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Abstract Mathematical modeling has become an integral

part of synthesizing gene regulatory networks. One of the

common problems is the determination of parameters,

which are a part of the model description. In the present

work, we propose a customized genetic algorithm as a

method to determine the parameters such that the under-

lying oscillatory system exhibits the target behavior. We

propose a problem specific, adaptive fitness function

evaluation and a method to quantify the effect of a single

parameter on the system response. The properties of the

algorithm are highlighted and confirmed on two test cases

of synthetic biological oscillators.
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1 Introduction

In the recent years, notable improvement has been

accomplished in understanding the component interactions

in various living organisms, leading to improved and more

accurate modeling techniques available in the fields of

synthetic and systems biology (Alon 2007).

A common biological subsystem is an oscillating regu-

latory network responsible for maintaining the circadian

rhythm which in turn affects the sleep-wake cycle, ther-

mogenesis, feeding, glucose and lipid metabolism, energy

balance, regulation of peripheral body clocks, respiratory

control, etc. Diseases such as diabetes, Alzheimer’s dis-

ease, sleeping disturbances and various metabolic diseases

are known to be caused by disruption in the oscillatory

mechanism (Turek et al. 2005; Morton et al. 2005; Wu

et al. 2006). Understanding the behavior of oscillatory

systems is essential upon approaching such problems.

The dynamics of the oscillatory systems are well

understood, as well as the conditions for the emergence of

the necessary unstable limit cycle (Novák and Tyson

2008). Also, synthetic oscillators based on gene regulatory

networks (GRNs) have been successfully realized both in

prokaryotes (Elowitz and Leibler 2000) as well as in

mammalian cells (Tigges et al. 2009). A fundamental

problem in modeling synthetic GRNs is the uncertainty in

the values of the model parameters (Lillacci and Kham-

mash 2010, 2012) and the level of modeling complexity for

a specific network. In Scheper et al. (1999) the authors

show minimal required conditions for a biological oscil-

lator model by treating various post-transcriptional pro-

cesses as a single delay process. In order to achieve the

targeted 24-h period they partly explore the parameter

space while restricting the parameters within predefined

boundaries.

In the present study we extend the concept of exploring

the parameter space towards achieving a targeted system

response, which is characterized by the frequency and

amplitude of the resulting oscillations. We employ a cus-

tomized, adaptive genetic algorithm which can be applied

to an arbitrary oscillator model, based on delayed differ-

ential equations (DDEs) and is able to find globally optimal

parameters that cause responses which can range over

several orders of magnitude for both amplitude and

frequency.

Various methods and tools aimed at optimizing and

seeking the desired behavior of GRNs have been proposed.
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General methods rely on having a pre-established library of

modular components and searching for the optimal net-

work topology that would produce the desired response.

Implementations (Rodrigo et al. 2007; Rodrigo and Jara-

millo 2012) may employ a truth table for the desired

function as an input and produce the optimal network

topology as output using evolutionary techniques. Whether

the resulting components would perform in a linear manner

when wired together remains an open question due to

observed non-modularity in living organisms (Hajimorad

et al. 2011). François and Hakim (2004) perform a more

specific study, where they define the characteristics of the

desired response more precisely. Our approach is focused

on a specific subgroup of networks in order to (a) take

advantage of the knowledge about the expected system

response and (b) provide quantitative answers about net-

work parameters such that they can be used to aid the

design decision while building such networks.

Genetic algorithms have long been used to tackle ana-

lytically intractable optimization problems in multidimen-

sional parameter space (Chambers 2000). Recent

developments in the field tend towards adaptive behavior

of the algorithms. Examples include dynamic tuning of

mutation rates, balancing the ratios between mutations and

crossover or adapting the fitness function depending on the

current state of the population. In Law and Szeto (2007),

authors have demonstrated the advantages of mutation and

crossover probabilities, proportional the fitness of an indi-

vidual. Also, they have shown the importance of a single

parameter influence on the overall fitness can be quantified

by calculating its standard deviation. Summing up, less

important parameters in less fit individuals tend to be

subject to mutation with higher probability, while cross-

over is applied to fitter individuals more often. Using a

similar method, the population of individuals in our case is

replicated with a bias towards the fitter solutions.

The influence of each parameter in the resulting system

response is quantified using the entropy function, an

appropriate way to quantify determinism (Szendro et al.

2013). Repeatability is a measure of quantifying the

determinism regarding an instance of evolution. It is

defined as a probability that two independent evolutions

will follow exactly the same path (Roy 2009). By per-

forming multiple runs of the developed genetic algorithm,

we derive the statistics for each parameter and quantify its

influence on the resulting system response.

Various choices of mutation probabilities are discussed

in (Smith and Fogarty 1996). Local maxima in the fitness

landscapes are an emphasized problem of genetic algo-

rithms. To be able to perform giant leaps in parameter

space one should allow multiple alterations to be per-

formed on candidate solutions. This can be achieved by

allowing multiple mutations of parameters and/or usage of

crossover. That way, a significantly larger number of

possible evolution scenarios are available (Roy 2009) and

given enough time, the globally optimal solution will

always take over the population (Szendro et al. 2013;

Chambers 2000). Allowing multiple mutations and cross-

over cause faster escape from the local maxima as well as

opening the possibility of beneficial joint mutations which

are otherwise deleterious (Weinreich and Chao 2005). As

we apply the algorithm to a specific family of problems, we

assess the optimal choices for mutation probability and

crossover method.

Adaptive behavior is further explored, using an adaptive

fitness function. The performance gains caused by the

usage of the population state dependent fitness evaluation

are described in Farmani and Wright (2003). In addition,

the authors introduce a concept of penalization of unfea-

sible solutions. We argue the performance gains of a

problem specific, adaptive fitness function which also

penalizes the unfeasible solutions. Evolutionary approa-

ches towards tuning the response of biological circuits

(Paladugu and Chickarmane 2006; Szendro et al. 2013;

Fang et al. 2009) tend to use generic fitness measures (e.g.

non-linear least squares error), limiting the solution space.

The problem specificity of the fitness function gives us the

advantage of finding equivalently fit solutions in larger

solution space, since it is not limited by absolute values of

the resulting system response.

The resulting set of parameter values guarantees the

desired system response for a given model of a biological

oscillator, offering a quantitative insight of the conditions

that have to be met on the design level. The manipulation

of parameter values of a GRN is to some degree already

achievable in vivo. Examples include engineering synthetic

ribosome binding sites to influence translation efficiency

(Salis et al. 2009), modifying the upstream promoter

sequences to alter the transcription rate (Rhodius et al.

2012), using transcription factor proteins with different

degree of cooperativity (Dill et al. 1993) or degradation

tags to accelerate the protein degradation (Butz et al.

2011). Studies that rely on modifying the temporal

behavior of rhythmic systems ought to make use of the

quantitative knowledge of parameter values to achieve the

desired effects (Mackey and Glass 1977; Morton et al.

2005; Wu et al. 2006). A concept similar to our was also

performed in vivo (Yokobayashi et al. 2002) in which the

authors deliberately induce mutations during the cloning

process to demonstrate the achievable change in protein–

protein as well as protein–DNA interactions, which con-

firms the practical applicability of our approach.

Section 2 introduces the computational framework used

in the study. Section 3 presents results achieved on two

different models of biological oscillators, which are dis-

cussed in Section 4.
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2 Framework

2.1 Algorithm overview

A common way to model GRNs are ordinary differential

equations (ODEs), which describe the change of a given

species concentration in an infinitesimal interval of time. In

general terms, the form of such description is

dSi

dt
¼ f ðS1ðtÞ; S2ðtÞ; . . .; SnðtÞ; p1; p2; . . .; pmÞ ð1Þ

where Si are the observed chemical species,

S1ðtÞ; S2ðtÞ; . . .; SnðtÞ is the system state vector and

p1; p2; . . .; pm is a vector of parameters, which determine

the system behavior. As processes in the cell span over

multiple time scales (Scheper et al. 1999), the description

can be altered to a system of DDEs:

dSi

dt
¼ f ðS1ðt � s1Þ; S2ðt � s2Þ; . . .;

Snðt � snÞ; p1; p2; . . .; pmÞ

where the delays with which species affect the system are

given by s1; s2; . . .; sn. The vector of parameters and the

vector of time delays uniquely describe the response of a

DDE system. A combination of their values represent a

candidate solution.

2.2 Fitness evaluation

Considering the system response as a discrete time signal,

we used its standard deviation along the y axis as an

approximation to the amplitude A. The frequency f was in

turn detected using the discrete fast Fourier transform

(FFT). Furthermore, the unfeasible candidate solutions that

reached a stable steady state could be detected. By

acquiring the two values, the fitness of an individual

candidate solution Ci was determined by computing the

relative error ratio against targeted amplitude A and

frequency f:

FðCiÞ ¼
Da � Df if Ci is feasible,

X þ Da � Df else;

�
ð3Þ

where Da ¼ kðAi � AÞk=A and Df ¼ kðfi � f Þk=f present

obtained candidate solution response errors regarding the

target amplitude and frequency values respectively. In case

of an unfeasible solution, a regularization term X (empiri-

cally defined 109) was added to the resulting fitness in

order to partition population on the feasibility of solutions.

The approach agrees with the method proposed in Farmani

and Wright (2003), where unfeasible solutions are still kept

in the population for potential adjustments. This turns out

to be particularly important when feasible solutions are

located in a very narrow parameter range and eliminating

unfeasible solutions would cause the population to effec-

tively decease.

An efficient approach in exploring the parameter space

is to make large steps in the earlier phases and performing

local optimization afterwards. We further improved the

algorithm by using an adaptive fitness function. In the

beginning, candidate fitness is evaluated such that:

FðCiÞ ¼
Df if Ci is feasible;
X þ Df else;

�
ð4Þ

After the evolution finds a candidate solution with

sufficiently small frequency error (empirically defined as

1 %), fitness evaluation method changes to Eq. 3. Thus, by

first adjusting the frequency and then perfuming local

optimization considering both frequency and amplitude,

the population proved to converge to the optimum value in

a smaller number of steps. The approach mimics the

simulated annealing algorithm (Vecchi 1987) in a sense of

performing large steps in the beginning and stems from the

fact that some parameters mainly influence either

amplitude or frequency while others influence both

amplitude and frequency (see Sect. 3).

2.3 Selection and reproduction

The candidate solutions are afterwards sorted based on the

ascending value of F(Ci). Only the top half thus comprises

the reproduction pool, while the lower half is discarded and

slots are available for new candidate solutions. Random

pairs of candidates are selected from the reproduction pool

and their parameter vectors recombined into one with an

equal probability for each component coming from either

of parents (n-point crossover). This ensures the ability to

make large steps in parameter space and avoid local

maxima (Chambers 2000).

To bias the selection towards fitter candidates, the

reproduction pool grows dynamically during the crossover

step for each unoccupied candidate solution slot. As the

algorithm iterates through slots in previously discarded

bottom half of the population, a candidate is added to the

current reproduction pool when producing each new indi-

vidual. In this way, fitter candidates will be in the repro-

duction pool sooner and their components will have higher

probability to appear in the resulting new population. This

modification appeared to produce better results and was

based on the results obtained in (Law and Szeto 2007) and

is explained in more detail on Fig. 1.

Mutations are applied to the parameter vector

pi;1; pi;2; . . .; pi;l of each candidate solution Ci with the

probability proportional to the parameter vector length

l (Back 1992), such that

pi;j ¼ pi;j þ Gð0; 1Þ ð5Þ
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Fig. 1 The proposed biased selection method. After the fitness of

each individual candidate solution Ci is evaluated, the candidates are

sorted and the bottom half (gray) is discarded. The resulting empty

slots in the population array are then occupied by new candidates,

which are derived by performing crossover of candidates from the

recombination pool. The former is dynamic, in a sense that new

candidate solutions are added for each slot in accordance with their

fitness value. For example, the new candidate on index n/2 ? 1 is a

mutated best candidate, new candidate on index n/2 ? 2 is a

recombination from candidates C1 and C2, while at the last index

n the resulting candidate is derived from a random pair of candidates

from the whole upper half C1, C2, ..., Cn

Fig. 2 a Schematic representation of a single repressor oscillator model;

b Simulation of optimal solution of parameter space search for target

amplitude A ¼ 16 nM and frequency f = 0.042 h-1. Parame-

ters: s = 12.906 h, rM = 8.025 nM/h, rP = 15.884 nM/h, qM = 0.045,

qP = 0.067, m = 2.69, h = 2.083 and k = 9.88. 24-h periods are marked

with a cyan dashed line. c Comparison of parameters space investigation

for amplitudes and frequencies of different orders of magnitude with

(circles) and without crossover (squares); d Comparison of parameters

space investigation for amplitudes and frequencies of different orders of

magnitude with (circles) and without adaptive fitness evaluation (squares)
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where G is a normally distributed random variable with

zero mean and SD of one. To ensure that the quality of

solutions monotonically increases, the current fittest can-

didate is never discarded and remains unchanged (elitism)

in the next evolution cycle (Chambers 2000).

3 Results

3.1 Oscillator model

The proposed approach was evaluated using the oscillator

model, based on a negative feedback loop proposed in

(Scheper et al. 1999) and schematically depicted in Fig. 2a.

It can be described with a DDE system:

dMi

dt
¼ rm

1þ PðtÞ
k

� �h
� qm �MiðtÞ ð6Þ

dMi

dt
¼ rp �Mðt � sÞm þ qp � PðtÞ ð7Þ

where the system state is composed of M as the mRNA

concentration and P as the concentration of the repressor

protein. System parameters that we have to determine are

mRNA transcription rate rM, protein translation rate rP,

mRNA degradation rate qM, protein degradation rate qP,

scaling constant for the repressor protein k, mRNA non-

linearity coefficient m, repressor protein cooperativity

coefficient h and time delay between transcription and

translation s. To further exploit the a priori knowledge

about the system, constraints on parameter values are

employed. This helps us narrow down the search space and

increase convergence speed. In Scheper et al. (1999), it is

argued that described system can exhibit oscillatory

behavior if and only if s[ 0. On top of that, we constrained

the degradation rates for both protein and mRNA such that

qM, qP \ 1 and non-linearity coefficients m, h [ 1.

After reaching the unstable steady state, the system

exhibits an oscillatory response. We performed a search for

the target amplitude of 16 nM and target period of 24 h

(frequency 0.042 h-1) obtained in (Scheper et al. 1999)

and found another equivalent solution in the parameter

space (Fig. 2b). The observations and conditions for

oscillations observed in (Scheper et al. 1999; Novák and

Tyson 2008) apply to the resulting parameter vector as

well, indicating there is more than one point in the solution

space producing equivalent system response in terms of

amplitude and frequency.

Running the evolutions for a range of amplitudes and

frequencies spanning various orders of magnitude, the

search method returned results with error values of the

order 10-5 on average. To achieve optimal results, we

adjusted and tested different properties of the proposed

algorithm. Crossover of different parameter values proves

beneficial for some problems while not for the others

(Chambers 2000). As the system response qualitatively

depends on the ratios among parameter vector components

(Novák and Tyson 2008), conservation of fit subparts of

parameter vectors proves beneficial. Figure 2c shows the

comparison of evolution runs with and without using

crossover. The fitness function value after running evolu-

tion runs with 150 population iterations was clearly lower

by more than one order of magnitude for a large majority of

evolution runs when using crossover, confirming the fea-

sibility of its use for our particular group of problems.

In a similar manner, we evaluated the use of the pro-

posed adaptive fitness evaluation function explained in

Sect. 2. By first evaluating only the frequency of the sys-

tem response and after the population exceeded a prede-

termined error threshold (in our case \1 %), we started

with the fitness evaluation function in Eq. 4 until reaching

the target frequency accuracy and only then proceeding

with Eq. 3. Thus evolution runs were able to achieve faster

convergence. Consequently, the global error value is lower

for evolutions using the adaptive error evaluation function,

which is clearly seen on Fig. 2d.

The hypothesis posed in Sect. 2 that some parameters

influence either amplitude or frequency while others

influence both was directly tested. Running various single

oscillator simulations with gradually tuning two chosen

parameters, we discover that both transcription rate rM and

translation rate rP only affect the amplitude (Fig. 4c), while

none of them affects the resulting frequency (Fig. 4d). This

fact explains the advantage of the proposed adaptive fitness

evaluation function, which offers the possibility to first find

a solution with a satisfying frequency accuracy and sub-

sequently tuning the parameters which influence amplitude

without affecting the obtained frequency. This is an

important result since it not only decreases the search time

and reduces the fitness function dimensionality, but also

improves the overall quality of the end solution.

To investigate whether the proposed algorithm is able to

find a global optimum, we performed runs of 1,000 inde-

pendent evolutions with the same initial values (Fig. 3).

The resulting statistics for the final value of each individual

parameter are modal distributions with a clearly distin-

guishable peak, indicating the algorithm ends the search

near the global optimum with high probability.

As shown in Law and Szeto (2007), the amount of

information carried by an individual parameter is directly

proportional to its SD across the population of candidate

solutions. We calculate the entropy of parameter value

distribution, similarly as proposed in François and Hakim

(2004) as a convenient way to quantify evolution deter-

minism. For each individual parameter pj a histogram with

b bins is computed and its entropy is calculated
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HðpjÞ ¼
Xb

k¼1

ck;j � logðck;jÞ ð8Þ

where ck,j presents the probability of parameter j having the

value in the interval of the bin k.

As can be observed from the results obtained in Fig. 3,

the parameter that most notably influences the overall

solution fitness (bears least entropy in value distribution) is

time delay s [consistent with findings in Scheper et al.

(1999) and Novák and Tyson (2008)], while the influence

of the scaling constant k is among the least noticable.

Running the simulations by adjusting these two parameters

while keeping the rest constant (at their calculated mean

values) clearly shows the time delay s influences both

amplitude (Fig. 4a) and frequency (Fig. 4b), while the

influence of k on both is negligible. Thus, the entropy

proves an effective measure to quantify individual param-

eter importance for the measured response and the results

can be applied in the design process of synthetic in vivo

biological circuits.

3.2 Repressilator model

Proposed approach was tested on the model with a larger

number of interacting genes (Elowitz and Leibler 2000) in

order to investigate its scalability. The general repressilator

model is composed of an odd number of repressors

(Fig. 5a) such that

dMx

dt
¼ �c �MxðtÞ þ

a1

1þ PyðtÞ
k

� �h
þ a0 ð9Þ

dPx

dt
¼ �g � PxðtÞ þ b �Mxðt � sÞ ð10Þ

where x; y e 1; . . .;N is the repressor protein index, Mx is the

mRNA concentration of the corresponding repressor Px.

Parameters that have to be determined are mRNA degrada-

tion rate c, maximal (unrepressed) mRNA production rate a1,

promoter leakage a0, repressor scaling constant k, coopera-

tivity coefficient h, protein degradation rate g, protein pro-

duction rate b and transcription–translation time delay s. In

Fig. 3 Distribution of

individual parameter values for

1,000 independent evolution

runs with normalized counts and

calculated entropies using Eq. 8
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case of the repressilator with three repressors, the model is

composed of six equations and nine parameters. An example

simulation run of the repressilator is shown on Fig. 5b. The

parameters found after 150 generations cause oscillating

behaviour with shifted phases among the three repressor

proteins as anticipated.

As the amplitude and frequency of the oscillations are

mainly dependent on the stability of the protein (Elowitz

and Leibler 2000), we modified the model such that

dMx

dt
¼ �c �MxðtÞ þ

a1

1þ PyðtÞ
kx

� �h
þ a0 ð11Þ

dPx

dt
¼ �gx � PxðtÞ þ bx �Mxðt � sÞ ð12Þ

Here the scaling constant kx, protein degradation rates gx

and translation rates bx are unique for each protein in the

circuit, which increases the number of parameters to 15.

Results in Fig. 5c, d present relative error margins for end

results of simulations for various orders of magnitude for

targeted amplitudes and frequencies. The errors are below

0.01 % in majority of cases, which underlines the feasibility

and the scalability of the approach. Also, by tuning separately

a subgroup of parameters bx, gx, kx while keeping other

parameters equal for each of the three components of the

network, we show that the frequency and amplitude response

of the repressilator can be adjusted with the choice of

interacting repressors’ properties alone. This observation is

constant with experimental studies (Elowitz and Leibler 2000)

while quantifying the observed information as well.

Fig. 4 Effect on resulting amplitude and frequency of the single

repressor oscillator model for tuning of the two parameters for a range

[l - r, l ? r] where l and r are the mean and the standard

deviations of parameter values obtained from a run of 1,000 parallel

simulations (Fig. 3). Other parameters are kept constant at their mean

values. a Effect on amplitude by tuning parameters s and k. b Effect

on frequency by tuning parameters s and k. c Effect on amplitude for

parameters rM and rP. d Effect on frequency for parameters rM and rP
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4 Discussion

We have developed a method to explore the parameter

space and performed a thorough parameter analysis for

biological oscillator circuit models with a predefined

topology. By making use of a priori knowledge of the

observable system dynamics, we were able to further nar-

row the parameter values while retaining the ability of

finding the values that lead to the desired system response.

The former is represented by a combination of oscillating

amplitude and frequency which can be adjusted over a

wide range of orders of magnitude. We efficiently applied

digital signal processing methods to analyze the oscillating

behavior to evaluate the candidate solutions.

The proposed genetic algorithm proved effective for two

different types of models and wide range of input param-

eters which indirectly confirmed its scalability. Comparing

the evolution with and without using crossovers, we have

concluded that it significantly improves the end result as a

way of retaining fit subparts of parameter vectors. It rein-

forces the fact that the systems response is mainly depen-

dent on ratios between different parameters. Hence the

fitter combinations of a subgroup of parameters can be

efficiently spread over candidate solutions pool (popula-

tion). We included state-of-the-art developments in genetic

algorithms by allowing multiple mutations, biased cross-

over towards fitter candidate solutions, partitioning the

solutions on their feasibility and proposed a new approach

of a problem dependent adaptive fitness evaluation, based

on the effect of single parameters to the resulting system

response.

Being able to perform giant leaps in parameter space by

means of crossover and multiple mutations, the system

successfully converges towards the optimal solution and

Fig. 5 a Schematic representation of the repressilator circuit. b Simu-

lation of optimal solution of parameter space search for target amplitude

A = 100 and frequency f = 0.0001 h-1. Parameters used: a0 =

2.288-7 nM/h, a1 = 1.94 nM/h, b = 0.0002 nM/h, n = 4.199, c =

0.0005, g = 0.007, k = 45.313, s = 0.09 h. c Comparison of parame-

ters space investigation for amplitudes and frequencies of varying orders

using Eqs. 9 and 10 (circles) or Eqs. 11 and 12 (squares). The y axis

shows the relative amplitude error regarding the target amplitude.

d Comparison of parameters space investigation for amplitudes and

frequencies of varying orders of magnitude Eqs. 9 and 10 (circles) or

Eqs. 11 and 12 (squares). The y axis shows the relative frequency error

regarding the target frequency

M. Stražar et al.

123



avoids local maxima. Due to the use of elitism, conver-

gence is always monotonic. By running various simulations

with equal inputs, the simulations converged towards a

vector with a clear, modal statistical distribution for each

component (parameter). As the starting candidate solutions

are purely random, we assert the vector of means is the

global optimum with high probability. Each parameter was

assigned an entropy value, which allowed us to determine

and quantify the amount of information and the importance

for a single parameter.

As we have shown the approach is applicable to oscil-

lating systems with varying complexity, we turn towards

the applicability of its results. By assessing separately the

tunable parameters used in the repressilator model while

keeping the remaining untunable parameters constant, we

conclude amplitude and frequency of oscillators can be

adjusted only by altering the protein dependent parameters.

Thus, the resulting vector of parameter values can be used

to aid the decisions during design and experimentation of

in vivo synthesis and analysis of biological circuits.
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