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In this paper, we wish to present a practical approach to
modelling the shape of a wild bush fire using fuzzy logic
and cellular automata (CA).  In this way, the time consum-
ing measurements, which are used as input data for the sta-
tistical modelling approach, could be exchanged with un-
certain knowledge built in to the decision structure.

1. Introduction

The main goal of models for the wild bush fire
spread and shape simulation is to make a prediction of
the area which will catch fire.  They are used in the
domains of fire intervention and fire prevention edu-
cation. In the sources [2, 3, 5] we can find the basic
approaches used for modelling fire spread shape and
size.  These are

∑ Physical-chemical models,
∑ Statistical models and
∑ Cell models.

The latter approach uses the network of cells and
the rule base composed of rules which describe how
the disturbance (fire) is spread through the cells under
the observed conditions.  The disadvantage of this ap-
proach is in determining the exact rules, which are
based in most cases on iterative equations and not on
experienced knowledge of the system’s behaviour pro-
vided by a system expert.

Our approach is based on the cell model.  Instead
of crisp rules, we used the concept of fuzzy logic rules.
This enabled us to use the descriptive and uncertain

knowledge of the system’s behaviour provided by fire-
men, who have practical experience of fire spread.  The
use of fuzzy logic also enables us to formulate a deci-
sion process with uncertain or approximate input data
instead of exact values.

2. The basics of cellular automata

The cellular automaton (CA) is a structure built from
cells in  n -dimensional space.  The dimension  n   of
space in real-life applications is usually 2 or 3.  Every
cell can be treated as an independent computing de-
vice which captures input data from its neighbouring
cells, calculates and changes to a new state, and this
state is used as input to other cells in the neighbourhood
in the next processing step.  The “program” of a cell’s
behaviour is unique for all cells in the space.  A
generalised definition of CA [1] can be seen in Defi-
nition 1.

Definition 1.  Cellular automaton  M   is a quadruplet
{ }A Q u F, , , ,  where  A   is an  n -dimensional array,

Q   a finite non-empty set of possible states for all cells,
u x( )   a function which returns a neighbourhood of
cell  x   unique for all cells, and  F u x q x t( ( ) ( )), ,   a set
of exact rules for local transitions (a cell behaviour
program).

The pattern is the global state of CA and it is ob-
served as a set of all states of the cells.  Other main
characteristics of CA are:

∑ Different cells can be in different states in step  t .

∑ On the base of the initial pattern and pattern’s
dynamics throughout the processing steps we can
divide the models into two groups: the patterns
which change slowly are called “cold”, and the
patterns which change very rapidly are called
“gassy”.
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∑ Some self-organisation possibilities which could
lead the system from initial global pattern to next
possible global states known from real-system’s
behaviour are:

– pattern “dies”
– pattern becomes stable or occurs cyclically

with constant period
– pattern grows with constant speed infinitely.

Often, when we create the model of a real-life sys-
tem we do not know the exact rules for local transi-
tions and that is the main problem in programming
CA’s behaviour.  For this reason we suggest a fuzzy
approach for cell-state transitions.

3. A fuzzy cellular automata approach

Cells can also be treated as fuzzy automata.  The
definition which follows was partially developed by
[4, 6, 8, 9].

Definition 2.  Fuzzy automaton  Ã   is defined as a 7-

tuple  
˜ ( , , , , , , )A I Q F f h On m m

A= p .  I  represents

n -parametric finite unempty fuzzy set of inputs,  Q
m-parametric finite unempty fuzzy set of possible
states,  F   m-parametric fuzzy set of final states and

O   output fuzzy set of automata Ã . fA   and  h   are
time dependent fuzzy functions defined as

" ( ¢ ) ¢ Î Î Îq x q t q q Q x I t Tm n, , , , , , , :

f Q I Q TA
m n m: ,´ ´ ´ ® [ ]0 1 ,

h I Q T On m: ,´ ´ ´ ® [ ]0 1 . (1)

p   represents the distribution vector of memberships
and it could be treated as a start state from crisp au-
tomata definition.  Transitions of states in automaton
are defined as

" ( ) Î " ( ) Îe x y I q q Q, , , , :*
1 2
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f q xy qA ( )1 2, ,

=  max min , , , , ,
q Q

A Af q x q f q y q
Î

( ) ( )[ ]1 2 (2)

and  I*
  is defined as a set of all final strings under  I .

A fuzzy approach in the field of CA enables us to
program the cell’s behaviour on the basis of uncertain
and descriptive knowledge of the real system’s beha-
viour.  This enables us to:

1. Provide imprecise descriptive rules directly from
the system-behaviour expert.

2. The modelled system’s dynamics are often pro-
cessed as a result of parallel triggering of oppo-
site rules.

In the processing phase at step  t   we try to decide,
for every cell, its next state  ( + )t 1   on the basis of
input data and cell-state in step  t .  A pseudo-code
sequence to explain the decision process is as follows
(3):

1. fuzzify(global input data); (for
instance wind)

2. for all cells do:

• fuzzify(local input data);

• new_stage  [x,t + 1] =

  F(u(x),q(x,t), global_data);

• defuzzify(new_stage  [x,t + 1]);

3. for all cells do:
fire_stage = new_stage; (3)

The space dimension  n   of our application men-
tioned in [5] is 2 and the neighbourhood function used
in our model is

u x y([ ]),

   =  ([ - ] [ + ] [ + ]x y x y x y1 1 1, , , , , ,

[ - ] [ + - ] [ - + ]x y x y x y, , , , ,1 1 1 1 1 ,

        [ - - ] [ + + ])x y x y1 1 1 1, , , . (4)

The basic schemes of the neighbourhood function
and possible directions of spread are shown in Fig. 1.

From the fire-spread interpretation point of view,
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we can presume that the spread of disturbance (fire) is
more or less accelerated in the direction of the wind.
The acceleration of the spread depends on input data.
Every cell is determined with an internal data struc-
ture presented in Exp. (5).

struct cells

{ int fire_stage; /*   q(x,t) */

  int inflammability; /*   q(x,t) */

  int new_stage; /*   q(x,t + 1) */
} cell[max_  x,max_  y]; (5)

The first variable represents the stage of fire in one
cell in step  t   (inference step index), the second one
represents the inflammability stage of the cell, and the
third one represents a temporary location in the deci-
sion process for determination of the fire_stage in the
step  t + 1.  All input variables are normalised in ex-
pected intervals.  The last input variable used in the
decision process is wind_speed(t), which represents
the speed of the wind.  In terms of fire spread, greater
wind speed means greater fire spread and lower wind
speed produces lower fire spread.

3.1. Fuzzifying input data

In binary logic, every cell  x   in step  t   can be in
exactly one state  q ,  ( Î )q Q .  In fuzzy logic the cell
can be simultaneously in a number of states, depend-
ing on their values and membership functions.  From
our application’s point of view [5], we have used a
state description of two parameters.  The first one is
the inflammability of the cell’s internal property and
the second one is fire_stage in step  t .  Figure 2 shows
an example of the fuzzification process for both input
variables.  From Fig. 2, we can can see that if inflam-
mability = 2.5 (it can be calculated or estimated from
the real system), then  m( )t i BigInflamm,  = 0.25,  and

m( )t i MediumInflamm,  = 0.5.  These expressions represent

the membership values for different terms of inflam-
mability.  Explanation: Inflammabilty 2.5 belongs to
the class “Medium Inflammability” with membership
0.5 and to class “High Inflammability” with member-
ship 0.25.  In the same way other input variables are
fuzzified.  These are:

∑ fire_stage = {zero, medium, high};
∑ inflammability = {zero, medium, high};
∑ wind_speed = {zero, medium, high};

Every exact input value can belong to more terms
(descriptive classes) with calculated membership from
interval  [ ]0 1, ,  which depends on the definition of
membership functions.  The decision-making phase
as the next step uses terms as input variables.

3.2. Fuzzy decision process

Rule Exp. (6) shows an example of a fuzzy rule
from the application [5].  It is used to determine the
fire stage in the cell  [ ]x y,   (2-D model) in step  t + 1,
on the basis of input data which are neighbourhood
states and the cell’s  [ ]x y,   fire state in step  t .

if (cell  [x,y].fire_stage = �medium�)

AND (cell  [x,y].inflammability =
    �high�)

AND (wind_speed = �high�)

AND (cell  [x-1,y].fire_stage = �high�)

then (cell  [x,y].next fire stage
     = �high�). (6)

The logic interpretation of the presented rule is: if
fire in the cell is medium and if the cell’s inflammable
stage is high and if the wind speed is high and the fire
in the left neighbouring cell is high then the fire in the
cell on the next step will be high.

The rule set consists of 288 rules.  All of them are
of the same type as the example in Exp. (6).  They
describe how the disturbance is carried from neigh-
bouring cells to the central one.

Fig. 2.  Fuzzy sets inflammability and fire stage.
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Fig. 1.  Basic schemes of neighbourhood function and spread
directions.
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After the sequence of events over activations of rules
we get an output fuzzy value.  It means in fuzzy logic
terms that membership of output terms is assigned with
max. value during iterations.  It is presented with the
same three terms as the fire_stage variable.  The last
step of the algorithm (see Exp. (3)), which has to be
performed is the defuzzification process of the output
variable.  In our experiments, the COG method was
used [7, 10].

4. Results

In this section we wish to present the results of the
simulation compared with the statistical method’s re-
sults.  The latter method is widely used in practice.
The shape of the fire is found on two semi ellipses.
The parameters of these depend on the wind speed
(global dynamic variable) and on a constant, which
depends on the inflammability of the area.  Fire statis-
tics performed on real fire data show that a ratio be-
tween the length (direction of wind) and the width of
the fire spread shape is between 1:1 (no wind, equally
inflammable area) and 1:6 (strong wind in the height
of flames, equally inflammable area).  The results of
our fuzzy method show similar ratios.  Figure 3 shows
the shape (grey shape) as a result of the proposed fuzzy
method compared to the statistical result (2 semi el-
lipses).  Figure 4 shows the statistical shape compared
to the real fire spread shape and finally, Fig. 5 pre-
sents the results of the proposed fuzzy method com-
pared to real data.  The real and statistical data are
resumed from [2].

The results presented in Figs 4 and 5 show us that
the statistical method gives slightly better results in
comparison to our results.  The main reason for this is
a lack of data on the change of wind (speed and direc-
tion) not mentioned in the source data [2].  The main
disadvantage of the statistical method is in the large
number of experiments which must be performed on a
specific area to get the parameters of the semi ellipses.
We suppose that in the case of a randomly chosen wild
fire location (in which case we lack specific statistical
data) our method can give better results than the sta-
tistical approach.

5. Conclusion

We have built a relatively simple cell network, with
a fuzzy rule based spread of disturbance.  Fuzzy logic

enables us to use descriptive uncertain knowledge
about the simulated system’s behaviour.  The proposed
modelling approach could also be used in the field of
healing wounds, the spread of diseases, social phenom-
ena etc.  The only disadvantage of processing fuzzy
rules is the increased processing time.  Our main in-
tention in future is to build a universal application for
cell space behaviour modelling.  It will be built with
improvements in terms of:

∑ optimised speed of processing fuzzy arithmetic
operations

Fig. 3.  Statistical approach results compared to fuzzy CA.

Fig. 4.  Statistical approach results compared to real data.

Fig. 5.  Fuzzy CA approach compared to real data.
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∑ graphic interface to provide interactive work with
decision details

∑ the target platform has to be a high speed perfor-
mance workstation

∑ fuzzy logic alternative approaches built in
(fuzzification, operators,..)

∑ distributed processing of cell’s state transition
on more platforms.
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