

Seminar work

„Software Reliability Models“

Jindra Bruderová
jindra.bruderova@uhk.cz
March 4, 2008

 2

JELINSKI – MORANDA MODEL ... 3
Introduction .. 3
Software reliability... 3

Software Reliability Models types ... 4
Jelinski – Moranda model .. 5

Jelinski – Moranda model assumptions ... 5
Failure intensity function ... 6
Estimation of model parameters... 7

Practical part.. 9
CASRE... 9

CASRE benefits ... 9
Input ... 10
Output... 10
Conclusion.. 10
Others models .. 17
Software Reliability Growth Models ... 17

Musa’s Basic Model... 17
Musa/Okumoto Logarithmic Poisson Model ... 17
Comparison of these models .. 18

Failure count models .. 18
The Goel-Okumoto model ... 18

Error sendings models .. 18
Mills error sending model .. 18

References .. 20

 3

JELINSKI – MORANDA MODEL

Introduction

Since time when computers took part in our daily life software and hardware developers have

to be very careful of system reliability and safety. A lot of people are not aware of how many

so common things are managed by computers. If we assume for example system for medical

monitoring or system in the airport the break down is not thinkable. And therefore computer

reliability became one of the most important part of each system. In this way we have

to consider hardware reliability but reliability of software as well. In the next text I will focus

on software reliability.

Software reliability

Reliability of software is possibility of no failure during a given operating time in a specified

environment. It is one of the most important software attribute. But real world programme

without failure is not achievable. Commonly we can buy software which is still developing

and failures are repaired in operation. Great example of this approach is operating system MS

Windows which you can buy and from time to time have to dowloand pack of repairings for

improving your system.

Reliability can be adressed by two ways: models and tools. Models predict reliability

of a system based upon failure data whereas tools implement reliability models using

software.

Models have been developed to measure, estimate and predict the reliability of computer

software. It is great way how to ensure that product reliability meet the consumers needs,

predict and manage costs connected with the product. Anyway more economical is to solve

the problems in the phase of development then later and just models should quarantee us

the cheaper solution.

At the end of software development life cycle newly creating software should be tested.

Testing is complex propress. It is based on simulation and thus the test provides us data

 4

to estimate the reliability. The major goal of a software testing process is to find and fix

as many deffects as possible and realease product with a reasonable reliability. We never can

catch out all errors but we want to catch the majority od them.

Steps of software reliability test:

1. Simulation of usage in order to speciafe the usage

2. Statistical testing based on the specified usage

3. Modeling the test result to estimate current level of reliability

4. Prediciton, using reliability modeling

Software Reliability Models types

The models that are used in the software engineering can be divided into four classes that

represent what they focus on.

Time between failures models

These types of models will be used if we need to see how the reliability changes over time.

From these models we can see wheter the failure intensity increase (reliability drops

and the time between failures decrease) or decrease (reliability growth and the time between

failures encrease). Example of this kind is model is Jelinski – Moranda Model.

Failure count models

Models are based on the number of failures that occur in each time interval.

Failure seeding models

By seeding errors to a document and then let the document undergo testing of some kind it is

possible to calculate how many „real“ errors that exist.

Input domain-based

By finding all unique paths through the program and then execute each and everyone it is

possible to guarantee that everything is tested.

 5

Jelinski – Moranda model

It was introduced in 1972 for discovery and removal of faults in computer software. It is

a software product test-time error detection model. The big advantage of this model is

possibility to estimate total testing time which is nessesary for achivement of reliable system.

The main idea: „When the total number of remaining faults decreases as the errors are

eliminated, the program should be able to run longer before a new failure occurs.“ Otherwise

the failure intensity should decrease as time goes by.

Picture 1

In the picture 1 we can easily see the main idea of Jelinski – Moranda model. In the beginnig

we have „n“ bugs and failure rate „µ“. Step by step we remove failures and in this way „n“

decreases. At the end of process we have no failure and our system is perfectly reliable.

Of course this idea is just only Utopia. System without bugs does not exist. This is that what

we would like to achieve.

Jelinski – Moranda model assumptions

- The initial number of faults is constant but unknown. Faults are assumed before

testing and probably these faults will cause errors during testing.

- The faults are independents of each other and equally hazardous. They have the same

probability of emerging during the test.

- Faults are removed immediately in the time of emerging and any other new errors will

not occur during the debug process.

- The failure rate is constant during a failure interval and it is proportional to number of

faults remaining.

n n - 1

0

…..
n.µ (n – 1)µ µ

 6

Picture 2 The squares mean the measured failure intesity at different times.
For each removal of a fault the failure intensity decreases. We try to read from the measured

values how the failure intesity will drop and plot it.

Picture 3 From this picture we can predict how the failure intesity will develop over the time.

Failure intensity function

In the same way we can say hazard rate. This function drops by decreasing number of faults

otherwise after kth failure there are (N – k) faults left and the failure intensity decreases

to µ(N – k).

µλ)(kNi −=

N… Finite unknown number of bugs in the software

µ….Failure rate is directly proportional to the current fault content of the software

 100 200

50

10

20

30

40

F
ai

lu
re

s
/ H

ou
rs

(I

nt
es

iti
y)

Hours

Failure intensity

 100 200

50

10

20

30

40

Hours

F
ai

lu
re

s
/ H

ou
r

In
te

ns
ity

 7

Denote by Ti i = 1,2,3,… N the time between the (i-1)th and the ith failures, Ti is thus the ith

failure-free time interval. Ti values are exponentially distributed random variables

with parameter µλ)1(+−= iNi , i = 1, 2, 3,…N.

The distribution of Ti is given by P(Ti<ti)= µ(N – i + 1)exp{-µ(N – i + 1)ti}, i=1,2,…,N

The main property of the Jelinski – Moranda model is that the failure intensity is constant

between the detection of two consecutive failures.

Picture 4 The failure intensity versus Number of removed faults

On this picture we can see the same as on the previous pictures but here the failure intensity is

confronted by number of removed faults. For each removal fault the intensity rate decreases

by µ.

Estimation of model parameters

We know at least 2 practical methods of parameters estimation for software reliability models.

The first one is maximum-likelihood and the second one least square. For pusposes of the

Jelinski – Moranda Model I will focus on maximum-likelihood method. The maximum

likelihood estimates the parameters by solving a set of equations. The base of this methods is

the likelihood function. Let ti is ith failure-free time interval during the testing phase . It is

time between the (i-1)th and the ith failure. The number of detected failure will be denote as

„n“. Suppose that the failure data set t={t1, t2, t3 ,…tn; n>0} is given, the paramters N0 and µ

can be easily estimated by maximazing the likelihood function. This function of parameters

N0 and µ is given by:

i N

2

µ

2µ

µ(N-i)

µ(N-i+1)

 1 i+1 … N+1

F
ai

lu
re

 in
te

ns
ity

Number of removed faults

Nµ

 8

∏
=

+−−+−=
n

i
in tiNiNNtttL

1
00021 })1(exp{)1(),;,...,(µµµ

The natural logarithm of the above likelihood function is

∏ ∑
= =

+−−+−=
n

i

n

i
i

n tiNiNL
1 1

00 }])1(exp{)}1({ln[ln µµ

By taking the partial derivatives of this log-likelihood function with respect to N0

and µ respectively, and equating them to zero, we get the following likelihood equations

∑∑
==

=−
+−

=
∂
∂ n

i
i

n

i

t
iNN

L

11 00

0
1

1ln µ

∑
=

=+−−=
∂

∂ n

i
itiN

nL

1
0 0)1(

ln

µµ

Usually numerical procedures have to be used solve these two equations. However,

the equation system can be simplified as follows. By solving ? from the second

equation above we get

1

1
0 })1({ −

=
∑ +−=

n

i
itiNnµ

and by inserting this into the first equation, we obtain an equation independent of µ

∑

∑

=

=

+−
=

+−
++

−
+

n

i
i

n

i
i

tiN

tn

nNNN

1
0

1

000)1(
1

1
.....

1

11

The estimate of N can then be obtained by solving this equation. Inserting the estimated N0

 into the expression of µ, we may then get the maximum likelihood estimate of µ.

 9

Practical part

CASRE
For showing practical utilization of the Jelinski – Moranda model I decided to use the

program „CASRE“. This program is free downloaded on the Internet on

https://www.openchannelfoundation.org. CASRE is abreviation of Computer Aided Software

Realiability Estimation. It was developed as a software reliability measurement tool which is

easy to use for nonspecialists in software reliability engineering. Two file formats of input

are allowed:

– Time Between Failures (error #, time since last failure, error severity)

– Failure Counts (interval #, # errors in interval, interval length, error severity)

Program outputs are different graphs and calculations of different indicators. We can choose

from diferrent models.:

Time between failure models

– Geometric

– Jelinski-Moranda

– Littlewood-Verrall

– Musa-Basic

– Musa-Okumoto

– NHPP

Failure Count models

– Generalized Poisson

– NHPP

– Schneidewind

– Shick-Wolverton

– Yamada S-shaped

CASRE benefits

- The CASRE user interface is fairly user friendly. Mechanisms such as “parameter

estimation”, make it easier to use the various reliability models.

- The ability to combine the results of several models is a powerful feature.

- Results are available in tabular and graphical formats.

- Can apply various filters and noise reduction functions to effect the shape of the input data.

 10

Input
The data from table 1 was used as an input to CASRE. The data has to be in an exact text

format data.txt and the file has to have the extension „ .dat “. For the purposes of the Jelinsky –

Moranda model we use the input format „Time Between Failure“.

Output
In the graph 1 the Cumulative Time Between Failures (CTBF) was plot from the data.

Reliability is increasing if the Mean Time Between Failures (MTBF) is increasing as the total

number of failures accumulates during the testing phase. In the graph 1 we can see that the

slope of CTBF grows still more slowly as the total number of failures accumulates during

testing. So that means that CTBF is decreasing as time goes by due to fact that the MTBF is

increasing.

In the graph 2 we can see the failure intensity which is supposed to be decreasing.

In the graph 3 the Time Between Failure is ploted which was around 8 hours at the end of the

testing period .

Finally the program offers us the overview of all estimate for the given model (in our case the

Jelinski – Moranda model) in the table 2.

Conclusion
The software needs to be tested for approximately an additional 54 hours before its release to

achieve the failure intensity of 0,084 faults/hour, which can be supposed to be satisfactory.

Date Time
Cumulative Execution

Time
Time Between

Failures
Fault Description

Fault
Severity

Sept 5, 2001 9:30 AM 0.50 hours 0.50 hours GUI Warning Message Error Low (1)

Sept 5, 2001 9:45 AM 0.75 hours 0.25 hours Calculation Engine Error High (9)

Sept 5, 2001 10:00 AM 1.00 hours 0.25 hours Output Report Error Low (1)

Sept 5, 2001 10:30 AM 1.50 hours 0.50 hours Output Report Error Low (1)

Sept 5, 2001 11:15 AM 2.25 hours 0.75 hours GUI Schematic Diagram Error Medium (5)

Sept 5, 2001 1:15 PM 3.25 hours 1.0 hours GUI Fatal Error High (9)

Sept 5, 2001 1:45 PM 3.75 hours 0.50 hours Calculation Engine Error High (9)

Sept 5, 2001 2:30 PM 4.50 hours 0.75 hours GUI Warning Message Error Low (1)

Sept 5, 2001 3:15 PM 5.25 hours 0.75 hours Output Report Error Medium (5)

Sept 5, 2001 3:30 PM 5.50 hours 0.25 hours GUI Dialog Screen Error Medium (5)

Sept 5, 2001 4:00 PM 6.00 hours 0.50 hours GUI Dialog Screen Error Low (1)

Sept 5, 2001 4:30 PM 6.50 hours 0.50 hours Calculation Engine Error High (9)

Sept 6, 2001 10:00 AM 8.00 hours 1.5 hours Output Report Error Low (1)

Sept 6, 2001 11:15 AM 9.25 hours 1.25 hours GUI Warning Message Error Low (1)

Sept 6, 2001 2:00 PM 11.00 hours 1.75 hours Output Report Error Low (1)

Sept 6, 2001 3:30 PM 12.50 hours 1.50 hours Calculation Engine Error High (9)

Sept 6, 2001 4:15 PM 13.25 hours 0.75 hours Output Report Error Low (1)

Sept 7, 2001 9:15 AM 14.25 hours 1.00 hours Output Report Error Low (1)

Sept 7, 2001 11:45 AM 16.25 hours 2.00 hours GUI Warning Message Error Low (1)

Sept 7, 2001 3:00 PM 18.50 hours 2.25 hours Calculation Engine Error High (9)

 12

Sept 7, 2001 4:15 PM 19.75 hours 1.25 hours GUI Dialog Screen Error Medium (5)

Sept 17, 2001 10:00 AM 22.00 hours 2.25 hours GUI Dialog Screen Error Low (1)

Sept 17, 2001 11:30 AM 23.50 hours 1.50 hours Calculation Engine Error Medium (5)

Sept 17, 2001 2:15 PM 25.25 hours 1.75 hours GUI Dialog Screen Error Low (1)

Sept 17, 2001 3:45 PM 26.75 hours 1.50 hours GUI Dialog Screen Error Low (1)

Sept 18, 2001 9:15 AM 28.75 hours 2.00 hours GUI Schematic Diagram Error Low (1)

Sept 18, 2001 11:30 AM 31.00 hours 2.25 hours GUI Dialog Screen Error Low (1)

Sept 18, 2001 3:30 PM 34.00 hours 3.00 hours Calculation Engine Error Medium (5)

Sept 19, 2001 1:30 PM 38.50 hours 4.50 hours Output Report Error Low (1)

Sept 19, 2001 11:00 AM 44.00 hours 5.50 hours GUI Dialog Screen Error Low (1)

Sept 19, 2001 1:30 PM 52.00 hours 8.00 hours GUI Dialog Screen Error Low (1)

Table 1

 13

Graph 1 – Cumulative time between failures count

 14

Graph 2 – Failure intensity

 15

Graph 3 – Time Between Failures

 16

Table 2 – Model results table

Others models

Software Reliability Growth Models
These models rely on observation of failure occurrence and try to predict future failure behavior. Here are

two examples of these models

– Musa’s Basic Model

– Musa/Okumoto Logarithmic Model

General assumptions:

- Faults are independent and distributed with constant rate of encounter

- Execution time between failures is large compare to instruction execution time

- All failures are observed

- Fault causing failure is corrected immidiately and reoccurance of this failure is not counted

Musa’s Basic Model

Assumption: Decrement in failure intensity function is constant.

Consequence: Failure intensity is function of average number of failures experienced at every given point

in time(=failure probability).









−=

0
0 1)(

v

µλµλ

– λ(µ): failure intensity

– λ0: initial failure intensity at start of execution

– µ: average total number of failures at a given point in time

– v0: total number of failures over infinite time

 Musa/Okumoto Logarithmic Poisson Model

This model uses a failure intensity decay parameter (instead of the total failures expected, which is used

in Musa´s basic model). The decrement per failure for the logarithmic Poisson model is smaller each time

a failure is experienced.

θµλµλ −= e0)(

θ : failure intensity decay parameter

 18

Comparison of these models

Basic model assumes that there is a 0 failure intensity while logaritmic model assumes convergence to 0

failure intensity.

Basic model assumes finite number of failures in the system while logaritmic model assumes infinite

number.

Parametr estimations are usually obtained from system test observation and operational system by

comparison with values from similar projects.

Failure count models
Group of models that are based on the number of failures that occur in each time interval. One subgroup of

these models is the NonHomogeneous Poisson Process models (NHPP), firstly proposed by Goel and

Okumoto in 1979, which has formed the basis for the failure count models.

The Goel-Okumoto model

Assumptions:

- The cumulative number of faults detected at time t follows Poisson distribution

- All faults are independent and have the same chance of being detected

- All detected faults are removed immidiately and no new faults are introducedas

The Goel-Okumoto model assumes that the failure process is modeled by an NHPP models with the mean

value function µ(t) given by

)1()(bteat −−=µ

Where a > 0 and b > 0, a is the expected total number of faults and b is the “shape” factor. The failure

intensity is btabet −=)(λ which is equal to the derivate of µ(t).

Error sendings models

Mills error sending model

Mills propose a method to estimate the number of errors in a program by introducing „psedo-errors“ into

the program. From the debugging data, which consists of indigenous errors and induced errors, the

unknown number of indigenous errors can be estimated. This model can be represented by

a hypergeometric distribution.

The probability of k induced errors in r removed errors follows a hypogeometric distribution.

 19

)(

))((

),;;(
1

1

11

r

nN
kr

N

k

n

rnnNkP
+

−=+

where

N = number of indigenous errors

n1 = number of induced errors

r = number of errors removed during debugging

k = number of induced errors in r removed errors

r-k = number of indigenous errors in r removed errors.

Since n1, r and k are known, the maximum likelihood estimate of N can be shown as

k

krn
N

)(1 −
=

But this method was criticised for its inability to determine the type, location and difficulty level of

the induced errors such that they would likely to be detected equally likely as the indigenous errors.

)(

))((

),;;(

11

11

r

N
kr

nN

k

n

rnnNkP
−
−

=+

And the maximum likelihood estimate of N was modified to:

k

rn
N 1=

References

[1] Björn Andersson, Marie Persson: Software reliabity prediction Master ThesisSoftware

Engineering, Thesis no: MSE-2004-17, June 2004, document is available from

<http://www.pdfdownload.org/pdf2html/pdf2html.php?url=http%3A%2F%2Fwww.bth.se%2

Ffou%2Fcuppsats.nsf%2Fall%2Fbaac9c916708446cc1256eb7003eba23%2F%24file%2FSoft

ware_Reliability_Prediction.pdf&images=yes>

[2] K.S. Trivedi: Probability and Statistic with Reliability, Publisher – John Wiley &

Sons, document is available from

<http://www.pdfdownload.org/pdf2html/pdf2html.php?url=http%3A%2F%2Fwww2.toki.or.i

d%2Fprobter%2Fdoc%2Fslide%2Fchap8_p5_s.pdf&images=yes>

[3] Michael J. Mangieri: A Comparison of Two Software Reliability Engineering (SRE)

Models: Jelinski-Moranda and Musa-Okumoto Logarithmic Poisson, available from

<http://members.tripod.com/mjmangieri/SE/csmn658.htm>

[4] M.C.J van Pul: Simulations on the Jelinski – Moranda model of software reliability,

Department of operations research, Statistic and Systém theory, Report BS-R9122 September

[5] Philip J. Boland: Challenges in Software Reliability and Testing, Department of

Statistic National University of Ireland – Dublin

[6] Raihan Al-Ekram: Software Reliability Growth - Modeling and Prediction, Dept. of

Electrical and Computer Engineering, University of Waterloo

[7] Dave Baker, Alan Goodbrand, David Menks: CASRE Software Reliability Tool,

available from http://www.ucalgary.ca/~dbmenks/seng/seng609.11/casre.html#toc

[8] MichaelGrottke: SoftwareReliabilityModelStudy

[9] Jie Lian: Software Reliability, ECE-355 Tutorial

[10] Hoang Pham, Michelle Pham: Software Reliability Models for Critical Applications,

Idaho National Engineering Laboratory, Idaho 83415

