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Abstract

1 Introduction

Over the last decades, great understanding has been reached in the field of biology, in terms of one of the key

life processes in the cell - protein production from the instructions encoded in an organism’s DNA. Protein

production is controlled by means of transcription factors, which bind to their appopriate sites on the DNA

strand, acting as transcription activators or repressors. By utilizing recombinant transcription factor binding

sites, transcription and consequently protein production rates can be controlled. Technological advances in

terms of processes, methods and infrastructure have made it possible to look on the subject from an engineer’s

point of view. It opens up the potential to realize a living device with an merely arbitrary functionality (up

to the constraints on complexity (1)), which could solve problems using formal logic (2). The vast range of

applicable problems include curing various kinds of diseases, hereditary disorders, biochemical disasters etc.

The basic logical operations analogous to digital circuits have been sucessfully realized (3; 4; 5). Our goal is

to take the achievements further towards tangible control of biological circuit functionality.

The process of a live realization of a biological circuit can be substantially time and money consuming.

DNA sequencing and cell culture incubation are an example of the steps that can take hours to days. Detailed

planning and modelling is needed in order to eliminate as many mistakes as possible in the early design

phase. Mathematical models of biological circuits tend to convey their dynamics as accurately as possible.
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As opposed to electronic digital circuits, the depth of subprocesses involved in protein production is much

larger. Intermediate steps in protein production, such as RNA polymerase binding, mRNA translation,

protein transcription, multimerization or phosphorilation all take a significant amount of time and have to

be accounted for. Consequently, the tendency is to model the dynamics in depth (6).

The very details of a cell functioning for any organism are not yet fully understood. To model a biolog-

ical circuit, the knowledge gathered is conveyed in the form of ordinary differential equations or chemical

equations. A common approach towards modelling a biological circuit goes as follows: after gathering the

measured experimental data, the appropriate model is chosen amongst a set of possible models by using

statistical methods (7; 8). Parameters that best fit the measured experimental data are then estimated,

using some measure of error, such as least mean square (9). A thorough overview of parameter estimation

methods using ordinary differential equations is given in (10). The parameter search space is vast, where

some parameters can be experimentally measured (e.g. reaction rate constants), while others cannot (e.g.

non-linearity in protein production) and are most often fitted (11).

To solve a problem in vivo, one has to adapt to spatial and time constraints. An example is insulin

secretion in human beings. As an example, insulin is a signal for the body to store the blood glucose,

which oscillates with the period of approximately 5-15 minutes (12). The proper timing in insulin intake is

key in treating Diabetes type 1, from where it follows that the system would have to obey the given time

constraints. A synthetic approach towards tackling the problem consists of the definition of a desired function

of the circuit, presenting it in a proper model and determining the parameter values that will produce the

desired resulting behaviour. Knowing the resulting parameter values, the decisions in chosing parts and

materials while building a biological circuit are facilitated.

The systems of differential equations are tipically composed of a large number of parameters. Hence,

the analitical approaches towards integration are often unfeasible. For our purposes, numerical integration

methods with sufficient accuracy (13) are used.

Achieving the desired behaviour with a large number of parameters is a non-trivial task. Again, analiti-

cally solving the problem includes a complex search for bifurcation points (14). A common workaround are

natural computing techniques, which exhibit natural phenomena as inspiration for solving the problem (15).

One such phenomena, the survival of the fittest, is used in genetic algorithms.

We demonstrate a concept of a bottom up approach towards building a biological circuit by using a

model of an oscillator, based on a time delayed, negative feedback loop (13). In spite of accuracy of the

model being crucial for the accuracy of the result, our test model lies upon a generalization of intermediate
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processes (grouped under a time delay variable), which does not affect the proof of concept. The desired

behaviour of the oscillator is essentially described by the amplitude and the frequency of the oscillations.

An application of a genetic algorithm is then used to explore the parameter space and return the parameter

values that produce the desired behaviour.

In section 2, the computatinal framework for solving the problem is defined. Furthermore, the parameter

space search algorithm and its improvement are presented. As a case example, the model of an oscillator

circuit is examined. In section 3, the algorithm is run on three test cases and the results are analyzed.

Section 4 comments on the overall achievement and discusses future work and applications.

2 Computational framework

Ordinary differential equations are a common way to represent a biological circuit. In essence, their compo-

nents can be classified as observed chemical species and the equation parameters, hereafter refered to as a

parameter set. First can be interpreted as input and output variables of the system, while the second deter-

mine its dynamics. The problem of achieving desired system behaviour is then reduced to an optimization

problem, subject to finding the appropriate values of the parameter set.

In order to employ a genetic algorithm, the parameter sets are modelled as members of a population. Accross

the population, parameter sets differ in their values. Each set determines the behaviour of the system, which

is in turn evaluated by a fitness function. The population evolves through generations of new members, in-

troducing random changes in parameter values, also known as mutations. At the end of each such iteration,

the best members are selected and chosen for reproduction. In such manner, analogous to natural selection,

the population converges towards finding the optimal result (16). The basic outline of a genetic algorithm,

adapted from (15), is sketched in Figure 1.

1. Initialize the population.

2. Evaluate the population

3. While the desired result is not reached:

(a) Select parents

(b) Recombine selected parents

(c) Mutate the resulting offspring

(d) Evaluate new members on the fitness function

(e) Select individual members for the next generation

Figure 1: The basic outline of a generic genetic algorithm.
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Figure 2: Schematic representation of the model biological circuit

2.1 Case study: a biological oscillator

So far, many mathematical models of biological oscillators have been proposed. A common property is

the negative feedback loop in the synthesis of the observed protein. Without further assumptions, the

negative loop itself leads into a stable steady state (17). Assuming an additional delay between transcription

and translation phases and nonlinearity in protein synthesis cascade, the system produces oscillations in

concentrations of observed chemical species. Due to their dynamic nature, many processes involved during

protein synthesis are difficult to quantify. Examples include protein phosphorylation or protein folding, which

is its own field of research altogether. Consequently, numerical approximations are used in order to get as

close as possible to a formal description of the observed system. For the purpose of our proof of concept,

we decided to keep the model as simple as possible. Scheper et al. (13) propose a model of intracellular

circadian oscillator, based on the following Hill equations:

dM

dt
=

rM
1 + (P (t)/k)n

− qM ·M(t) (1)

dP

dt
= rP ·M(t− τ)m − qP · P (t) (2)

where M(t) and P (t) represent the concentrations of mRNA and the resulting protein, repectively. The

model biological circuit is depicted in Figure 2. The parameters in the two equations compose a parameter

set and are described in Table 1.
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Parameter label Meaning Initial value
rM Rate of production (mRNA) 1.0
rP Rate of production (protein) 1.0
qM Rate of degradation (mRNA) 1.0
qP Rate of degradation (protein) 1.0
τ Transcription-translation delay 1.0
m Nonlinearity in protein synthesis cascade 3.0
n Hill coeficient 2.0
k Scaling constant 1.0

Table 1: The observed parameter set and the initial values.

2.2 Problem definition

In (13), a parameter subspace search was performed, where not all the parameters in the equation were

considered. In this work, we look at the problem from another angle: given the oscillator behaviour, we

derive the parameter values that will produce it.

Since it would not be feasible to find all the solutions of the two equations analitically, we make use of

a customized genetic algorithm to derive the parameter values that will result in a system with minimal

error regarding the desired behaviour. The input of the algorithm are the arguments of a sine wave, which

describes the desired behaviour:

ywave(t) = Awave · sin(
1

λwave
· t) +

Awave
2

, (3)

where Awave and λwave stand for amplitude and wavelength, respectively. In order to make the problem

solution as general as possible, all quantities in the system are to be interpreted on an arbitrary unit scale.

2.3 Parameter set evaluation

Given the time interval and time step, the values of the equations 1 and 2 are computed using a numerical

integration method for each parameter set (denoted pset in the following equations). Depending on the

parameter values, the system can produce oscillations or end up in a stable steady state. From the obtained

numerical data, the following properties are derived: a flag, whether the observed parameter set produces

oscillations (Bpset), oscillating amplitude (Apset), wavelength (λpset), and the rise and fall times (tpset/fall

and tpset/rise). These are involved in computing the criteria, which in turn are used to evaluate the fitness

function. The former is the core of the selection process. The criteria are computed as described in Table 2.

The smaller the value of a single criterium, the better the observed parameter set matches it.
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Shorthand Criterium Evaluation
CA Amplitude |Awave −Aset|
Cλ Wavelength |λwave − λset|
Csym Symmetry |tset/rise − tset/fall|

Table 2: Criteria used to compute the fitness function.

The fitness function1 is then defined as follows:

Fpset =

{
CA+Cλ+Csym

3 , Bpset = 1
∞, Bpset = 0

(4)

2.4 Deriving the optimal solution

The initial population of parameter sets is derived by introducing mutations in the initial values, defined

in Table 1. The fitness function (equation 4) is evaluated for each parameter set and the top half of the

population (parameter sets with the values of the fitness funtion less than the population mean) is preserved

in the next generation. Additionaly, new parameter sets are derived as offspring from the existing population.

The closer a parameter set is to the desired behaviour, the more offspring will it produce, as the probability

to get further close to the desired behaviour is larger. The number of offspring for an individual parameter

set in population P is calculated as follows:

Fcut = E(
∑
pset

Fpset) (5)

Pnew = {pset ε P;Fpset ≤ Fcut} (6)

Ototal = 1 + |Pnew| (7)

Opset = b 1

Fpset
· 1∑

xεPnew
1
Fx

·Ototalc (8)

where Fcut is the mean fitness of the population, Pnew is a subset of the population to be reproduced,

Ototal is the total number of offspring produced for the current generation, of which each population member

gets its share by calculating Opset in equation 8. The child parameter set is derived from its parent with

a pretedermined mutation probability at any of the definitive eight parameter values. In such manner, the

procedure is repeated from generation to generation for a predefined number of times. In each generation

new individuals are derived and the best are selected. As shown in (16), such system will monotonically

converge towards global maxima and sucessfully avoid local minima, which was the case in our tests as well.

1In our case, the lesser the value of the fitness function, the better the parameter set matches the desired behaviour.
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2.5 Improving the search time

During the development phase, the initial solution was improved in the following way. The simulation of the

life of a population is repeated and the solution at the end of one simulation is the input to the next. We

repeat such step for multiple times. In each step, the fitness function is modified, such that only a subset of

the criteria (see Table 2) is evaluated. A single step is then repeated until the desired user defined accuracy

is reached. Using the resulting solution, the algorithm then proceeds in evaluating the next criteria subset.

The criteria subset for a given step is shown in Table 3.

Criteria subset number Evaluated criteria subset
1 Amplitude
2 Wavelength
3 Amplitude, wavelength, symmetry

Table 3: Choosen subsets of evaluated criteria depending on the current step.

This modification allows us to find the solution more quickly, escape local maxima or to bias one of the

criteria. The final solution outline is given in Figure 3. Note that the recombination step from Figure 1 has

been skipped in our solution, since the experiments have shown better results without it.

1. Initialize the parameter set population.

2. Evaluate the population

3. While the desired behaviour is not reached:

(a) Select parents and produce offspring, inversely proprotional to
their fitness value

(b) Mutate the resulting offspring

(c) Evaluate new members

(d) Select individual members for the next generation

Figure 3: The solution outline.

3 Results

The algorithm was tested for various input behaviours. To reproduce the behaviour of (13), with input

amplitude of 16 nM and wavelength of 24 h, we got perfectly symetric stable oscillations as close as 15.72 nM

amplitude (0.017 % deviation) and 24.14 h (0.0062% deviation). The sampling time was 1000 h and sampling

step was 6 min. The resulting parameters are shown in Table 4, column Test 1, and differ from the ones

proposed in (13). To achieve the result, 90 generations of oscillators were analyzed with maximum population
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size of 3200. The wavelength and amplitude convergence graphs are shown in figures [] and [].

In accordance with the tendency to achieve faster frequencies and tunable amplitudes, we tested the

system for other input behaviours. In the following example, the input amplitude was 8.0 nM and wavelength

of 12 h. The end system resulted in perfectly symetric stable oscillations of 7.18 nM (10.23 % deviation)

and 12.31 h wavelength (0.025 % deviation) and the resulting parameters are shown in Table 4, column Test

2.

Some parameters are difficult to quantify (i.e. nonlinearity in protein synthesis cascade, Hill’s coefficient

and scaling constants, ...). In order to test the flexibility of the algorithm, a subset of parameters can be left

intact (i.e. be unchanged during the course of the algorithm). Again, the solution was tested against values

in (13), leaving the m parameter anchored at it’s initial value. The resulting amplitude and wavelength were

15.607 nM (0.024% deviation) and 25.299 (0.054% deviation) respectively. Resulting parameters are shown

in Table 4, column Test 3.

Parameter label Units Test 1 Test 2 Test 3
rM h−1 1.976 2.986 2.027
rP h−1 1.666 2.731 1.610
qM h−1 0.536 0.739 0.662
qP h−1 0.996 1.134 0.928
τ h 9.236 4.262 8.449
m None 2.858 0.802 3.0
n None 6.148 6.429 3.056
k None 2.211 3.856 0.088

Table 4: Parameters of the system an their resulting values

The results show that there are multiple points in parameter space that produce similar behaviours for a

given system, as well as that with a given desired behaviour, the required parameter values can be derived.

Parameter values can be controlled to some degree (using promoters with various strengths, proteins and

operator sites with different binding rates, post-transcriptional regulation to modify the delay, etc.), allowing

us to engineer arbitrary structures with desired behaviours.

4 Conclusions and future work

The advances in synthetic biology, genetic engineering and bioinformatics will allow researchers to shift

towards a synthetic approach in buildic biological logic components. The growing registries of DNA parts

(promoters, regulator binding sites, coding sequences etc.) help us to predict the properties of the systems

that are to be built (example: http://www.biobricks.org). A number of health conditions require treatment
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(a) (b)

(c) (d)

(e) (f)

Figure 4: (a) Test 1: concentrations of protein (full line) and mRNA (dashed line). (b) Test 1: Comparison
with protein concentration (full line) and target behaviour sine wave (dashed line). (c) Test 2: concentrations
of protein (full line) and mRNA (dashed line). (d) Test 2: Comparison with protein concentration (full line)
and target behaviour sine wave (dashed line). (e) Test 3: concentrations of protein (full line) and mRNA
(dashed line). (f) Test 3: Comparison with protein concentration (full line) and target behaviour sine wave
(dashed line).
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(a) (b)

(c) (d)

(e) (f)

Figure 5: (a) Test 1: Amplitude value convergence. (b) Test 1: Frequency (1/λ) value convergence. (c) Test
2: Amplitude value convergence. (d) Test 2: Frequency (1/λ) value convergence. (e) Test 3: Amplitude
value convergence. (f) Test 3: Frequency (1/λ) value convergence.
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in a predetermined and widely distributed intervals of time. For instance, to facilitate problems caused by

insomnia, melatonine is taken after in defined periods of time. To treat this and similar conditions, systems

with predetermined oscillation period are ought to be built. By knowing the behaviour of parts and using

proper modelling and prediction algorithms, the development is significantly faster.
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