Network Usage and Performance Analysis in Resource-Constrained Systems

Veljko Pejović Veljko.Pejovic@fri.uni-lj.si FRI, Ljubljana

University of Ljubljana Faculty of Computer and Information Science

Ljubljana, Jan 2015.

Networked Systems

Systems composed of dynamic units that interact with each other over an information exchange network

Networked Systems

Networked Systems

- A range of applications
 - Video/voice communication, photo exchange, flight control systems
- Varying in size
 - File sharing via a local server, planet-wide online social network
- Any underlying connection technology
 - Ethernet, WiFi, Bluetooth

	User
6	Application
	Transfer
	Network
	Link
	Physical

• Performance measurements

SPEEDTEST.NET	•	7/3/2012 4:38 PM GMT
DOWNLOAD 801.94 Mb/s	UPLOAD 250.00 Mb/s	PING 2 ms
GRADE: F-	(SLOW	ER THAN 99% OF)
ISP: *** SERVER: LONDON (~	3550 mi)	OOKLA.

• Performance measurements

Usage measurements

Performance measurements

Usage measurements

Surrounding context measurements

Performance measurements

Usage measurements

Surrounding context measurements

Performance Measurements

Measure	Tool
Reachability/routing	ping, traceroute
Wireless signal quality	iwconfig, iwlist
Latency/delay	ping, application level measurements
Throughput	iperf, iptraf
Error rate	netstat, iptraf
Jitter	iperf
	network programming (sockets, packet injection,)

Usage Measurements

Measure	Tool
Traffic content	wireshark, tcpdump
Traffic summary	ipsumdump
Web usage	error logs, proxy logs, cache stats, calamaris
User experience	focus groups, online surveys, interviews
	Scripting languages, content crawlers, be creative!

Why Measurements?

Troubleshooting

System management

Innovation

Data-driven prototype evaluation

Case Study: Examining Alternative OSN Architectures

OSN Architecture – Facebook

- Centralised architecture
 - Poor usability outside North America and Europe
 - High cost of infrastructure in new markets
 - Scalability

OSN Architecture – Facebook

- Can we improve it?
 - Analyse the usage to identify opportunities
 - Measure the extent of the problem
 - Evaluate solutions with real-world data

- Data: ~10 million profiles from FB [Wilson et al. 2009]
- Locality of interaction analysis

- Data: ~10 million profiles from FB [Wilson et al. 2009]
- Locality of interaction analysis

- Data: ~10 million profiles from FB [Wilson et al. 2009]
- Locality of interaction analysis
 - Count L-L, L-R, R-L in each region

- Data: ~10 million profiles from FB [Wilson et al. 2009]
- Locality of interaction analysis

Faculty of Computer and Information Science

- Data: ~10 million profiles from FB [Wilson et al. 2009]
- Locality of interaction analysis
 - Count L-L, L-R, R-L in each region
 - Count delivery ratio of posts

Usage Analysis Conclusion: High Locality of Interaction

- Facebook transaction analysis:
 - How much, and what kind of data is transferred on Facebook?
 - Network traces Wireshark

Photo post

TRANSFER	FROM	то	BYTES	COMMENT
1	user	CA	1510	<pre>#upload script request</pre>
2	CA	user	5703	#upload script
3	user	CA	136802*	#photo and post text
4	CA	user	7168	#display markup
5	user	CDN	495	#display image request
6	CDN	user	3819*	#display jpeg

- Internet path analysis
 - Connection quality between end-users and Facebook infrastructure
 - Latency ping
 - Throughput iperf

- Internet path analysis
 - Connection quality between end-users and Facebook infrastructure
 - Latency ping
 - Throughput iperf
 - Approximate end points with planetlab nodes

University of Ljubljana Faculty of Computer and Information Science

Why don't we measure the exact latency and throughput from users to FB?

- Internet path analysis
 - Connection quality between end-users and Facebook infrastructure
 - Latency ping
 - Throughput iperf
 - Approximate end points with planetlab nodes

	Latency (ms)			Loss $(\%)$			Capacity (Mbps)		
Region	dir.	pro	DX.	dir.	p	rox.	dir.	pr	ox.
Russia	148	115	31	6.1	0	1.8	29.6	367	29.6
Egypt	164	176	67	5.8	0	5.8	0.92	736	0.92
Sweden	104	95	14	0.32	0	2.9	9.47	188	9.47
NYC	74	43	33	0.75	0	0.6	9.51	99	9.51
LA	27	9.1	18	0.50	0	0.4	2.02	228	2.02

Performance Analysis Conclusions:

Parts of a transaction can be sent irrespective of the data

• Server to FB connection is much better than end-user to FB connection

- 1) TCP proxying with regional servers
 - Split connection at a regional server

	Latency (ms)			Loss $(\%)$			Capacity (Mbps)		
Region	dir.	pro	x.	dir. prox.		dir.	prox.		
Russia	148	115	31	6.1	0	1.8	29.6	367	29.6
Egypt	164	176	67	5.8	0	5.8	0.92	736	0.92
Sweden	104	95	14	0.32	0	2.9	9.47	188	9.47
NYC	74	43	33	0.75	0	0.6	9.51	99	9.51
\mathbf{LA}	27	9.1	18	0.50	0	0.4	2.02	228	2.02

- 1) TCP proxying with regional servers
 - Split connection at a regional server
 - Isolates the effect of poor links
 - Allows a wider TCP window

- 2) Regional OSN cache
 - Regional server:
 - Regional social graph
 - Cache recent local content

- 2) Regional OSN cache
 - Regional server.
 - Regional social graph

BYTES

1510

5703

7168

3819*

495

136802*

Cache recent local content

COMMENT

University of Ljubljana Faculty of Computer and Information Science

FROM

user

user

user

CDN

CA

CA

ΤO

CA

CA

user

user

CDN

user

TRANSFER

1

2

3

4

5

6

- 2) Regional OSN cache
 - Regional server:
 - Regional social graph
 - Cache recent local content

- 2) Regional OSN cache
 - Regional server:
 - Regional social graph
 - Cache recent local content

- 2) Regional OSN cache
 - Regional server:
 - Regional social graph
 - Cache recent local content

- Data trace-based evaluation
 - Replay all the interactions identified in the dataset
 - Assign the measured "cost" to each interaction
 - Process interactions according to:
 - Current FB architecture
 - Regional TCP proxy architecture (solution 1)
 - Regional OSN cache architecture (solution 2)

Data trace-based evaluation

Results

- Delay

- Results
 - Server and network load

Case Study Conclusions

- Network analysis revealed:
 - Bottlenecks in OSN data transfer
 - Locality of interest
- Proposed alternatives:
 - Regional TCP proxying
 - Regional cache servers
- Evaluation:
 - Trace-based simulation

Improved user experience and lower system load

References

- Tools and tutorials:
 - www.wireshark.org/docs/wsug_html_chunked/
 - Read man pages for iperf, tcpdump, netstat, ping, traceroute
- Papers:
 - Vern Paxons, "Strategies for Sound Internet Measurement", IMC'04 www.icir.org/vern/papers/meas-strategies-imc04.pdf
 - Christo Wilson, Bryce Boe, Alessandra Sala, Krishna P. N. Puttaswamy, and Ben Y. Zhao "User Interactions in Social Networks and their Implications" EUROSYS'09 http://www.ccs.neu.edu/home/cbw/pdf/interaction-eurosys09.pdf
 - Mike P. Wittie, Veljko Pejovic, Lara Deek, Kevin C. Almeroth, Ben Y. Zhao "Exploiting Locality of Interest in Online Social Networks" ACM CoNEXT'10 www.cs.bham.ac.uk/~pejovicv/docs/Wittie10conext.pdf

Thank you!

Veljko Pejović Veljko.Pejovic@fri.uni-lj.si FRI, Ljubljana

