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Abstract

Computational biology is an emerging scientific field which employs computational
methods in the study of various biological systems. This chapter presents a review of
methods that have been introduced to the fields of synthetic and systems biology in
recent years. Approaches presented mainly rely on the establishment of computational
models. These models allow us to observe the behaviour of a certain biological system
in a given environment. Exact kinetic data that describe underlying dynamics are
usually necessary to establish accurate computational models. Kinetic data are on the
other hand hard or even impossible to obtain experimentallyin some cases. Parameter
estimation techniques that also rely on computational approaches can be used to
accurately evaluate missing kinetic data. With the establishment of computational
models, computational analyses can be conducted, such as performance, robustness,
sensitivity or stability analysis. These techniques can beused further on to reduce the
amount of experimental work and enable straightforward design of novel biological
systems in the context of synthetic biology.

Keywords: Computational modelling, computer simulation, network inference, parame-
ter estimation techniques, performance evaluation, sensitivity analysis, stability analysis,
computational design

1. Introduction

Use of engineering tools that rely on various computational approaches ismore and
more common in the field of systems biology [1]. Being a combination of chemistry, biol-
ogy and engineering [2], these approaches gained even larger role inthe field of synthetic
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biology. Computational approaches used in these two disciplines are mainly based on the
establishment of various computational models. Given a predicted environment and ini-
tial conditions, these models are capable to mimic the behaviour of an arbitrary biological
system. Regarding their design, two main approaches exist, i.e.,top-downandbottom-up
approach. Top-down design approach is a basis for the establishment of computational mod-
els using experimentally measured data from existent biological systems (usually obtained
using DNA microarrays) [3, 4, 5]. This approach is also known asnetwork inferenceand
is based on reverse engineering of the computational model from experimentally measured
data. The complementary, i.e. bottom-up approach, is on the other hand usedto simplify
the design of novel biological systems with predefined functionalities. These models are
usually constructed with the association of biological modelling primitives, whichcan be
obtained with the top-down approach [6].

The accuracy of computational models is tightly correlated with the accuracy of param-
eter values, which define the dynamic and behavioural properties of observed biological
systems. These parameters are sometimes very hard or even impossible to determine accu-
rately. In order to bypass this problem, several parameter estimation techniques can be used
[7, 8] for bottom-up modelling. There are also several top-down modelling approaches that
aim to reconstruct an existent biological system from experimental data without trying to
estimate the parameter values (for example with the employment of fuzzy logic methods
[9]).

Established models that reflect a satisfactory accuracy can be further used to get the
specific insights into the behaviour of a certain biological system. When we are dealing
with reverse engineered models, these systems already exists. The models are established
to perform various analyses and deduct behavioural properties of the system which are hard
or even impossible to obtain experimentally [10]. Moreover, modelling results can be used
to optimize the behaviour of observed biological system with certain modifications [11].
On the other hand, bottom-up models can be applied to the computational design of bio-
logical systems, thus reducing the quantity of experimental work. Severalcomputational
approaches for automatic design already exist, such as heuristic optimizationtechniques
which seek for optimal solutions regarding the given objective functions [12]. These func-
tions can be established in different ways, e.g. with the evaluation of specific metrics that
are able to quantify the behaviour of biological system [13].

In this chapter we review the computational approaches in the field of systemsand
synthetic biology. We especially focus ongene regulatory networks(GRNs), but most of
the presented concepts can also be applied in the same way onsignal transductionand
metabolic networks. First we present state of the art modelling approaches in the field.
We briefly review parameter estimation techniques that allow us to bridge the problem
of parameter evaluation. Further on we present advanced model analysis techniques for
performance, robustness and stability analysis of biological systems. In the end we present
computational methods for computer-aided design, automatic design and optimization of
biological systems.
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2. Computational Modelling Approaches

The development in the field of computational modelling of biological systems goes
in hand with the progress of systems and synthetic biology. One can select among vari-
ous modelling approaches which were introduced recently, each with its ownbenefits and
its own potential applications. The decision for an appropriate modelling strategy is vital
and depends on several factors, i.e. the complexity of observed system,the availability of
its kinetic data and the type of information the user would like to obtain. Several classi-
fications exist with the aim to organize the modelling approaches in different groups and
consequently ease the decision of choosing the appropriate ones. The first distinction can be
made amongstaticanddynamicmodels. Static models do not incorporate time component
and only yield topologies or qualitative networks of gene interactions. Dynamic gene net-
work models on the other hand describe the changes of gene expressionin time [14]. Both
of these two groups can be further classified incontinuousanddiscretemodels. Continuous
models observe the abundances of chemical species as non-negative real values with cer-
tain upper limits.Discrete modelshowever observe the system on the molecular level and
therefore describe its current state with discrete quantity of molecular numbers. Further
distinction among dynamic models classifies them inqualitative models(also referred to
aslogical models[15]), which are relatively simple and easy to infer even from imprecise
data [16], but can only answer qualitative questions, andquantitative models, which are
able to reflect higher accuracy, but on the account of their complexity and demand accurate
values of kinetic data. These models are usually inappropriate for exact modelling of more
complex biological systems, but are on the other hand more informative about the system’s
properties when used in accordance with their limitations. Quantitative models can be fur-
ther divided amongdeterministic modelswhich are only able to capture average response
within a population of identical cells or average response in a single cell over a long time
period andstochastic modelswhich also consider the probabilistic nature of chemical re-
actions and can thus be used for the modelling of population heterogeneity and effects of
intrinsic noise [17]. Both modelling types yield similar results when we are dealingwith
large systems (high numbers of molecules and large cell volumes) with fast promoter kinet-
ics [18]. Considerable attention has been devoted to the concept of stochasticity in GRNs
since the advent of synthetic biology [17, 19]. More details about stochastic approaches in
synthetic biology can be found in [20]. Another distinction of modelling approaches can be
made regarding thelevel of details(granularity) they consider, i.e. parts, topology, control
logic [21] or coarse, average and fine grained models [22], where finegrained models can
mostly be applied only to small systems and coarse grained models to large and complex
systems.

Here we will present few examples of different modelling techniques belonging to dif-
ferent groups listed above (see Tab. 1). Since the field of computationalmodelling has
expanded rapidly in last years, we will have to omit some of the modelling methods from
this review.
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Table 1. Different modelling techniques classified in groups describedwithin the
main text, where DG denotes Directed Graphs, (D)BYN (Dynamic) Bayesian

Networks, (P)BN (Probabilistic) Boolean Networks, ODE Ordinary Differential
Equations, TM Thermodynamic Models, CME Chemical Master Equations and PN

Petri Nets. ST denotes static and DN dynamic models, CT continuous and DS discrete
models, QL qualitative and QN quantitative models, DT deterministic and ST

stochastic models, LG large and SM small networks. Tab. 1 is a modification of the
table presenting the summary of properties of different modelling formalisms in [22].

ST/DN CT/DS, QL/QN, DT/ST, LG/SM
DG ST DS QL DT LG

BYN ST DS QN ST LG
DBYN DN DS QN ST LG

BN DN DS QL DT/ST LG
PBN DN DS QL ST LG
ODE DN CT QN DT/ST SM
TM ST CT QN DT SM

CME DN DS QN ST SM
PN ST/DN CT/DS QL/QN DT/ST SM

2.1. Directed Graphs

Directed graphs(DGs) can be regarded as the most basic presentation of biological
regulatory networks. Simplicity of this approach makes it applicable to the modelling of
large biological systems (i.e. for several magnitudes larger than with other modelling ap-
proaches), but on the account of its static nature. Various graph operations can be performed
on these models in order to make relevant predictions about the structure and behaviour of
observed regulatory system, e.g. search for paths among two genes or investigation of
existence of cycles that may point at possible feedback relations [22]. Areview of such
approaches is presented in [23].

Mathematical description of DG is presented with two sets, i.e. set of verticesV and set
of edgesE. When dealing with gene regulatory networks, vertices usually refer to genes
(or chemical species that are results of their expression) and edges to interactions among
them. Each edge is defined as〈y,x,r〉, wherey is the head andx the tail of the edge. This
can be interpreted asx regulates the expression ofy. Regulation type is defined inr, i.e.
y can be activated (+) or inhibited (–) byx (for graphical presentation see Fig. 1). Basic
graph presentation can be extended with hypergraphs, in which each vertex is defined as
〈y,X,R〉 . HereX corresponds to the vertices that cooperatively regulatey andR to the
types of regulation for each one of them.

Deduction of DGs can be made on the basis of existent knowledge or with the appli-
cation of different automated inference procedures. Variousclustering algorithmscan be
used, which are motivated by the fact that two genes may regulate each other or may be
coregulated by a third gene if they both reflect similar expression patterns [22]. Many novel
alternative inference approaches were reported recently. We will briefly describe a solu-
tion which combinesartificial neural-networkswith genetic algorithms, particle swarm
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Figure 1. Symbols used in graphical presentations of directed graph models. Figs. (a) and
(b) present a situation where tail vertex activates the expression of head vertex. Figs. (c)
and (d) present a situation where tail vertex, inhibits the expression of head vertex. Fig. (a)
is compatible with Fig. (c), and Fig. (b) is compatible with Fig. (d).

optimization(PSO) andfuzzy logicinto amulti-layer evolutionary trained neuro-fuzzy re-
current network(ENFRN) [24].

ENFRN is able to successfully extract the regulatory interactions from (noisy) data
obtained with gene expression profiling. Evolutionary training of artificial neural network
based on the PSO automatically generates an adaptive number of temporal fuzzy rules that
describe the relationships between the input and the output genes. The training is performed
on the basis of gene expression profiles in two phases: (a) the structure(topology) learning,
in which fuzzy IF-THEN rules are generated and feedback configuration is established, and
(b) parameter learning, in which free parameters which define the established fuzzy rules
are tuned. Trained ENFRN structure is able to determine if specified input regulates the
output, the kind of regulation and also provides a score, that specifies theconfidence in
retrieved relation.

2.2. Boolean Networks

Boolean networks(BNs) are the most basic dynamic extension of DG modelling ap-
proach in which a single gene is considered to be in one of two possible states, i.e. on
or off. Direct regulatory interactions among genes are modelled as Boolean functions
[22]. Let’s presume, that the state of the system in timet is defined with the vector
x(t) = [x1(t), x2(t),...,xN (t)]T , wherexi(t) is a boolean variable corresponding to ac-
tivity (presence) or inactivity (absence) of genei (or a chemical species that results in
its expression) in timet. Model dynamics is determined with a set of Boolean functions
B = {b1,b2,...,bN}, wherexi(t + 1) = bi(x(t)). BNs can be directly projected to DG
models. Direct projection cannot be made in both directions, since BNs contain additional
information to directed and signed network diagrams [16]. For example of such projection
see Fig. 2. While the number of possible states of the system is limited, i.e.2N possible
states forN Boolean variables, all initial states may eventually reach asteady state(point
attractor) or astate cycle(dynamic attractor). All possible system trajectories from an ini-
tial configuration can be analysed with astate transition graph. However, these graphs can
be constructed only for small systems or only for limited amount of initial configurations.

BNs do not consider intermediate levels of gene expression which results inpossible
information loss. In basic BNs, transitions between states, i.e. fromx(t) to x(t + 1),
occur synchronously, meaning that all state changes happen simultaneously and in deter-
ministic regime. Simplicity of this approach, its qualitative features and parameter-free
nature makes it applicable for inference, dynamic modelling and efficient analysis of large
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Figure 2. An example of directed graph with two possible projections to Boolean net-
works, i.e. B = {b3(x1,x2) = x1 ORx2, b4(x3) = NOT x3} in Fig. (b) andB =
{b3(x1,x2) = x1 AND x2, b4(x3) = NOT x3} in Fig. (c).

scale regulatory networks [16]. Several simplifications can make this approach inappropri-
ate for general modelling of biological systems [22]. However, BNs can be extended in
some degree.Probabilistic Boolean Networks(PBNs) are able to incorporate the stochas-
tic nature of chemical reactions [25]. PBN annotation extends a set of functionsB into
B = {B1,B2,...,BN}, whereBi is a set of Boolean functions{f (i)

1 , f
(i)
2 ,...,f

(i)
l }. It con-

tains all possible functions that may define the state of Boolean variablexi. Each of these
functions can be chosen to update the state vector in each iteration according to its proba-
bility. Moreover, basic and probabilistic BNs can be extended with the introduction of non-
synchronous transition schemes, in which the states of the nodes are updated in dependence
on the time-scales of individual biological events regarding their underlying regulatory pro-
cesses. These schemes can be further divided to deterministic and stochastic ones. While
time-scales are fixed for each node in deterministic schemes, stochastic schemes randomly
select a node to be updated or update all nodes in random order [16].

2.3. Bayesian Networks

Bayesian networks(BYNs) (also referred to asprobabilistic networks) are a combina-
tion of probability calculus, i.e. they incorporate the stochastic nature of gene regulation,
and graph theory [3]. BYNs describe the regulatory interaction in regulatory networks with
directed acyclic graphpresentation, where each vertex has a similar interpretation as indi-
rected graphpresentation (see section 2.1). Random variables that describe the expression
levels correspond to each vertex. Conditional distribution is defined for each random vari-
able, i.e.p(Xi|parents(Xi)), wherei is the vertex,Xi random variable, that describes its
expression level andparents(Xi) random variables describing direct regulators ofi. BYN
description is therefore defined with the directed acyclic graphG and the conditional prob-
ability distributionsΘ, which defines local conditional probability distributions for each
vertex in graph [22]. An example of a BYN graph is presented in Fig. 3(a). Described
approach is also known asstatic Bayesian networkmodelling. Its main disadvantages are
in the fact that it is unable to capture feedback loops in gene regulation andcan only be
used to analyse dependencies between genes. It is therefore not suitable for simulation of
system’s dynamics.
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Dynamic Bayesian networks(DBYNs) (also referred to asdynamic probabilistic net-
works) are a temporal extension of BYNs, that separate input nodes from output nodes.
This modelling approach is therefore suitable for simulating the time-dependantdynam-
ics of the system and is able to describe regulatory feedback loops with directed acyclic
graphs. DBYN can be defined with a pair(B0,B1), whereB0 = (G0,Θ0) is initial
BYN and B1 = (G1,Θ1) a transition BYN which specifies transition probabilities, i.e.
P (X(t)|X(t− 1)) [26]. An example of a transition graph is presented in Fig. 3(b).

X1 X2

X3

X4

X (t 1)1 –

X3(t)

X2(t 1)–

X3(t 1)– X4(t)

(a) (b)

Figure 3. Directed acyclic graphs presenting an example of static Bayesian network (a) and
a transition graph of the dynamic Bayesian network for the same regulatory network (b).

The main advantages of BYNs are in their capabilities to model large systems, but on
the account of their coarse granularity. These networks are also easyto reconstruct, even
if incomplete knowledge about the system is available or from the combination ofdifferent
types of data. BYNs as such have many features which are suitable for themodelling of
regulatory networks [22, 3]. While DBYN solve basic limitations of static BYNs,compu-
tational costs drastically increase when inferring these models from experimental data and
are therefore not suitable for large regulatory networks.

2.4. Ordinary Differential Equations

Ordinary differential equation(ODE) models consider the concentrations of observed
chemical species (such as mRNAs and proteins) as time-dependant variables [22]. Al-
though ODE based models are mainly deterministic, their extensions with the introduction
of Poisson random variables has also been reported [27]. These models mainly rely on mass
action kinetics or on phenomenological representations of reaction mechanisms [17]. Let’s
presume, that state of the system in timet is defined asx(t) = [x1(t), x2(t),...,xN (t)]T ,
wherexi(t) is current abundance of chemical speciesi as non-negative real value. ODE
model can therefore be defined with a set of ordinary differential equations of form:

dxi

dt
= fi(x(t),u(t)); 1 ≤ i ≤ N, (1)

whereu(t) is a vector of concentrations of input components andfi(·) in most cases a
nonlinear function. Due to the nonlinearity of ODE models their solutions are usually
obtained numerically (e.g. with Euler method). Qualitative properties of the system can
also be derived from these models (see Section 4).
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In the context of gene regulatory networks three main reaction types are described with
the given set of differential equations, namelytranscription, translationanddegradation.
While translation and degradation usually follow ordinary mass-action kinetics, transcrip-
tion regulation, i.e. activation and repression, is in most cases modelled with thesigmoid
shape functions, such as Hill functions [28]. Let’s consider that an activator X increases
the rate of transcription when it binds to its regulatory region. Promoter activity can be
expressed as

fA(X) =
β ·Xn

Kn
d +Xn

, (2)

whereβ is maximal promoter activity,Kd dissociation constant andn nonlinearity (Hill)
coefficient. Hill coefficient defines the steepness of the transitions and isoften interpreted
as cooperativity coefficient although it may also arise from other factors[29]. Let’s presume
that the expression of proteinY is activated by transcription factorX. Simplified model of
its dynamics can be presented by

dY

dt
=

β ·Xn

Kn
d +Xn

+ β0 − δY, (3)

whereβ0 is basal transcription rate andδ protein degradation/dilution rate. Complementary
regulation type of activation is repression of the transcription, where promoter activity can
be expressed as

fR(X) =
β

1 +
(

X
Kd

)n . (4)

Even though Hill equations are a relatively good approximation of transcriptional activity,
they may reflect inappropriate results in some cases. They imply that the transcription fac-
tors are bound to their corresponding binding sites simultaneously when theircooperativity
is larger than 1 [30]. If oligomerisation rates are on the same time-scales as other reaction
rates, different approaches, such as classical mass-action kinetics,have to be used.

Several other approaches have been derived from ODE models [22]. Piecewise linear
differential equation modelsare obtained if sigmoid curves are approximated with step
functions and are used in order to simplify the qualitative analysis. ODE modelscan be
extended with the transition todelayed differential equations(DDEs) [31] of the form

dxi

dt
= fi(x(t− τ),u(t)); 1 ≤ i ≤ N, (5)

whereτ is anN dimensional non-negative vector of discrete time delays. This approach
allows us to model slow biochemical reactions, such as gene transcription and translation
and protein diffusion, more precisely.

Models based on ODEs are relatively simple and therefore easy to construct when ki-
netic rates of observed reactions are available. On the other hand the quality and quantity
of data needed to derive these rates makes them difficult to apply to poorly characterized or
noisy systems. Even when precise data are available, number of parameters that need to be
estimated may present major difficulties when inferring larger networks. If inference is suc-
cessfully performed, high computational costs can present another problem when dealing
with such networks. These models are therefore hard to scale up to more complex systems.
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2.5. Thermodynamic Modelling

Thermodynamic(TD) or fractional occupancymodelling derives from the presumption,
that gene expression is proportional to the level of bound activators and inversely propor-
tional to the level of bound repressors [32]. It considers DNA bindingand protein interac-
tions in equilibrium condition [33]. The benefit of TD modelling approach is that we can
predict occupancies of different binding site types very accurately, e.g. when transcription
factors are competing for overlapping binding sites or cooperatively interacting at nearby
binding sites. It can also account for very specific nonlinear regulatoryresponses, such as
transcription synergy [34].

Given a set of binding sites, concentrations of transcription factors andtheir binding
affinities, relative probabilities of each binding site configuration can be calculated in the
first step. The probability of each configuration can be calculated according to its statistical
weight which depends on the number and affinities of occupied binding sitesin the config-
uration and interactions among bound transcription factors. Probabilities ofbinding sites
that lead to transcription activation can be summed infractional occupancy, which may
also be expressed as a ratio of weights of binding site occupancies, that lead to transcription
activation, to weights of all possible binding site occupancies.

In the second step gene expression level is calculated according to determined frac-
tional occupancies, for which different techniques can be used. Forexample, calculation
can be performed with the product among fractional occupancy of eachpromoter and its
corresponding expression level.

TD models cannot describe dynamical nature of biological systems by themselves [33].
However, it is possible to combine them with the differential equation modelling in order to
incorporate changes of gene expression over time. In each iteration fractional occupancies
of binding sites and their corresponding expression levels are calculatedin dependence of
transcription factors concentrations. Concentration values of chemical species are on the
other hand derived from the set of ordinary differential equations in each time step.

Let’s again consider the same example as described in section 2.4, where proteinX

activates the transcription. Its fractional occupancy may be expressedwith the following
equation:

fA =
Xn

Kd
n +Xn

, (6)

whereKd describes dissociation constant andn nonlinearity coefficient. Gene expression
can be therefore expressed asfA · β, whereβ corresponds to maximal promoter activity. If
we combine this model with protein degradation and basal expression of promoter, equation
3 is obtained. If proteinX would have a complementary, i.e. repressible role, fractional
occupancy would be expressed as:

fR =
1

1 +
(

X
Kd

)n

+Xn
. (7)

Even though fractional occupancy is able to precisely capture the dynamics when deal-
ing with different types of binding site occupancies, models obtained in thesetwo simple
examples obtained with TD modelling are the same as ODE based models.
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2.6. Single Molecule Level Models

Biological systems neither posses deterministic or continuous nature which is mostly
presumed by ODE and thermodynamic models.Single molecule levelmodels on the other
hand describe their dynamics on the molecular level. Concentrations of observed species
are thus presented with whole numbers. Moreover, reactions which affect their abundances
are determined stochastically. When we are dealing with large systems or observing a
system over longer periods of time the differences in response of different approaches are
negligible [17]. But if the molecular population is small or if the system is sensitive to noise
effects, continuous deterministic models may lead us to wrong conclusions [19].

Similar as with deterministic models state of the system can be defined with a vector
x(t) = [x1(t), x2(t),...,xN (t)]T , wherexi(t) is current abundance of chemical speciesSi

as non-negative whole number. Each of the chemical species from the set {S1,S2,...,SN}
interacts with others through so called reaction channels{R1,R2,...,RM}, which are de-
fined by theirstate change vectorsand theirpropensities. State change vector defines the
species and their quantities that are produced and consumed by each reaction j in the form
νj = (ν1j ,ν2j ,...,νNj). Propensities (aj(x(t))) can be derived from reaction rates and sys-
tem volume and are used to calculate the probability for each reaction to occurin a time step
dt. Dynamics of the system can be analysed with the establishment of so calledChemical
Master Equation[19]:

ṗ(x(t)) = −p(x(t))

M
∑

j=1

aj(x(t)) +

M
∑

j=1

p(x(t)− νj ; t)aj(x(t)− νj). (8)

This equation completely determines the probability of each state, but can be solved ana-
lytically only for very small systems. Various numerical approximations are therefore used
instead, such asStochastic simulation algorithm(SSA) [35], which can be described as:

1. Initialize the system.

2. Calculate current propensitiesaj(x(t)) and their sumsa0(x(t)).

3. Generate random valuesr1 andr2.

4. Determine next time step:τ = 1
a0(x(t))

ln
(

1
r1

)

.

5. Determine next reactionRj to occur according to equation
∑j−1

j′=1 aj′(x(t)) ≤ r2a0(x(t)) <
∑j

j′=1 aj′(x(t)).

6. Calculate state change:x(t+ τ) = x(t) + νj .

7. Increase time:t← t+ τ .

8. Return to step 2 unless conditions for stopping the simulation are fulfilled.

Computational time increases drastically with the number of observed chemical species.
One of the solutions is to use another approximative approach, namelyτ leaping, which
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does not calculate time steps in each iteration, but uses a fixed value throughthe whole sim-
ulation. In order to obtain valid results, time step must be chosen carefully (nopropensity
function should change its value significantly within defined time step).

Single molecule level models can be extended with the incorporation of time delays
in a similar way as ODE models are extended to DDE models. Here, time delays can be
assigned to each product of observed chemical reactions. Dynamics ofsuch models can be
analysed withDelayed SSA, which can be presented with the following steps [36]:

1. Initialize the system. Clear the queue L, which will contain the chemical species
representing queued products and their designated times of appearance.

2. Determine next time stepτ and next reactionRj to occur in the same way as in basic
SSA.

3. Calculate state change: Lett be current time andtmin be the lowest value in queue
L. If t + τ < tmin, calculate the state change in the same way as in SSA, with an
exception of delayed products, which are inserted into L together with their time of
appearance in the system. Ift+ τ ≥ tmin release all the elements of the queue, with
their designated times of appearance lower thant+τ and accordingly update the state
vector.

4. Increase time:

t←

{

t+ τ, if t+ τ < tmin

tmin, otherwise

5. Return to step 2 unless conditions for stopping the simulation are fulfilled.

The effectiveness of described approaches is drastically reduced,when the number of
observed chemical reactions and chemical species increases. However, several improve-
ments could be used to decrease the computational complexity of the algorithms based on
CME. Multi Time Scalemodelling approach [37] considers the fact that chemical reactions
occur in different time scales. The rates of transcription processes forexample are usually
significantly higher than the rates of DNA and RNA binding reactions, such as scaffold-
ing, dimerization, linking etc. The common kinetic-propensity approaches presented above
may already take into consideration these differences. Nested simulations foreach time
scale reaction set may on the other hand improve the effectiveness of simulating the state
changes [37]. A simple application of this concept can be easily implemented byusing SSA
specifically for the reactions that occur in time scales of minutes or hours anda nested SSA
for the reactions that occur in time scales of seconds.

2.7. Petri Nets

Petri Nets(PNs) are in their most basic form used for modelling and analysis of various
concurrent, asynchronous and distributed systems. The mathematical background of PNs
enables us to analyse the system we are modelling, while a PN graph gives usits graphical
representation. With recent development of different PN extensions they are becoming a
powerful tool for describing biological systems. PNs were at first applied to metabolic
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networks [38], but they are, however, becoming increasingly popularfor modelling gene
regulatory networks.

PN is a directed-bipartite graph with two different types of vertices:placesand tran-
sitions. When modelling biological systems, places correspond to chemical speciesand
transitions to the events occurring in the system, namely chemical reactions thatgovern
dynamics of the system. They are connected byarcs(directed edges) which represent how
different chemical species interact in the system. At any time, places can hold zero or a
positive number oftokens. Depending on what reaction we are modelling, these tokens
can represent species concentration or simply presence or absence of a certain chemical
compound. Distribution and allocation of tokens over places represents current state of the
system which is called amarkingof the PN. Marking of a PN changes when a transition
fires. Transition can be fired only if all required conditions for that transition are met, e.g.
all the chemical species needed for a reaction are present. Let’s presume we have two chem-
ical speciesx1 andx2 that can be combined with a chemical reactiont1 which producesx3.
We can represent the model of this reaction and its different states with a PNas shown in
Fig. 4.

x1 x2

x3

t1

x1
x2

x3

t1

x1
x2

x3

t1

(a) (b) (c)

Figure 4. Example of a simple Petri Net of a chemical reactionx1 + x2 → x3. Fig. (a)
presents a scenario where chemical reaction will not happen since one of the reactants is
missing (x2). Fig. (b) shows an enabled transition (chemical reaction can happen) and Fig.
(c) the configuration after transition was fired.

We can construct a PN for any reaction or process which is a part of a larger biological
system. By combining these basic parts, PNs presenting larger regulatory networks are
constructed. Basic PNs support only strictly discrete modelling without the notion of time
and are as such used as a framework for many different purely qualitative static modelling
approaches [39]. However, with different extensions, PNs can be also used to construct
dynamic continuous and discrete [40] models, while considering both deterministic [41]
and stochastic [42] representations of the model. Additionally, possibilities to augment
continuous deterministic PNs with fuzzy methods are currently being analysed[43]. The
proposed solution aims to solve the problem of parameter sloppiness while maintaining a
relatively good accuracy of established models at the same time.

Because PNs are a versatile tool for modelling biological systems, the size ofthe system
we can efficiently analyse and model depends on the granularity and approach we aim
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for. While we can efficiently analyse large static qualitative models, different extensions
increase the complexity of PN dynamics and can only be used to construct smaller models.

3. Parameter Estimation Techniques

A common problem of several computational modelling approaches is in their depen-
dence on accurate kinetic data, such as kinetic rate constants or diffusioncoefficients. It may
be difficult, economically infeasible or even impossible to obtain these parameters experi-
mentally in some cases.Parameter estimation problemoften represents a serious obstacle
when the modelling constraints require a high standard of reliability. Severalcomputational
techniques have been developed to overcome this problem. However, no standard has ac-
tually been defined, because of intrinsic uncertainty of the underlying biological systems.
These methods have to face nonlinear constraints, which are implicit to such systems. The
most relevant contributions in the field of parameter estimation have come from control
theory of dynamical systems. Control theory is responsible for the development of several
optimization and estimation methods used in automatic systems control. Many of these
methods, such asextended Kalman filter, have already been successfully applied to compu-
tational biology [44, 45, 46].

Extended Kalman filtering approach presumes that an arbitrary nonlinear dynamic sys-
tem may be approximated with a set of state change equations

xk = f(xk−1,uk−1, θ) +wk,

yk = h (xk) + vk
(9)

wherex is state vector of chemical species, i.e. it defines state of the system,u vector of
system inputs,θ parameter vector which defines kinetic constants,y output vector of the
system,w andv Gaussian noise vectors with zero mean and covariance matricesR and
Q respectively;h is output andf transition function of the system, which completely de-
fines its state change dynamics. Input vectoru contains the parameters that define external
influences on the system, such as temperature or pH variations. Output vector y usually
contains experimentally obtained data. Functionh describes these data, e.g. it can be inter-
preted as a response function that approximates the time course of a certainoutput protein
concentrations.

Extended Kalman filter is able to estimate the state vectorx on each discrete time step
k, with its estimation vector̂xk. In order to estimate unknown parameters at the same time
state extension has to be performed:

x =

[

x

θ

]

. (10)

The estimation is obtained in a two stage computation of the predictor-corrector form
(see Fig. 5). In first step predicted state vectorx̂k|k−1 and covariance matrixPk|k−1, which
contains predicted variance changes of previously estimated state vectorx̂k−1, are evalu-
ated. These predictions are used to construct gainK and to update the state and covariance
matrix estimation,̂xk andPk respectively. State estimation̂xk is evaluated by adjusting
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current (predicted) state estimationxk|k−1 with the difference between predicted and esti-
mated output of the system, i.e.yk andh(x̂k − 1) respectively, amplified or muted by the
obtained gainK.

Figure 5. A schematic description of extended Kalman filtering, whereFk is Jacobian of
functionf , evaluated on the previousa priori state estimateŝxk|k−1, formally denoted as
J

x

f (x̂k|k−1) and similarly,Hk is Jacobian ofh, formally denoted asJ
x

h (x̂k|k−1). We refer
to [47] for a complete derivation of extended Kalman filter equations.

Initial state estimation has to be performed before the filtering. Initial states areusually
set to the mean values of all initial concentrations of chemical speciesx̄. Initial covariance
matrixP0 is on the other hand set to be a diagonal positive definite matrix containing initial
mean variance of the state vectorx0 [44]:

x̂
0
= x̄

0
(11)

P̂
0
= E

{

(x− x̄
0
)(x− x̄

0
)T
}

(12)

The initial estimations are very important for the global convergence of the filter. Wrong
estimation will cause the errors to be carried on during the entire filtering process, accumu-
lating more and more noisy data. Once the initialization is performed, the evaluations of
predictor and corrector equations can be performed in each time step (seeFig. 5). Com-
putational complexity of extended Kalman filtering approach depends on the size of the
state vector̂x and on the filtering time, i.e. number of samples from which estimations are
performed.

The main disadvantage of other state of the art parameter estimation methods is in their
computational complexity, when applied to models with high numbers of unknown param-
eters. A model representation of GRN which implements a simple logic gate, such as AND
or NOR, may hide several tens of unknown kinetic constants. Extended Kalman filtering
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approach seems to decrease computational complexity and increase the quality of estima-
tions. Unfortunately, extended Kalman filter may sometimes diverge, which canresult in
several magnitudes of variations among numerical estimations. However, a validation of
estimations based on statistical tests, such asχ2, can be performed after the filtering [44] in
order to confirm the reliability of estimates. Other approaches from controltheory have also
been successfully applied to parameter estimation problem, e.g. state estimation techniques
by state observers methods[48, 49] andparticle filtering [50]. We refer to [44, 8] for a
comprehensive review of these approaches.

4. Advanced Model Analysis

Confidence in results obtained with established models can be increased with several
validation techniques. Computational models are often based on hypotheticalassumptions
which are either well known or have to be confirmed. Computational approaches can be
used for hypotheses confirmation, e.g. using statistical tests, such asχ2 [44] or robustness
criteria [51]. If confirmation is negative, the identification of erroneous model components
and the review of the basic hypothesis of the model itself is vital. In worst case it is neces-
sary to redesign the entire model including the principal hypothesis. If satisfactory accuracy
of modelled dynamics is achieved further analytic approaches can be usedin order to esti-
mate theperformance, robustnessandstabilityof observed biological system.

4.1. Performance Evaluation of Biological Systems

Performance evaluation techniques are used to objectively evaluate the behaviour of
biological systems by establishing variousobjective functions. In order to analyse spe-
cific performances, both modelling and experimental data can be included in thedomain of
these functions. A typical example of objective function, which is vastly used in reverse
engineering, ismean square error:

E(Z,X) =
1

N

N
∑

i=1

(zi − xi)
2, (13)

where{z1,z2,...,zN} ∈ Z are samples reflecting the desired dynamics of the system and
{x1,x2,...,xN} ∈ X are samples obtained from modelling or experimental results. At
glance functionE(Z,X) is a simple error measure. However, it can also be used as a
naive approach to validate the model accuracy, e.g. by using the experimental results as
Z and the modelling results asX in Eq. 13. We can thus quantitatively describe the
similarities among the modelling and experimental results. Furthermore, mean square error
function can be used to estimate unknown model parameters (see Section 3).The best
model response may be obtained by the minimization of the functionE(Z,X) regarding
the unknown parameters. Unfortunately, computational complexity of this approach makes
it applicable only to problems with small numbers of unknown parameters. Improvements
can be obtained with the use of special heuristics [8].

Different type of objective functions can be established with several metrics, such as
signal to noise ratioor quantities which describe the results obtained with robustness, sen-
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sitivity or stability analysis (see Sections 4.2 and 4.3). In [13] various metricswere in-
troduced and used to estimate the performance of modelled biological system from the
information processing perspective. Characteristics that are similar to the ones used to de-
scribe the performance of digital electronic circuits, such as switching times and logical
levels, were applied to biological systems. This work was extended in [52],where robust-
ness and logical compatibility among different biological processing structures was also
considered in order to automatize the construction of more complex information processing
biological systems. While these metrics were only used on selected models of hypothetical
biological processing structures, they could also be applied to data gathered from laboratory
experiments.

4.2. Robustness and Sensitivity Analysis

Robustness is believed to be the key factor of adaptability in the evolutionary process
of biological systems [53]. In cell biology, the robustness is the propertyof a biological
system to remedy a substantial fluctuation in its homeostasis due to a sudden change in the
conditions for its stability. Such changes can be provoked by external perturbations on the
key parameters of the system. A robust system may respond with a counterbalance effects
to these parameter changes, such as bacterial chemotaxis behaviour [28].

Although a general quantitative measure for robustness has still not been established,
many efforts have come from various scientific disciplines, especially fromthe control the-
ory. The use of bifurcation analysis, i.e. the Hopf bifurcation, was studied in [54] for evalu-
ating the robustness of the Laub and Loomis model of cAMP oscillations inDictyostelium
discoideumcells. Similarly in [55] the same model was analysed, but with the prevalent use
of µ-analysis. An interesting method for robustness analysis usinglinear time logic(LTL)
was proposed in [56]. Despite its complexity, this methodology appears to offer a large
spectrum of application, especially for synthetic gene networks.

Sensitivity analysis may also represent a metric to quantitatively evaluate the robust-
ness of computational models [57]. This analysis aims to identify the parametersfor which
small input variations cause substantial variations in model response. Sensitivity analysis
approaches can be divided in two categories, i.e.local sensitivity analysisandglobal sen-
sitivity analysisapproaches. Local sensitivity analysis refers to analytical methods thatare
capable to evaluate how much the variations in the model outputs can be apportioned to
small variations in input parameter values [57]. On the other hand global sensitivity analy-
sis aims to analyse large and even complex perturbations of parameter valueswith various
numerical and statistical methods. State of the art sensitivity analysis approaches can be
mainly applied to deterministic models only (for an application to stochastic models see
[58]).

Local sensitivity can be estimated by evaluating first-order derivatives of the model out-
put response relatively to input parameters. A quantitative measure can be mathematically
represented by sensitivity coefficients of the form [57]:

Si =
∂yi

∂p
= lim

∆p→0

yi (p+∆p)− yi(p)

∆p
(14)

Finite difference approximation, direct differential method and adjoint sensitivity anal-
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ysis [57] evaluate sensitivity in terms of sensitivity coefficients as described in Eq. 14. In
metabolic control analysis (MCA) [59] elasticity coefficients were developed for estimating
the relationship between model outputyi and specific model parameterp.

Several global sensitivity analysis methods exist (see review in [57]). In order to analyse
large parameter perturbations, effective sampling of all possible parameter values becomes
crucial. Latin hypercube sampling is usually used in this context rather than Monte Carlo
random sampling [57]. Global sensitivity analysis methods can be further divided in two
subcategories, i.e.variance basedandvariance non-based approaches. Variance based
methods, such asSobol sensitivity analysisandFourier amplitude sensitivity test(FAST),
aim to estimate the global sensitivity as a relation between statistical variances ofmodel
outputs and chosen model parameters. These relations can assume a coefficient-like form
such as in Sobol sensitivity analysis [57]:

Si1i2...is =
Di1i2...is

D
, (15)

whereSi1i2...is are sensitivity coefficient,D is total variance of the system andDi1i2...is are
partial variances regarding the chosen parameterxi. The main disadvantage of variance-
based methods is their computational complexity.While the main advantage of non-variance
based methods, such asmulti-parametric sensitivity analysis(MPSA) andMorris sensitivity
analysis, is their low computational complexity, they imply a certain grade of monotonicity
in the model response. An additional disadvantage of the Morris method is in its unreliabil-
ity when the model response exhibits negative values.

A closely related concepts to sensitivity and robustness arereliability andscalability.
Robustness can be seen as a metric for evaluating reliability of a certain model.Reliable
models might be used further for building scalable systems, for which the reliability of each
component tends to be crucial for the entire structure. Hence a compatibility among basic
modules may be required. Compatibility has already been analysed in [13] in thecontext
of information processing biological structures.

4.3. Stability Analysis

The main goal of stability analysis is to obtain the insights into system’s asymptotic
behaviour, i.e. its behaviour after a long period of time (t → ∞) without external pertur-
bations, and dependencies of its asymptotic behaviour of given parameterset, also referred
to asbifurcation analysis. Observed biological systems can in this context exhibit conver-
gence towardssteady states, which can be analysed withsteady state analysis, or stable
oscillatory behaviour, which can be analysed withlimit cycle analysis. All these methods
derive from the theory ofnonlinear dynamical systems[60], which are usually described
with a system of ordinary differential equations. Stability analyses of biological systems are
therefore performed on their ODE models (see Section 2.4). We will presumethat external
inputs are fixed through the course of stability analysis and therefore omit the factoru(t)
from the Equation 1.

The main goal of steady state analysis is to investigate the existence and types of steady
states the observed biological system may reflect [61]. Existence of a steady statex∗ =
(x∗1,x

∗
2,...,x

∗
n) can be conditioned with the equation
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dxi

dt
= fi(x

∗) = 0; ∀i ∈ 1,...,N. (16)

Steady states can be divided regarding their stability in two types, i.e.stableandunstable.
The neighbourhood will always converge into a stable steady state, but diverge from an
unstable steady state. Stability can be determined with the construction of Jacobian matrix
of the form

J(x(t)) =













∂f1(x(t))
∂x1

∂f1(x(t))
∂x2

. . .
∂f1(x(t))

∂xn

∂f2(x(t))
∂x1

∂f2(x(t))
∂x2

. . .
∂f2(x(t))

∂xn

...
...

. . .
...

∂fn(x(t))
∂x1

∂fn(x(t))
∂x2

. . .
∂fn(x(t))

∂xn













. (17)

Steady state can be referred to as stable, when all real parts of eigenvalues of the Jacobian
matrix are negative.

Existence of oscillatory behaviour on the other hand depends on the existence of a
stable limit cycle. Limit cycle is an isolated simple oriented closed curve trajectory, which
does not contain singular points (i.e. steady stable states) [61]. If the system converges
to a limit cycle with time, i.e.t → ∞, limit cycle is stable. The easiest way to analyse
the existence of a limit cycle is with the state space investigation. When dealing with
biological systems, this space is strictly limited by minimum and maximum concentrations
of observed chemical species and its exhaust investigation does therefore not issue large
computational complexities.

The type of behaviour system exhibits is strictly dependant on the parametervalues
used in its ODE description. Adjusting these values can therefore drasticallychange sys-
tem’s asymptotic behaviour, e.g. from a stable state convergence to self-sustained oscilla-
tions. Transitions among different types of behaviour are calledbifurcationsand the set of
parameter values at which the transitions occurbifurcation points[62]. Different types of
transitions exist, regarding the characteristics of behaviour that arises and characteristics of
behaviour that ceases with the transition through the bifurcation point [60], e.g.saddle-node
bifurcations,Hopf bifurcations andpitchforkbifurcations.

Stability analysis can not only be used when analysing the asymptotic behaviour of
biological systems, but also when evaluating their robustness, e.g. if the distance of param-
eter values from the bifurcation point is large, the probability that the systemwill in reality
reflect predicted behaviour is much higher and the system is therefore more robust.

5. Computational Design of Biological Systems

The most common approaches tode novoengineering of biological systems with de-
sired behaviour aredirected evolution[63] andrational design[64]. While directed evo-
lution is an experimental method that performs artificial evolution on an initial biological
system and therefore mimics natural evolution, but in a much shorter time scale,rational
design uses engineering approaches to build novel biological systems and is as such a cor-
nerstone of synthetic biology. These approaches combine modularization,rationalization
and modelling [64]. Probably most famous results of rational design approach are tog-
gle switch [65] and repressilator [66] circuits. Rational design combined with computer
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modelling can be also regarded ascomputer aided designof biological systems in which
computational models of basic biological components are connected to each other ratio-
nally into more complex modules and systems. If analysed behaviour of these networks
is appropriate, experimental realization can be conducted. The analysesof their behaviour
can be performed with the methods described in Section 4.

The other computational approach in the design of biological systems is based on the
unsupervised design with the investigation of search space of all possiblesolutions and
optimization of objective functions which define the correlation among the desired and re-
flected behaviour of biological system [12]. Until recently this approachwas only used for
the design of protein and amino acids nucleotide sequences [67]. With the development
of characterisation of basic genetic regulatory elements, mutation effects ontheir genetic
functionalities and increased accuracy of their appropriate models, automatic design ap-
proaches can also be applied to the regulatory networks [68]. Given aninput, which defines
the specified behaviour, computational tools, such as AutoBioCAD [68], are able to find
the nucleotide sequence and computational model of regulatory network withappropriate
dynamics. Initial solution, on which the evolution is performed, is constructedrandomly
or with rational design from the basic parts characterized within appropriate libraries. In
order to achieve the desired behaviour these solution is evolved with the employment of
mutation operators, i.e. modifications of its topology (addition, deletion and replacement of
basic parts) and kinetic rates (e.g. with the promoter mutations). Search space is therefore
comprised of all possible combinations of elementary structures and their mutations that
are provided by available libraries [69]. Each intermediate solution is evaluated with the
calculation of objective (fitness) function and the best ones are selectedfor the next iteration
of evolution. These mutation and selection operators are applied in accordance with various
metaheuristics such as simulated annealing [68] and genetic algorithm [12]. Even though
other automatic design approaches have also been reported, they will notbe presented here
on account of their several limitations in comparison with the described approach. These
limitations include either genetic and functional diversity [70, 71] or requirements for pre-
definition of network topology [72].

Computational design approaches provide us with the results which rely on computa-
tional models of elementary structures and their mutual interactions. Experimental realiza-
tion of these solutions can reflect the behaviour unpredicted within underlying models. On
the other hand these solutions can be a basis for further optimization and fine-tuning with
various experimental methods such as directed evolution.

6. Conclusion

While the complexity and the size of controllable biological systems rises, computa-
tional approaches gain more and more important role in their design and analysis. Here, we
reviewed a collection of such approaches, which we find the most important,even though
many others exist. Novel techniques are being developed on the accountof many limita-
tions of existent ones, such as incompatibility of accuracy of the modelling results with the
size and complexity of modelled system. New methodologies are being introducedto the
field also from other engineering disciplines, e.g. with the use of Kalman filtering or fuzzy
logic methods. In the near future we expect the field of computational biologyto evolve
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further on with the collaboration of new researchers from various scientific disciplines, until
the final goal is achieved, i.e. to establish computational methods, that would allow high
accuracy in the modelling, analysis and design of both, engineered and natural biological
systems of arbitrary size and complexity.
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