at firsiaggo metabolic
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networks [38], but they are, however, becoming increasingly pogatamodelling gene
regulatory networks.

PN is a directed-bipartite graph with two different types of vertiggacesandtran-
sitions  When modelling biological systems, places correspond to chemical saales
transitions to the events occurring in the system, namely chemical reactiongotleah
dynamics of the system. They are connecteatug (directed edges) which represent how
different chemical species interact in the system. At any time, places ddrzé or a
positive number otokens Depending on what reaction we are modelling, these tokens
can represent species concentration or simply presence or absemcentain chemical
compound. Distribution and allocation of tokens over places represementatate of the
system which is called markingof the PN. Marking of a PN changes when a transition
fires Transition can be fired only if all required conditions for that transitianraet, e.g.
all the chemical species needed for a reaction are present. Let'siegeihave two chem-
ical species:; andzs that can be combined with a chemical reactipwhich produces:s.

We can represent the model of this reaction and its different states withas BNown in
Fig. 4.

Ly Ly Ly

(@) (b) (©)

Figure 4. Example of a simple Petri Net of a chemical reactipr- o — z3. Fig. (a)
presents a scenario where chemical reaction will not happen sincef tme reactants is
missing (). Fig. (b) shows an enabled transition (chemical reaction can happérbig.
(c) the configuration after transition was fired.

We can construct a PN for any reaction or process which is a part afer liological
system. By combining these basic parts, PNs presenting larger regulatwygrks are
constructed. Basic PNs support only strictly discrete modelling without thiemof time
and are as such used as a framework for many different purely quaisétic modelling
approaches [39]. However, with different extensions, PNs candmeused to construct
dynamic continuous and discrete [40] models, while considering both deistiaif#1]
and stochastic [42] representations of the model. Additionally, possibilitiesigmant
continuous deterministic PNs with fuzzy methods are currently being ang§8gdThe
proposed solution aims to solve the problem of parameter sloppiness while imaipia
relatively good accuracy of established models at the same time.

Because PNs are a versatile tool for modelling biological systems, the sz ofstem
we can efficiently analyse and model depends on the granularity andagbpwe aim
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for. While we can efficiently analyse large static qualitative models, diffezgtensions
increase the complexity of PN dynamics and can only be used to construtrsmadels.

3. Parameter Estimation Techniques

A common problem of several computational modelling approaches is in theinde
dence on accurate kinetic data, such as kinetic rate constants or diosifficients. It may
be difficult, economically infeasible or even impossible to obtain these paraeteeri-
mentally in some case®arameter estimation probleoften represents a serious obstacle
when the modelling constraints require a high standard of reliability. Sev@mgbutational
techniques have been developed to overcome this problem. Howevdéanuausl has ac-
tually been defined, because of intrinsic uncertainty of the underlyingdeabsystems.
These methods have to face nonlinear constraints, which are implicit to gstelms. The
most relevant contributions in the field of parameter estimation have come fsatrot
theory of dynamical systems. Control theory is responsible for the dawelnt of several
optimization and estimation methods used in automatic systems control. Many of these
methods, such axtended Kalman filtehave already been successfully applied to compu-
tational biology [44, 45, 46].

Extended Kalman filtering approach presumes that an arbitrary nonligeantc sys-
tem may be approximated with a set of state change equations

xp = f(Xp—1,05-1,0) + Wy,

Yi = h(xx) + v ©

wherex is state vector of chemical species, i.e. it defines state of the syateattor of
system inputsg parameter vector which defines kinetic constagtsutput vector of the
system,w andv Gaussian noise vectors with zero mean and covariance maRicex
Q respectively;h is output andf transition function of the system, which completely de-
fines its state change dynamics. Input veet@ontains the parameters that define external
influences on the system, such as temperature or pH variations. Outport yacsually
contains experimentally obtained data. Functiatescribes these data, e.g. it can be inter-
preted as a response function that approximates the time course of a oatfihprotein
concentrations.

Extended Kalman filter is able to estimate the state vectom each discrete time step
k, with its estimation vectok;. In order to estimate unknown parameters at the same time
state extension has to be performed:

x:[ﬂ. (10)

The estimation is obtained in a two stage computation of the predictor-corrector f
(see Fig. 5). Infirst step predicted state vedtgy,_; and covariance matriky, .1, which
contains predicted variance changes of previously estimated state ggctgrare evalu-
ated. These predictions are used to construct faand to update the state and covariance
matrix estimationx; and P, respectively. State estimatict), is evaluated by adjusting
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current (predicted) state estimatiap,,_; with the difference between predicted and esti-
mated output of the system, i.g; andh(X; — 1) respectively, amplified or muted by the
obtained gaink.

System state x;,
ug Yk
xp = f (X1, ug) + Wi

Y
\/

Vi = h(xk) + v

PREDICTOR CORRECTOR

Yk

> Ki—1 = f (Kp—1, ug)

uy, Piji—1 = FiPoo1 F¥ + Qi

\

extended Kalman filter

Figure 5. A schematic description of extended Kalman filtering, wli¢res Jacobian of
function f, evaluated on the previowspriori state estimates,,,,_;, formally denoted as
ij (Xk|k—1) and similarly, . is Jacobian of:, formally denoted asi,f (Xpjk—1)- We refer

to [47] for a complete derivation of extended Kalman filter equations.

Initial state estimation has to be performed before the filtering. Initial statassagdly
set to the mean values of all initial concentrations of chemical sp&cikstial covariance
matrix Py is on the other hand set to be a diagonal positive definite matrix containing initial
mean variance of the state vectqy[44]:

X, (11)

po :E{(X_io)(x_io)’r} (12)

The initial estimations are very important for the global convergence ofitee fVrong
estimation will cause the errors to be carried on during the entire filteringepspaccumu-
lating more and more noisy data. Once the initialization is performed, the evaliation
predictor and corrector equations can be performed in each time stepigses). Com-
putational complexity of extended Kalman filtering approach depends orizhefkthe
state vectok and on the filtering time, i.e. number of samples from which estimations are
performed.

The main disadvantage of other state of the art parameter estimation method®is in th
computational complexity, when applied to models with high numbers of unknavanp
eters. A model representation of GRN which implements a simple logic gate, S4d\x
or NOR, may hide several tens of unknown kinetic constants. Extendkdaiidiltering

0
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approach seems to decrease computational complexity and increase lityeof@stima-
tions. Unfortunately, extended Kalman filter may sometimes diverge, whichesait in
several magnitudes of variations among numerical estimations. Howevalidation of
estimations based on statistical tests, suci?asan be performed after the filtering [44] in
order to confirm the reliability of estimates. Other approaches from cah&oly have also
been successfully applied to parameter estimation problem, e.g. state estiméaiogues
by state observers methof43, 49] andparticle filtering [50]. We refer to [44, 8] for a
comprehensive review of these approaches.

4. Advanced Model Analysis

Confidence in results obtained with established models can be increasecvéthls
validation techniques. Computational models are often based on hypotlastceahptions
which are either well known or have to be confirmed. Computational appesazan be
used for hypotheses confirmation, e.g. using statistical tests, suc¢h[44] or robustness
criteria [51]. If confirmation is negative, the identification of erroneous ehadmponents
and the review of the basic hypothesis of the model itself is vital. In worstitésneces-
sary to redesign the entire model including the principal hypothesis. Ifaettisy accuracy
of modelled dynamics is achieved further analytic approaches can bénuskter to esti-
mate theperformancerobustnessndstability of observed biological system.

4.1. Performance Evaluation of Biological Systems

Performance evaluation techniques are used to objectively evaluatehaeidae of
biological systems by establishing variookjective functions In order to analyse spe-
cific performances, both modelling and experimental data can be includeddortieEn of
these functions. A typical example of objective function, which is vastlyuseeverse
engineering, isnean square error

1 N
B(Z,X) =+ >z — ), (13)
=1

where{zi,29,...,2x} € Z are samples reflecting the desired dynamics of the system and
{z1,x9,...,2y} € X are samples obtained from modelling or experimental results. At
glance functionE(Z,X) is a simple error measure. However, it can also be used as a
naive approach to validate the model accuracy, e.g. by using the exp&lmesults as
Z and the modelling results a§ in Eq. 13. We can thus quantitatively describe the
similarities among the modelling and experimental results. Furthermore, meae squ
function can be used to estimate unknown model parameters (see Sectidhe3best
model response may be obtained by the minimization of the fundiigf, X ) regarding
the unknown parameters. Unfortunately, computational complexity of thimapp makes
it applicable only to problems with small numbers of unknown parameters. raprents
can be obtained with the use of special heuristics [8].

Different type of objective functions can be established with severalicagsuch as
signal to noise ratimr quantities which describe the results obtained with robustness, sen-
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sitivity or stability analysis (see Sections 4.2 and 4.3). In [13] various metrer® in-
troduced and used to estimate the performance of modelled biological systenthe
information processing perspective. Characteristics that are similar tm#seused to de-
scribe the performance of digital electronic circuits, such as switching time:dogical
levels, were applied to biological systems. This work was extended ini#jre robust-
ness and logical compatibility among different biological processing stegtwas also
considered in order to automatize the construction of more complex informatoagsing
biological systems. While these metrics were only used on selected modelsatihatical
biological processing structures, they could also be applied to data gafinem laboratory
experiments.

4.2. Robustness and Sensitivity Analysis

Robustness is believed to be the key factor of adaptability in the evolutionacess
of biological systems [53]. In cell biology, the robustness is the proparty biological
system to remedy a substantial fluctuation in its homeostasis due to a suddge ohthe
conditions for its stability. Such changes can be provoked by externairpations on the
key parameters of the system. A robust system may respond with a calatexd effects
to these parameter changes, such as bacterial chemotaxis behavjour [28

Although a general quantitative measure for robustness has still notds¢égblished,
many efforts have come from various scientific disciplines, especially fnrencontrol the-
ory. The use of bifurcation analysis, i.e. the Hopf bifurcation, was stlLidi§54] for evalu-
ating the robustness of the Laub and Loomis model of CAMP oscillatioBsdtyostelium
discoideuncells. Similarly in [55] the same model was analysed, but with the prevalent use
of py-analysis. An interesting method for robustness analysis Uisiegr time logic(LTL)
was proposed in [56]. Despite its complexity, this methodology appearsdo affarge
spectrum of application, especially for synthetic gene networks.

Sensitivity analysis may also represent a metric to quantitatively evaluatelibst+o
ness of computational models [57]. This analysis aims to identify the paranfaterkich
small input variations cause substantial variations in model responssiti@gnanalysis
approaches can be divided in two categories,laeal sensitivity analysiandglobal sen-
sitivity analysisapproaches. Local sensitivity analysis refers to analytical methodarehat
capable to evaluate how much the variations in the model outputs can be apgdrio
small variations in input parameter values [57]. On the other hand globsitisgy analy-
sis aims to analyse large and even complex perturbations of parameterwdhlugarious
numerical and statistical methods. State of the art sensitivity analysis appgaan be
mainly applied to deterministic models only (for an application to stochastic models see
[58]).

Local sensitivity can be estimated by evaluating first-order derivativisonodel out-
put response relatively to input parameters. A quantitative measurecaaathematically
represented by sensitivity coefficients of the form [57]:

_ i _ oy Vit Ap) —yip)

Si= dp Ap—0 Ap

(14)

Finite difference approximation, direct differential method and adjoinsitigity anal-
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ysis [57] evaluate sensitivity in terms of sensitivity coefficients as destiib&q. 14. In
metabolic control analysis (MCA) [59] elasticity coefficients were deveddpeestimating
the relationship between model outputand specific model parameter

Several global sensitivity analysis methods exist (see review in [5¥Prder to analyse
large parameter perturbations, effective sampling of all possible panavaéies becomes
crucial. Latin hypercube sampling is usually used in this context rather tlwarieMCarlo
random sampling [57]. Global sensitivity analysis methods can be furthieled in two
subcategories, i.evariance basedindvariance non-based approache¥ariance based
methods, such aSobol sensitivity analysandFourier amplitude sensitivity te¢FAST),
aim to estimate the global sensitivity as a relation between statistical varianoesdet
outputs and chosen model parameters. These relations can assuniiceeotéke form
such as in Sobol sensitivity analysis [57]:

Sivig.is = %, (15)
wheresS;,;,. i, are sensitivity coefficient) is total variance of the system ahy,;, ;. are
partial variances regarding the chosen parameteThe main disadvantage of variance-
based methods is their computational complexity.While the main advantage oérianee
based methods, suchmsllti-parametric sensitivity analys{dPSA) andMorris sensitivity
analysis is their low computational complexity, they imply a certain grade of monotonicity
in the model response. An additional disadvantage of the Morris method is mrébalil-
ity when the model response exhibits negative values.

A closely related concepts to sensitivity and robustnessedigbility and scalability.
Robustness can be seen as a metric for evaluating reliability of a certain nivelilble
models might be used further for building scalable systems, for which théitijiaf each
component tends to be crucial for the entire structure. Hence a compatibildggabasic
modules may be required. Compatibility has already been analysed in [13] cotiext
of information processing biological structures.

4.3. Stability Analysis

The main goal of stability analysis is to obtain the insights into system’s asymptotic
behaviour, i.e. its behaviour after a long period of timeA{ oo) without external pertur-
bations, and dependencies of its asymptotic behaviour of given paragegtalso referred
to ashifurcation analysis Observed biological systems can in this context exhibit conver-
gence towardsteady stateswhich can be analysed witkteady state analysi®r stable
oscillatory behaviourwhich can be analysed withmit cycle analysis All these methods
derive from the theory ohonlinear dynamical systenf80], which are usually described
with a system of ordinary differential equations. Stability analyses of bicdkbgystems are
therefore performed on their ODE models (see Section 2.4). We will pretahexternal
inputs are fixed through the course of stability analysis and therefore oeniattoru(t)
from the Equation 1.

The main goal of steady state analysis is to investigate the existence andftypesly
states the observed biological system may reflect [61]. Existence ohdysstatex™ =
(x7,x35,...,z7) can be conditioned with the equation
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dx; .

d:Ut — fi(x*) = 0;Vi € 1,...,N. (16)
Steady states can be divided regarding their stability in two typesstableandunstable
The neighbourhood will always converge into a stable steady state, ivauge from an
unstable steady state. Stability can be determined with the construction ofalanudtrix
of the form

Of(x(t)  Dfi(x(t)) Of1(x(t))
o1 Oz e Oxn
Of2(x(t)  Ofa(x(t)  Bf2(x(t)
J(x()=| ™ e ) 17)
Ofu(x(t)  Bfn(x(t) B (x(t))
o1 Oz T Oxn

Steady state can be referred to as stable, when all real parts of digenehthe Jacobian
matrix are negative.

Existence of oscillatory behaviour on the other hand depends on thenedsté a
stable limit cycle Limit cycle is an isolated simple oriented closed curve trajectory, which
does not contain singular points (i.e. steady stable states) [61]. If thensyonverges
to a limit cycle with time, i.e.t — oo, limit cycle is stable The easiest way to analyse
the existence of a limit cycle is with the state space investigation. When dealing with
biological systems, this space is strictly limited by minimum and maximum concentrations
of observed chemical species and its exhaust investigation does tieenefoissue large
computational complexities.

The type of behaviour system exhibits is strictly dependant on the paravates
used in its ODE description. Adjusting these values can therefore drastibalhge sys-
tem’s asymptotic behaviour, e.g. from a stable state convergence to selirgd oscilla-
tions. Transitions among different types of behaviour are cdlifeicationsand the set of
parameter values at which the transitions oduiturcation points[62]. Different types of
transitions exist, regarding the characteristics of behaviour that aridesharacteristics of
behaviour that ceases with the transition through the bifurcation point¢Gflsaddle-node
bifurcations,Hopf bifurcations angitchfork bifurcations.

Stability analysis can not only be used when analysing the asymptotic beha¥iou
biological systems, but also when evaluating their robustness, e.qg. if thacksof param-
eter values from the bifurcation point is large, the probability that the systinm reality
reflect predicted behaviour is much higher and the system is therefoeerotmrst.

5. Computational Design of Biological Systems

The most common approachesde novoengineering of biological systems with de-
sired behaviour ardirected evolutiorj63] andrational design[64]. While directed evo-
lution is an experimental method that performs artificial evolution on an initial dicéd
system and therefore mimics natural evolution, but in a much shorter time satdaal
design uses engineering approaches to build novel biological systehis asmsuch a cor-
nerstone of synthetic biology. These approaches combine modularizatimmalization
and modelling [64]. Probably most famous results of rational design apprare tog-
gle switch [65] and repressilator [66] circuits. Rational design combinigd @omputer
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modelling can be also regarded @smputer aided desigof biological systems in which
computational models of basic biological components are connected to #eshratio-

nally into more complex modules and systems. If analysed behaviour of teeégerks

is appropriate, experimental realization can be conducted. The anafythesr behaviour
can be performed with the methods described in Section 4.

The other computational approach in the design of biological systems id bas@e
unsupervised design with the investigation of search space of all possibitons and
optimization of objective functions which define the correlation among theetbaind re-
flected behaviour of biological system [12]. Until recently this approsak only used for
the design of protein and amino acids nucleotide sequences [67]. With v pment
of characterisation of basic genetic regulatory elements, mutation effetteinrgenetic
functionalities and increased accuracy of their appropriate models, aitateaign ap-
proaches can also be applied to the regulatory networks [68]. Givipat which defines
the specified behaviour, computational tools, such as AutoBioCAD [68]akle to find
the nucleotide sequence and computational model of regulatory networlapgtiopriate
dynamics. Initial solution, on which the evolution is performed, is constru@adomly
or with rational design from the basic parts characterized within apptepitaaries. In
order to achieve the desired behaviour these solution is evolved with the yamgsib of
mutation operators, i.e. modifications of its topology (addition, deletion and expkat of
basic parts) and kinetic rates (e.g. with the promoter mutations). Searahispberefore
comprised of all possible combinations of elementary structures and their mstétiat
are provided by available libraries [69]. Each intermediate solution is aeeslugith the
calculation of objective (fitness) function and the best ones are sefectib@ next iteration
of evolution. These mutation and selection operators are applied in ancerdéh various
metaheuristics such as simulated annealing [68] and genetic algorithm [i&h. tkough
other automatic design approaches have also been reported, they Wil patsented here
on account of their several limitations in comparison with the described agprorhese
limitations include either genetic and functional diversity [70, 71] or reauinets for pre-
definition of network topology [72].

Computational design approaches provide us with the results which relgroputa-
tional models of elementary structures and their mutual interactions. Expé¢aimealiza-
tion of these solutions can reflect the behaviour unpredicted within urnagmyodels. On
the other hand these solutions can be a basis for further optimization artdriing with
various experimental methods such as directed evolution.

6. Conclusion

While the complexity and the size of controllable biological systems rises, computa
tional approaches gain more and more important role in their design andgisn&lgre, we
reviewed a collection of such approaches, which we find the most impoetaeri,though
many others exist. Novel techniques are being developed on the aafauany limita-
tions of existent ones, such as incompatibility of accuracy of the modellingjsesith the
size and complexity of modelled system. New methodologies are being introtiutiesl
field also from other engineering disciplines, e.g. with the use of Kalman fift@niriuzzy
logic methods. In the near future we expect the field of computational bidtmgyolve
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further on with the collaboration of new researchers from various sfitetisciplines, until
the final goal is achieved, i.e. to establish computational methods, that witaidragh
accuracy in the modelling, analysis and design of both, engineered &n@lrzological
systems of arbitrary size and complexity.
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