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1. What is entanglement 
 
Entanglement is a term used in quantum theory  to describe the way that 
particles of energy/matter can become correlated to predictably interact with 
each other regardless of how far apart they are. 
Particles, such as photons, electrons, or qubits that have interacted with each 
other retain a type of connection and can be entangled with each other in pairs, 
in the process known as correlation. Knowing the spin state of one entangled 
particle - whether the direction of the spin is up or down - allows one to know that 
the spin of its mate is in the opposite direction. Even more amazing is the 
knowledge that, due to the phenomenon of superposition, the measured particle 
has no single spin direction before being measured, but is simultaneously in both 
a spin-up and spin-down state. The spin state of the particle being measured is 
decided at the time of measurement and communicated to the correlated particle, 
which simultaneously assumes the opposite spin direction to that of the 
measured particle. Quantum entanglement allows qubits that are separated by 
incredible distances to interact with each other immediately, in a communication 
that is not limited to the speed of light. No matter how great the distance between 
the correlated particles, they will remain entangled as long as they are isolated. 
In some sense, we can say that superposition encompasses entanglement, since 
entanglement can be viewed as a special case of superposition. 
 
 
 
 

2. The background of the idea 
 
2.1 The EPR paradox  
 
Entanglement is one of the properties of quantum mechanics which 
caused Einstein and others to dislike the theory. In 1935, Einstein, Podolsky 
and Rosen formulated the EPR paradox, demonstrating that entanglement 
makes quantum mechanics a non-local theory. 
Initially Einstein was enthusiastic about the quantum theory. By 1935, however, 
his enthusiasm for the theory had given way to a sense of 
disappointment. Firstly, he felt the theory had abdicated the historical task of 
natural science to provide knowledge of significant aspects of nature that were 
independent of observers or their observations. Secondly, the quantum theory 
was essentially statistical. The probabilities built into the state function were 
fundamental and, unlike the situation in classical statistical mechanics, they were 
not understood as arising from ignorance of fine details. In this sense the theory 
was indeterministic. Thus Einstein began to probe how strongly the quantum 
theory was tied to irrealism and indeterminism.  
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 Einstein famously derided 
entanglement as "spook action 
at a distance." It can give rise to 
strange phenomena that have 
fueled endless debates 
between the advocates of the 
theory of quantum mechanics 
and those trying to disprove it, 
the arguments exchanged by 
Bohr and Einstein on this 
subject have become history. 
Einstein was deeply dissatisfied 
with the fact that quantum 
mechanics allowed correlations 
between entangled particles to 
manifest themselves 
instantaneously over arbitrary 
large distances.  
 
On the other hand, quantum 
mechanics has been highly 
successful in producing correct 
experimental predictions, and 
the strong correlations 
associated with the 
phenomenon of quantum 
entanglement have in fact been 
observed. One apparent way to 
explain quantum entanglement 
is an approach known as 
"hidden variable theory", in 
which unknown deterministic 
microscopic parameters would 
cause the correlations. 

  
However, in 1964 Bell showed that such a theory could not be "local", the 
quantum entanglement predicted by quantum mechanics being experimentally 
distinguishable from a broad class of local hidden-variable theories. 
 Results of subsequent experiments have overwhelmingly supported quantum 
mechanics. It is known that there are a number of loopholes in these 
experiments, but these are generally considered to be of minor importance. Bell's 
inequality was only the first in a larger set of inequalities of this kind.  
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2.2 Bell’s states  
 
Bell’s states are the subject of his famous Bell inequality. A Bell pair is a pair of 
qubits which jointly are in a Bell state, which is, entangled with each other. A Bell 
state is defined as a maximally entangled quantum state of two qubits. The 
qubits are usually thought to be spatially separated. Nevertheless they exhibit 
perfect correlations which cannot be explained without quantum mechanics. To 

explain, let us first look at the Bell state : 

 
 
But quantum mechanics allows qubits to be in quantum superposition — i.e. in 0 
and 1 simultaneously, e.g. in either of the states  
 

   or    
 
There are three other states of two qubits which lead to this maximal value 

of  and the four are known as the four maximally entangled two-qubit 
states or Bell states: 
 

 

 

 

 
 
 

 
2.3 GHZ experiment  
 
Another experiment was made, an experiment that would allow the clash 
between quantum and classical reality to be decided in one measurement, which 
seemed as an important achievement. The GHZ experiment is basically an 
extension of the EPR experiment with three correlated particles instead of two. 
The three-particle entanglement in the GHZ proposal provides the means to 
prove the contradiction without the cumbersome use of inequalities, in a much 
more direct and non-statistical way, as compared with Bell's original theorem.  In 
1999 a team of researchers at MIT produced a GHZ state using nuclear spins 
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instead of photon polarizations and the techniques of nuclear magnetic 
resonance spectroscopy to manipulate their sample. Although they were able to 
measure the weird quantum correlations exhibited by the GHZ state, the NMR 
techniques used prevented them from testing the non-local aspects of the GHZ 
experiment.  The three qubits, embodied as nuclear spins within a molecule, 
were far too close together to allow for a delayed-choice experiment of the kind 
Aspect performed on EPR pairs. A little bit more about the GHZ experiment: 
Frequently considered cases of GHZ experiments are concerned with 
measurements obtained by three observers, A, B, and C, who each can detect 
one signal at a time in one of two distinct own channels or outcomes: for instance 
A detecting and counting a signal either as (A↑) or as (A↓), B detecting and 
counting a signal either as (B «) or as (B »), and C detecting and counting a 
signal either as (C ◊) or as (C ♦). 
Signals are to be considered and counted only if A, B, and C detect them trial-by-
trial together; i.e. for any one signal which has been detected by A in one 
particular trial, B must have detected precisely one signal in the same trial, and C 
must have detected precisely one signal in the same trial; and vice versa. 
For any one particular trial it may be consequently distinguished and counted 
whether 

� A detected a signal as (A↑) and not as (A↓), with corresponding counts 
 nt (A↑) =1 and nt (A↓) = 0, in this particular trial t, or 
� A detected a signal as (A↓) and not as (A↑), with corresponding counts  
 nf (A↑) = 0 and nf (A↓) = 1, in this particular trial f, where trials f and t are 
evidently distinct; 

similarly, it can be distinguished and counted whether 
� B detected a signal as (B «) and not as (B »), with corresponding counts  
ng (B «) = 1 and ng (B ») = 0, in this particular trial g, or 
� B detected a signal as (B ») and not as (B «), with corresponding counts  
nh (B «) = 0 and nh (B ») = 1, in this particular trial h, where trials g and h are 
evidently distinct; 

and correspondingly, it can be distinguished and counted whether 
� C detected a signal as (C ◊) and not as (C ♦), with corresponding counts  
n l(C ◊) = 1 and n l(C ♦) = 0, in this particular trial l, or 
� C detected a signal as (C ♦) and not as (C ◊), with corresponding counts  
nm(C ◊) = 0 and nm(C ♦) = 1, in this particular trial m, where trials l and m are 
evidently distinct. 
 
p(A↑) (B «) (C ◊)( j ) = (nj (A↑) - nj (A↓)) (nj (B «) - nj (B »)) (nj (C ◊) - nj (C ♦)) can be 
evaluated in each trial. 
 

Following an argument by John Stewart Bell, each trial is now characterized by 
particular individual adjustable apparatus parameters, or settings of the 
observers involved. There are (at least) two distinguishable settings being 
considered for each, namely A's settings a1, and a2, B's settings b1, and b2, and 
C's settings c1, and c2. 
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Trial s for instance would be characterized by A's setting a2 , B's setting b2 , and 
C's settings c2 ; another trial, r, would be characterized by A's setting a2 , B's 
setting b2 , and C's settingsc1 , and so on. (Since C's settings are distinct 
between trials r and s, therefore these two trials are distinct.) Correspondingly, 
the correlation number p(A↑) (B «) (C ◊)( s ) is written as p(A↑) (B «) (C ◊)( a2 , b2 , c2 ), the 
correlation number p(A↑) (B «) (C ◊)( r ) is written as p(A↑) (B «) (C ◊)( a2 , b2 , c1 ) and so 
on. 
Further, as GHZ and collaborators demonstrate in detail, the following four 
distinct trials, with their various separate detector counts and with suitably 
identified settings, may be considered and be found experimentally: 

� trial s as shown above, characterized by the settings a2 , b2 , and c2 , and 
with detector counts such that 

p(A↑) (B «) (C ◊)( s ) = (ns (A↑) - ns (A↓)) (ns (B «) - ns (B »)) (ns (C ◊) - ns (C ♦)) = -1, 
� trial u with settings a2 , b1 , and c1 , and with detector counts such that 

p(A↑) (B «) (C ◊)( u ) = (nu (A↑) - nu (A↓)) (nu (B «) - nu (B »)) (nu (C ◊) - nu (C ♦)) = 1, 
� trial v with settings a1 , b2 , and c1 , and with detector counts such that 

p(A↑) (B «) (C ◊)( v ) = (nv (A↑) - nv (A↓)) (nv (B «) - nv (B »)) (nv (C ◊) - nv (C ♦)) = 1, 
and 

� trial w with settings a1 , b1 , and c2 , and with detector counts such that 
p(A↑) (B «) (C ◊)( w ) = (nw (A↑) - nw (A↓)) (nw (B «) - nw (B »)) (nw (C ◊) - nw (C ♦)) = 1. 
 

 
The notion of local hidden variables is now introduced by considering the 
following question: 
Can the individual detection outcomes and corresponding counts as obtained by 
any one observer, e.g. the numbers (nj (A↑) - nj (A↓)), be expressed as a 
function A( ax , λ ) (which necessarily assumes the values +1 or -1), i.e. as a 
function only of the setting of this observer in this trial, and of one 
other hidden parameter λ, but without an explicit dependence on settings or 
outcomes concerning the other observers (who are considered far away)? 
Therefore: can the correlation numbers such as p(A↑) (B «) (C ◊)( ax , bx , cx ), be 
expressed as a product of such independent functions, A( ax , λ ), B( bx , λ 
) and C( cx , λ ), for all trials and all settings, with a suitable hidden 
variable value λ? 
Comparison with the product which defined p(A↑) (B «) (C ◊)( j ) explicitly above, 
readily suggests to identify 

� λ → j, 
� A( ax , j ) → (nj (A↑) - nj (A↓)), 
� B( bx , j ) → (nj (B «) - nj (B »)), and 
� C( cx , j ) → (nj (C ◊) - nj (C ♦)), 

where j denotes any one trial which is characterized by the specific 
settings ax , bx , and cx , of A, B, and of C, respectively. 
However, GHZ and collaborators also require that the hidden variable argument 
to functions A(), B(), and C() may take the same value, λ, even in distinct trials, 
being characterized by distinct settings. 
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Consequently, substituting these functions into the consistent conditions on four 
distinct trials, u, v, w, and s shown above, they are able to obtain the following 
four equations concerning one and the same value λ: 

1. A( a2 , λ ) B( b2 , λ ) C( c2 , λ ) = -1, 
2. A( a2 , λ ) B( b1 , λ ) C( c1 , λ ) = 1, 
3. A( a1 , λ ) B( b2 , λ ) C( c1 , λ ) = 1, and 
4. A( a1 , λ ) B( b1 , λ ) C( c2 , λ ) = 1. 

Taking the product of the last three equations, and noting that A( a1 , λ ) A( a1 , λ 
) = 1, B( b1 , λ ) B( b1 , λ ) = 1, and C( c1 , λ ) C( c1 , λ ) = 1, yields 
A( a2 , λ ) B( b2 , λ ) C( c2 , λ ) = 1 
in contradiction to the first equation; 1 ≠ -1. 
Given that the four trials under consideration can indeed be consistently 
considered and experimentally realized, the assumptions concerning hidden 
variables which lead to the indicated mathematical contradiction are 
therefore collectively unsuitable to represent all experimental results; namely the 
assumption of local hidden variables which occur equally in distinct trials. 
It is probably worth mentioning that the assumption of local hidden 
variables which vary between distinct trials, such as a trial index itself, does 
generally not allow deriving a mathematical contradiction as indicated by GHZ. 
Because we have no control over the hidden variables, the contradiction derived 
above cannot be directly tested in an experiment. 
Today, entanglement is no longer regarded as merely a quantum curiosity. 
People are seeing it as a physical resource that can be spent in order to solve 
information-processing tasks in new ways. Therefore, the question whether this 
“resource" really exists in Nature and can be exploited in the ways we currently 
believe it can, is of crucial importance for the future of quantum computation and 
quantum information. 
 

 

 

3. The math behind entanglement 
 

Consider two no interacting systems A and B, with respective Hilbert 
spaces HA and HB. The Hilbert space of the composite system is the tensor 
product. 

 

If the first system is in state  and the second in state , the state of the 

composite system is which is often also written as  

States of the composite system which can be represented in this form are called 

separable states. Pick observables ΩA acting on HA, and ΩB acting on HB. 
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According to the spectral theorem, we can find a basis for HA composed 

of eigenvectors of ΩA, and a basis  for HB composed of eigenvectors 

of ΩB. We can then write the above pure state as 

, 

for some choice of complex coefficients ai and bj. 

This is not the most general state of , which has the form 

. 

If such a state is not separable, it is known as an entangled state. 

For example, given two basis vectors  of HA and two basis 

vectors  of HB, the following is an entangled state: 

. 

If the composite system is in this state, it is impossible to attribute to either 

system A or system B a definite pure state. Instead, their states are superposed 

with one another. In this sense, the systems are "entangled". 

Now suppose Alice is an observer for system A, and Bob is an observer for 

system B. If Alice performs the measurement ΩA, there are two possible 

outcomes, occurring with equal probability: 

1. Alice measures 0, and the state of the system collapses to  

2. Alice measures 1, and the state of the system collapses to . 

If the former occurs, any subsequent measurement of ΩB performed by Bob 

always returns 1. If the latter occurs, Bob's measurement always returns 0. Thus, 

system B has been altered by Alice performing her measurement on system A., 

even if the systems A and B are spatially separated. This is the foundation of the 

EPR paradox. 
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4. Applications of entanglement 

 

Quantum entanglement is the basis for emerging technologies such as quantum 
computing and quantum cryptography, and has been used for experiments in 
quantum teleportation. At the same time, it produces some of the more 
theoretically and philosophically disturbing aspects of the theory, as one can 
show that the correlations predicted by quantum mechanics are inconsistent with 
the seemingly obvious principle of local realism, which is that information about 
the state of a system should only be mediated by interactions in its immediate 
surroundings. 
Quantum cryptography, or quantum key distribution (QKD), uses quantum 
mechanics to guarantee secure communication. It enables two parties to produce 
a shared random bit string known only to them, which can be used as a key to 
encrypt and decrypt messages. By using quantum superposition or quantum 
entanglement and transmitting information in quantum states, a communication 
system can be implemented which detects eavesdropping. If the level of 
eavesdropping is below a certain threshold, a key can be produced that is 
guaranteed to be secure (i.e. the eavesdropper has no information about), 
otherwise no secure key is possible and communication is aborted. Quantum 
cryptography is only used to produce and distribute a key, not to transmit any 
message data. This key can then be used with any chosen encryption 
algorithm to encrypt (and decrypt) a message, which can then be transmitted 
over a standard communication channel. Quantum communication involves 
encoding information in quantum states, or qubits, as opposed to classical 
communication's use of bits. Usually, photons are used for these quantum states. 
Quantum cryptography exploits certain properties of these quantum states to 
ensure its security. There are several different approaches to quantum key 
distribution, one is Entanglement based protocols. The quantum states of two (or 
more) separate objects can become linked together in such a way that they must 
be described by a combined quantum state, not as individual objects. This is 
known as entanglement and means that, for example, performing a 
measurement on one object will affect the other. If an entangled pair of objects is 
shared between two parties, anyone intercepting either object will alter the 
overall system, allowing the presence of the third party (and the amount of 
information they have gained) to be determined. 
 
 
 

5. jQuantum 
 
The program jQuantum is a quantum computer simulator. It simulates the 
implementation of quantum circuits on a small quantum register up to about 15 
qubits. Its main intention is to create images—images which may help to learn 
and understand quantum circuits, and which perhaps will serve as building 
blocks for inventing new quantum algorithms. 
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1) Bell states - These quantum circuits construct the simplest entangled states, 

the Bell states or EPR states, consisting of two qubits in a superposition of two 

states which are not a product state. From the 8 possible states which two qubits 

can attain only the following four states are entangled: 

, 

The relevance of entangled states stems from the case that the entangled qubits 

are far apart from each other. A measurement of one of them then has 

an instant impact on the entangled qubit. In this way, entanglement can be used 

to perform teleportation or quantum communication. 
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2) GHZ experiment - The GHZ experiment, after Greenberger, Horne 

and Zeilinger, is an experiment in quantum mechanics which gives opposite 

results depending on whether quantum mechanics or Einstein's local realism with 

hidden variables holds. First published in 1989, it was performed in 1999 and 

falsified the predictions of hidden variable theories. 

Whereas the Bell inequalities, which in essence decide the same question, 

require a statistical evaluation of large measurement series, the GHZ experiment 

only needs four measurements. Its core idea is to take three particles, each of 

which is a two-state quantum system attaining the states  and , and 

entangle them into the GHZ state 

 

Here  and  may represent the states spin-up and spin-down, for instance, 

with the eigenvalue +1 for  and -1 for . As a quantum circuit, the GHZ state 

can be obtained from the initial state  by a Hadamard and two c-

NOTs, . With the first two Pauli 

matrices X,Y we then construct the four measurement operators 

A1 = X1Y2Y3 

A2 = Y1X2Y3 

A3 = Y1Y2X3 

B = X1X2X3 

Realized as a quantum register, a measurement in the Pauli basis X may be 

regarded as a transformation of the quantum state in the standard computational 

basis by H, i.e., 

,     , 

or equivalently 

,     , 

and a subsequent measurement of the respective qubit; analogously, a 

measurement in the Pauli basis Y a transformation by S†H 
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,     , 

or equivalently 

,       , 

and a subsequent measurement. In both cases, the measurement result is λ = +1 

if and only if the qubit state is  or , respectively, and λ = -1 if and only if 

the qubit state is  or , respectively. As can be seen with the quantum 

circuits GHZ-A1,GHZ-A2,GHZ-A3 and GHZ-B (or as can be directly verified by 

calculation), the qubits in the Ai-bases contain an oddnumber of 1-qubits, 

, 

, 

, 

whereas in the B-basis we have only those qubits with even number of 1-qubits, 

. 

For each set up state, a measurement of two qubits suffices to determine the 

state of the third one uniquely. By construction, the measurement results are 

A1, 2, 3  = -1, 

B  = +1. 

But this last measurement result for B leads to a contradiction to Einstein's local 

realism: If the GHZ state  was completely determined by some hidden 

variables and thus the same in each measurement trial, then we would 

have B  = -1, since Y1Y1 = Y2Y2 = Y3Y3 = +1 and therefore B = X1X1X3 can be 

expressed as the product A1A2A3, 
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A1 = X1Y2Y3 = -1 

A2 = Y1X2Y3 = -1 

A3 = Y1Y2X3 = -1 

 

B = X1X2X3 = -1   (if local realism holds) 

However, this is a contradiction to the result B  = +1 which quantum 

mechanics (without hidden variables) predicts. Realized GHZ experiments 

confirmed B  = +1 and therefore falsified local realism. 

 

The GHZ experiment, showing the first and last state of circuits GHZ-A1,GHZ-

A2,GHZ-A3 and GHZ-B. 
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