
Self-organizing Text in an
Amorphous Environment

Orrett Gayle

University of the West Indies, Mona
orrett.gayle@uwimona.edu.jm

Daniel Coore

University of the West Indies, Mona
daniel.coore@uwimona.edu.jm

In an amorphous computing environment, myriad irregularly located computing
elements asynchronously execute a common program and communicate locally to pro-
duce some pre-specified emergent behaviour. We have implemented a mechanism for
robustly generating patterns of self-organising text in an amorphous computing envi-
ronment. Our method uses the Growing Point Language (GPL), presented in [1], and
builds on ideas put forward there for constructing text-like patterns. One shortcoming
of that technique was that patterns for producing a text character were sensitive to
signals that were localised to the origin of the text. As a result, the methods for gener-
ating these patterns did not scale well enough to be able to produce arbitrarily many
of them. We have found a way to allow the conditions that govern the formation of a
character to propagate arbitrarily far from the starting point, thereby allowing us, in
principle, to produce arbitrarily long concatenations of text characters.

We used a pen metaphor, so that the description of our self-organising text is similar
to text being drawn on paper, namely, by a series of interconnected strokes. Using this
pen metaphor, characters may be combined via the GPL network abstraction in a
perfectly natural way to produce words. We also implemented a general serializing
mechanism which is used to ensure that the information used to produce one character
does not interfere negatively with the production of the subsequent character. This
mechanism permits long strings to be drawn reliably in a manner that scales well with
the number of text characters to be drawn. Our simulations show that we can produce
strings that are longer than we were previously capable of producing, and that short
strings are produced more reliably.

2 Self-organizing Text in an Amorphous Environment

1 Introduction

In an amorphous computing environment, myriads of simple computing ele-
ments interact locally, under the control of a common program to produce some
pre-specified coherent behavior. The goal of amorphous computing is to find
programming paradigms that allow us to engineer the emergence of coherent
behaviors so that they can be used to produce self-organization on a massive
scale, hitherto observed only in nature[1].

Several approaches to controlling the complexity of an Amorphous Computer
have been developed [3, 7, 6] and includes recently published work [4, 2] . The
Growing Point Language (GPL), developed by Coore [3], is especially suited
for producing self-organizing patterns that are primarily topological rather than
geometric.

As an application of GPL, Coore [3] showed how simple text characters could
be made to self-organise. This was done merely as a demonstration of the possi-
bilities with GPL. This implementation had a few problems, the most important
of which was that the solution did not scale to accommodate arbitrarily large
sequences of text characters.

Figure 1: A self-organizing “SYSTEM”. Each dot represents a processor. Its colour
represents the state that it has assumed after running a common program. The initial
conditions included assigning the state of the bottom line, and special status to three
other processors located near the bottom left corner of the text.

We present here, an extension, which is scalable, of the method presented in
[3], for generating text in an amorphous environment. Whereas the old method
had difficultly producing strings longer than three characters, our enhanced ver-
sion is capable of producing strings of six characters (see Figure 1) and probably
more (simulation size limitations make it difficult to test on longer). One im-
portant product of this work is a serializing mechanism that provides a general
purpose mechanism for generating repeated “spatial processes”.

Self-organizing Text in an Amorphous Environment 3

2 Background

The Growing Point Language (GPL) is a programming language for specify-
ing interconnect topologies in a coordinate-free way. The behaviour of a GPL
program is determined by its instructions, the domain (collection of processing
elements) on which it is executed and a set of initial conditions. The principal
concept in GPL is the growing point, which describes a path in the GPL domain.
At any given time, an instance of a growing point resides at a single location
in the domain, called its active site. A growing point has a tropism, which is
expressed as an affinity for either increasing, decreasing, or constant pheromone
concentrations in the vicinity of the growing point. As a growing point’s active
site moves from one location to a neighbouring one (according to its tropism), we
say that the growing point propagates. An active site may secrete a pheromone,
which initiates a process of diffusion [8] that is centred at the active site. When
the active site ceases execution at a location, and it does not propagate to a
neighbouring location, then we say the growing point has terminated (at that
location).

The trajectory of the growing point is the sequence of locations that its active
site visits. The active site may also deposit some material at its current location.
The material may be detected by other active sites, and may be used to influence
their decisions. In this way, growing points can be defined to have influence over
other growing points in important ways. For example, we can determine where
the trajectories of two growing points intersect by having each one sense the
material deposited by the other.

The definition of a growing point dictates the topology of its path, however
the geometry of a particular path that a growing point produces, being depen-
dent on the geometry of the domain, is determined only after the growing point
has been invoked at some location.

Logical groupings of growing points in a GPL program are called networks. A
growing point can be viewed as a relation between the location of its invocation
and the location(s) of its termination. The network abstraction is an extension of
this idea: it defines a relation between two sets of locations called the inputs and
the outputs. The inputs represent the locations from where growing points may
be invoked and the outputs represent a subset of termination locations of those
growing points through which the network may interface with other networks.
Compound networks can be defined by allowing the outputs of one network to
act as the inputs of another; such a connection is called a cascade of networks.

3 Implementation

The program directives for generating text are arranged in three layers of ab-
stractions. At the lowest level are the most primitive operations required for
drawing line segments and rays in various directions relative to a reference line.
Note that there is no a priori knowledge of vertical and horizontal directions.
Horizontal and vertical directions are relative to the reference which is estab-

4 Self-organizing Text in an Amorphous Environment

lished from the initial conditions of the environment. We use a metaphor of
a pen making strokes to define the growing points that produce line segments
relative to the reference line. The second layer of abstraction is the collection of
character-shape descriptions. These are implemented as GPL networks, which
are composed from the pen stroke growing points of the lower layer. The third
layer is the word pattern itself: it is implemented as a GPL network that is
formed by cascading letter networks. When the programmer wishes to con-
struct a self-organising word, she defines a cascade of letter networks to spell
the word she wants, configures a domain to indicate where the bottom left corner
of the network and the reference line should be, and executes the program on
the domain.

3.1 Word Organization

Figure 2: The evolution of a self-organizing text pattern. Colours represent material
that has been deposited at each point (default colour = no material, black = ink
material

As an example, let us consider how to define the word “LIFE” as a self-
organising piece of text, using our GPL libraries. Figure 2 illustrates the ex-
ecution of this program through a sequence of snapshots of the domain. The

Self-organizing Text in an Amorphous Environment 5

colour of a processor is an indication of the material that has been deposited
(by growing points) at that processor’s location.

We first defined each character as a GPL network of two inputs and two out-
puts. String patterns are created by defining a character sequence as a cascade
of the individual character networks. The network definition below shows how
this example was constructed. Observe how intuitive the definition of the text
appears at this highest level of abstraction.

(define-network (LIFE (txt-in line-in) (txt-out line-out))

(==> (txt-in line-in)

L txt-director I txt-director F txt-director E

(txt-out line-out)))
The symbol ==> is an abbreviation for cascade. In this network definition,

a network called LIFE has two inputs (txt-in and line-in) and two outputs
(txt-out and line out). This tells us that in order to start the program, we will
need to supply two points of the domain that will behave as these two input
locations. The expression starting with ==> says to use the two inputs to the
LIFE network as inputs to the L network (which is a network that has two inputs
and two outputs), then use its outputs as inputs to the txt-director network,
whose outputs are then used as inputs to the I network and so on, until the
outputs of the E network are supplied as the outputs of the overall LIFE network.
The purpose of the txt-director network is to restore the conditions necessary
to draw the next character; it will be explained in more detail shortly. Note
that the cascade combinator would allow us to build even bigger networks by
combining word networks in the same way that letters were combined to make
words.

3.2 Character Networks

The second level of our abstraction hierarchy is the network definitions for the
characters themselves. Here is the definition for the L network, and Figure 3
illustrates its execution.

(define-network (L (txt-in line-in) (txt-out line-out))

(at txt-in

(start-gp up-pen CHAR-HEIGHT)

(--> (start-gp right-pen (/ CHAR-WIDTH 2))

(--> (start-gp lift-pen:right (/ CHAR-WIDTH 2))

(->output txt-out))))

(at line-in

(--> (start-gp base-line CHAR-WIDTH)

(->output line-out))))

Here, the L network is implemented directly in terms of growing points.
The at command allows us to initiate growing points from a network’s input.
The --> symbol is an abbreviation for the connect command, which allows the
termination point of the first growing point started in the expression to serve as
the initial point of the growing point(s) that follows. The ->output command
causes a point to behave as the output of a network, which means that it will
initiate any activities specified by a network for an input to which it is connected
(via a network cascade).

6 Self-organizing Text in an Amorphous Environment

The growing points up-pen and right-pen have been defined with tropisms
that, when combined with the correct initial conditions, will produce trajectories
that match their names. The expressions CHAR-HEIGHT and CHAR-WIDTH represent
constants that determine the dimensions of a character in terms of neighbour-
hood hops. Based on this explanation, it is not hard to see that the character L

is defined by drawing two growing points from the same originating point: one
portion up for the height of the character, and the other to the right for about
half of the width (see Figure 3). All that remains for us to explain is how the
growing points such as up-pen and right-pen are defined.

Figure 3: Illustration of the L network

3.3 Determining which way is up

Two pheromones, base-line-long and dir-pheromone, are responsible for estab-
lishing the vertical and horizontal directions, respectively. We construct a refer-
ence line that secretes base-line-long with sufficient strength that at a distance of
CHAR-HEIGHT hops away from the line, processors can still detect a non-zero con-
centration of base-line-long. The reference line grows along with the characters
being drawn, as could be seen in the definition of the L network1. The growing
points for drawing vertical lines have tropisms that are sensitive to base-line-
long: away from the line is up and towards the line is down. For example, the
essential parts of the up-pen definition are:

(define-growing-point(up-pen length)

(material ink)

(tropism (ortho- base-line-long))

... ; other characteristics omitted

(actions

...

(when ((< length 1) (terminate))

(default (propagate (- length 1))))))

The tropism of up-pen causes it to move away from the reference line. At
each active site, the code in the actions clause is executed. The parameter
length is decremented on each step of the active site until it finally gets to 0,

1Note that we actually draw the reference line ahead of the character that appears above
it, so in fact, the part of the reference line that is drawn at any given moment is always to the
right of the character that is drawn simultaneously.

Self-organizing Text in an Amorphous Environment 7

when the growing point terminates. The overall effect is to draw a vertical line
upwards, whose length is the number of hops specified as the length parameter
at the time the growing point instance was started (with a start-gp command).

3.4 Going the right way

The initial deposit of dir-pheromone is produced from a point specified in the
initial conditions, which was always to the left of the first character network.
So, a constant concentration of base-line-long pheromone indicates a direction
parallel to the reference line; the direction of increasing concentrations of dir-
pheromone is left and the direction of decreasing concentrations is right.

The challenge of making a scalable process to produce arbitrarily long texts
reduced to being able to replenish the source of dir-pheromone after each char-
acter was drawn. In this way, we get a kind of inductive property on our text
strings: if the current character has sufficient information to determine left/right
and up/down, then the subsequent character will also. Then, if we ensure that
our initial conditions provide enough information for the first character to be
formed properly, then the remainder of our text will be also.

3.5 Propagating direction information

The earliest attempt at generating self-organising text with GPL did not even
bother to attempt to establish this inductive property: it used a one-time initial
secretion of dir-pheromone over a range far enough to cover the distance of all
of the characters to be drawn. The initial attempts at achieving this inductive
property, described in [3], embedded replenishing secretions of dir-pheromone
within the definitions of the character networks, usually defined to occur from
somewhere near the centre of the character. This had two problems: the def-
inition of a character was now more complex, and the replenishing secretion
interfered with the construction of the current character.

In our current approach, we defined a network, called txt-director, that
can be cascaded with character networks, whose sole function is to secrete dir-
pheromone far enough to provide guidance to one character. We then cascade an
instance of the txt-director network in between successive character networks.
This took care of the replenishment of dir-pheromone, but not of its interference
with the current character.

Our solution to this second problem was to define a pair of growing points
that implemented a synchronization mechanism. This was used to ensure that
the whole character would be completely drawn before the subsequent network
started. To accomplish this, the point to become the output of the character
network secretes a homing pheromone. The final segment of the character’s
pattern is then sequenced (using connect) with a growing point that seeks out
the homing pheromone. Upon finding the source of the homing pheromone, the
growing point terminates and yields the output point of the network. Since this
network is cascaded onto a txt-director network, the overall effect is that the

8 Self-organizing Text in an Amorphous Environment

secretion of dir-pheromone for the subsequent character does not take place until
the current character has been completely drawn.

Figure 4: The Serializing Mechanism. The top diagrams illustrate the formation of
the ‘L’ character, and the serializing growing ensuring that the ‘L’ is complete before its
output point is defined. The bottom diagrams illustrate the role of the txt-director

network (shown with a dotted line) between consecutive characters. The oval shows
the extent of secretion of dir-pheromone

.

4 Results and Discussion

We have presented a powerful means for controlling a complex system in the GPL
language. We have also shown how it can be specifically used to generate complex
patterns such as text characters. The methods we have used are an improvement
on previous methods because we are able to generate longer strings, and short
strings more reliably than we were previously able to do. Our implementation
is also modular in that both the production of the characters as well as the
maintenance of the necessary signals have been captured by the same abstraction
mechanism. This gives us the power to combine them freely and robustly, in
much the same way that a digital circuit designer may work with logic gates
over transistors. We thus show that with the appropriate module definitions, it
is still possible to apply traditional engineering techniques to controlling complex
systems.

Self-organizing Text in an Amorphous Environment 9

The major disadvantage of our approach is the fact that the growing points
involved in the serializing mechanism are hard-coded into the the character net-
works, which means that changing the font, size or style, of our characters may
require tweaking these growing point. It is important to note that the poten-
tial for interference between networks will always be present because there are
a finite number of pheromones and an unbounded number of uses of them in
generating a pattern that has unbounded extent. The means of resolving this
interference does not have to be by synchronization, for example, we could ar-
range to have pheromones alternate roles in the same networks. This idea would
cause a doubling of space required to store the program, though parameterised
tropisms as implemented in [5] could be used to recover that space.

Qualitatively, we have shown that non-trivial patterns can be engineered
to emerge in a complex system from relatively simple interactions between the
system’s elements. The techniques we have used can probably be generalised to
solve other types of pattern formation problems – the hard part is finding the
right building block to abstract as a GPL network. One of the shortcomings of
our methods is that we rely on subjective evaluations for assessing the success
of the formation of a pattern. We would, one day, like to have a tool that is
capable of giving us more objective measurements.

Bibliography

[1] Abelson, Harold, Don Allen, Daniel Coore, Chris Hanson, George
Homsy, Jr. Thomas F. Knight, Radhika Nagpal, Erik Rauch, Ger-
ald Jay Sussman, and Ron Weiss, “Amorphous computing”, Commun.
ACM 43, 5 (2000), 74–82.

[2] Beal, Jacob, “Programming an amorphous computational medium.”, UPP,
(2004), 121–136.

[3] Coore, Daniel, Botanical Computing: A Developmental Approach to Gen-
erating Interconnect Topologies on an Amorphous Computer, PhD thesis
MIT (1999).

[4] Coore, Daniel, “Abstractions for directing self-organising patterns.”, UPP,
(2004), 110–120.

[5] D’Hondt, Ellie, and Theo D’Hondt, “Amorphous geometry”, Proceedings
of the 2001 European Conference on Artificial Life (ECAL2001), (2001).

[6] Kondacs, Attila, “Biologically-inspired self-assembly of two-dimensional
shapes using global-to-local compilation”, International Joint Conference on
Artificial Intelligence (2003).

[7] Nagpal, Radhika, Programmable Self-Assembly: Constructing Global
Shape using Biologically-inspired Local Interactions and Origami Mathe-
matics, PhD thesis MIT (2001).

10 Self-organizing Text in an Amorphous Environment

[8] Pearson, John E., “Complex patterns in a simple system”.

