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1. Introduction

With the constant miniaturisation of logic gates and the corresponding processing

structures, which as evident in the last decade strictly follows Gordon Moore’s law,

it is to be expected that the first nano-scale (10−9) processing entities (e.g. logic gates)

will appear in the decade to come [1]. The above mentioned scale corresponds to the size

of molecules and atoms, which means that this is what will actually have to be mastered

through physical and chemical theory and technological processes. It also means that

upon this point the eventual further miniaturisation will be drastically slowed down. Due

to this there already exists quite a lively search for the alternative processing platform

of the future. It can be noticed in fields such as ‘DNA’, ‘bimolecular’, ‘quantum’,

‘quantum cellular’, etc. computing. The alternative processing platform of the future

should, however, meet the following criteria:

• from the point of view of reliability and performance it has to allow for a transparent

transition from the transistor based platform,

• from the point of view of energy consumption it has to be economically viable,

• it has to allow for future improvements in processing capabilities, and

• processing on this platform, due to its eventual energetic self-sufficiency, should

never get out of control [2].

The criterion that proves to be the most difficult one to meet is the one requiring

reliability and performance that is similar to those obtainable, using the present

transistor based platforms. One of the few platforms, which according to the existing

publications, meets this criterion as well as all of the rest, is the Quantum-Dot Cellular

Automaton, or QCA. It was set up by C.S. Lent [3, 4] at the start of the last decade as a

planar structure comprised of cells, each containing a set of four quantum-dots separated

by tunnelling barriers and occupied by two electrons. According to Lent, each cell can

be in one of two distinct states, distinguishable by means of the arrangement of the

electrons. The growing interest in QCAs in the last decade resulted in the development

of QCA structures that implement the functionally complete set of binary logic functions

{AND, OR, NOT} [3, 4, 5], as well as the development of tools that enable the design

and simulation of more complex QCA structures [6].

The primary drawback of QCAs, however, is ironically the bi-stability of the

comprising cells. In fact, most of the research in QCAs is dedicated to the

implementation of the classical binary logic and the corresponding computer structures.

But the use of binary logic in computer structures was historically necessary only due to

technological limitations, which means that the alternative processing platforms of the

future should by no means disregard the possibility of implementing and using multi-

valued logic. The benefits of using multi-valued processing are obvious and range from

higher data storage capabilities to faster and more sophisticated processing [7]. This

is why we, with the premise that there are no technological limitations and that more

than four quantum dots can be arranged on a cell’s surface, devoted our research to the
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development of a quantum-dot cell that would be capable of multi-valued processing.

When used for the construction of QCA structures the inter-cellular distance will be

taken to be the same as in Lent’s case. This will, assuming that the use of the new cell

is transparent (i.e. when employing it to construct QCA structures used to implement

the binary logic functions the latter operate in a multi-valued sense), give the new cell

an advantage of m/2 over Lent’s cell, where m is the number of values the new cell is

capable of representing.

This article, therefore, presents our first step in that direction — it presents an

extension of the standard QCA cell. The principal advantage of the newly introduced

cell is its capability of ternary processing. We begin the article with a condensed review

of the binary quantum-dot cell and the associated binary QCA structures. We continue

with the introduction of the ternary quantum-dot cell and in the rest of the paper

demonstrate that while using it, all of the existing solutions for transmitting data still

work, this time however in the sense of ternary logic. What is more, we demonstrate

that with the ternary quantum-dot cell we are capable of implementing the functionally

complete set of ternary logic functions originally introduced by J. ÃLukasiewicz [8].

2. The QCA cell

The standard QCA cell, or binary quantum-dot cell, typically comprises four quantum

dots arranged in a square formation [9, 10, 11]. The near-neighbour distance between dot

centres a is usually taken to be 20 nm. The cell is occupied by two electrons, which can

tunnel only between adjacent dots, whereas their tunnelling out of the cell is supposed

to be completely suppressed. The tunnelling occurs due to Coulomb interaction between

the electrons themselves, or between them and the environment. Due to the associated

repulsive force the electrons tunnel into the dots with the energetically favourable

positions. Within a single cell the electrons tend to align along one of the two diagonals,

as these correspond to arrangements with their maximum spatial separation. In the

absence of external electric fields these two arrangements have exactly the same energy,

however in the presence of an external electric field one of them is energetically favoured.

This provides the QCA cell with the so desirable bi-stability.

The architecture of the four-dot two-electron binary quantum-dot cell is presented in

figure 1(a). Figure 1(b), on the other hand, presents the two diagonal arrangements, as

well as the four additional possible electron arrangements.‡ The arrangements with more

than one electron occupying a quantum dot are not considered owing to the extremely

large associated repulsive force. The two diagonal arrangements are due to their bi-

stability interpreted as logic values 0 and 1, whereas the rest of the arrangements are

due to the large associated repulsive forces interpreted as ‘X’ or unfavourable states.

In other words, the cell’s state is, from the point of view of processing, denoted by the

arrangement of the contained electrons.

‡ Note that for quantum-dot cells in all but figures 1(a) and 4(a) only the electron arrangement is
displayed.
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Figure 1. A QCA cell with four quantum dots and the corresponding tunnelling paths
(a) and the possible arrangements of the two occupying electrons (b).

2.1. The QCA structures

As already discussed, Lent et al. interpret a two-dimensional arrangement of quantum-

dot cells as a QCA [3, 4]. In a QCA the near-neighbour distance between cell centres is

typically 3a. In addition, a QCA designed to perform a specific task is usually referred to

as a QCA structure. The synchronisation of information flow within a QCA structure

is obtained by means of ‘allowed’ tunnelling — by applying the corresponding time

sequence of cell ‘locking’ that disallows the tunnelling of electrons. The time sequence

is not applied to the processing units (cells/structures) directly, but instead it is applied

in the form of an electric field, whose (presence)absence (dis)allows tunnelling within

the designated processing unit. A more detailed description of the locking mechanism,

which involves four phases named switch, hold, release and relaxed, and is used in clocked

QCA architectures, can be found in [12, 13]. This paper, however, restricts to unclocked

QCA architectures. Regardless of the architecture used, within a QCA structure the

comprising cells are not treated as equal and for this reason they are denoted using three

distinct names based on the tasks they perform:

• driver cells are typically situated at the borders of the structure and their state is

fixed by means of external electrostatic fields (in figures 2, 3, 5, 6 and 9 depicted

by using a bold outline),

• internal cells are typically situated within the structure and are those where the

actual processing and desired data ‘transformation’ takes place (in figures 2, 3, 5,

6 and 9 depicted in grey colour),

• target cells are again typically situated at the borders of the structure and their

state (after a certain time delay) is interpreted as the processing output (in figures 2,

3, 5, 6 and 9 depicted with an ordinary outline).

2.2. The ground state

Within a single quantum-dot cell, when no external electric field is present, the two

diagonal arrangements have exactly the same energy. This means that a cell by itself is

overall neutral. From the modelling point of view this is achieved by assigning to each
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quantum dot a positive charge of (ne0)/m, where n is the number of electrons, e0 the

electron charge and m the number of dots (e.g. in the case of the binary quantum-dot

cell n = 2 and m = 4). An electron occupied dot thus has a charge of (ne0)/m − e0,

which means that the sum of charges within a single cell equals 0, and that the energy

associated with the two diagonal arrangements is exactly the same. Upon the premise

that there are two cells, an energetically neutral cell circumvents the problem where the

electrons in the target cell are pushed away from the driver cell (i.e. tunnel into dots

that are further away from the driver cell). The described effect is associated with the

monopole electric field component that would be produced by a non-neutral cell [11].

A QCA structure can be observed from the point of view of total electrostatic

energy [11], which is expressed as the energy of a system of point charges

E =
∑

i 6=j

%i%j

4πε0εrrij

, (1)

where %i, %j are the charges associated with dots i and j, rij is their distance, ε0 is

the vacuum permittivity, and εr is the relative permittivity of the medium (our model

assumes the medium is GaAs/AlGaAs, whose relative permittivity is roughly 12.9). By

repeating the evaluation of the total electrostatic energy for all combinations of electron

arrangements the energetically minimal one, or ground state, can be found. Nevertheless,

such an exhaustive exploration does not come cheap as for a QCA structure constructed

of k quantum-dot cells, each comprised of m quantum dots and occupied by n electrons,

this means (m
n )k evaluations. The described method, where the electrons are treated

as classical particles, which can however tunnel between adjecent quantum dots, is also

known as the semi-classical model [11].

3. Binary processing using binary QCA structures

In the 1990s a group of researchers led by Lent [3, 4, 5] succeeded in designing a series of

QCA structures, whose dynamics corresponds to the functionally complete set of binary

logic functions {AND, OR, NOT} [14]. Their solution is, besides being interesting

from the point of view of the possibility to design any desirable binary logic function,

interesting also due to the way by which the binary AND and OR logic functions are

implemented. Indeed, these are implemented by using the so called majority gate,

which due to its generality gives reason to believe there is a possibility of designing

more efficient processing structures than the currently available transistor based ones.

The implementation of the binary NOT logic function is presented in figure 2(a),

whereas figure 2(b) presents the implementation of the binary AND and OR logic

functions. In the latter case the cells marked as X1 and X2 are driver cells by means of

which the values of the input variables enter the structure. The cell marked as S is, on

the other hand, the driver cell by means of which the designer selects the behaviour of

the structure (i.e. as the binary OR logic function when it is set to the logic value 1, and

as the binary AND logic function when it is set to the logic value 0). In addition to the

functionally complete set of binary logic functions the researchers presented a special
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Figure 2. Implementation of the binary logic functions NOT (a), AND and OR (b).

structure that is capable of transmitting binary data and named it the binary wire (see

figure 3).
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0

Figure 3. Transfer of a binary logic value along a wire of binary quantum-dot cells.

The basic characteristics of computer systems are processing, data transfer and

data storage. As already discussed, the QCA structures are capable of both processing

and data transfer, but what about data storage? In their seminal paper, Lent et al.

[3] stated that a single quantum-dot cell can act as a data storage cell, since a cell,

whose electrons have stabilised in a certain arrangement, will in principle remain in

that configuration indefinitely. The latter can be interpreted as data preservation. In

this view the QCA structures, at least in theory, possess all the necessary capabilities for

implementing any given computer system [14]. If truth be told later studies showed that

in the described case the cell does not preserve any data, as it becomes ‘unpolarized’ and

thus preserves nothing, neither the logic value 0, nor 1. However, with the introduction

of clocked QCA architectures researchers developed QCA structures that are capable

of data storage [6, 15]. This is why clocked architectures seem to currently be the

preferred line of research. Nevertheless, since even the QCA structures capable of data

storage are constructed using the basic QCA structures (i.e. logic functions, wires),

we opted to address only the latter. Similarly we decided to address only unclocked
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architectures, as clocking, besides providing control over electron transfers within the

cells, allows avoiding undesirable metastable states§ and if added would prove only

beneficial. However, if an unclocked architecture proved to be sufficient, the additional

reduction in complexity due to the unclocked architecture would be more than welcome

fabrication wise. Research on clocked ternary architectures and QCA structures capable

of ternary data storage is nevertheless one of our future lines of work.

4. The ternary quantum-dot cell

In the previous sections we presented a condensed overview of the binary quantum-dot

cell. In view of the alternative processing platforms of the future the primary drawback

in its usability is ironically its bi-stability. Based on the premise that there are no

technological limitations and that there can be more than four quantum dots arranged

on a cell’s surface, our research focused on the study of the dynamics of a multi-state

cell. In this view a quantum-dot cell comprised of eight quantum dots arranged in a

circular formation and occupied by two electrons was defined [16] and denoted as the

ternary quantum-dot cell. The radius of the formation r was taken to be a
√

2/2 so that

dots 1-4 correspond perfectly with those present in the binary quantum-dot cell and

that the near-neighbour distance between cell centres in a QCA structure constructed

from ternary quantum-dot cells could be kept 3a.

The cell’s architecture is presented in figure 4(a), whereas figure 4(b) presents the

four electron arrangements (marked as states ‘A’, ‘B’, ‘C’ and ‘D’) that correspond

to their maximum spatial separation, as well as the rest of all possible arrangements.

As the latter, however, correspond to energetically unfavoured arrangements they are

marked as ‘X’ states. States ‘A’ and ‘B’ (i.e. the two diagonal arrangements) are, as in

the case of the binary quantum-dot cell, interpreted as logic values 0 and 1. In other

words, there are two newly introduced states ‘C’ and ‘D’, but for reasons that will be

made evident in the following sections both are interpreted as the logic value 1
2

and in

addition only state ‘C’ is allowed for driver and target cells.

It is important to note that from the modelling point of view the properties of the

ternary quantum-dot cell and the dynamics of the associated QCA structures are not

altered in any way. In other words, all properties described in sections 2.1 and 2.2 still

hold. For reasons of clarity, however, a QCA structure comprising ternary quantum-dot

cells shall be denoted a ternary QCA structure and a QCA structure comprising binary

quantum-dot cells a binary QCA structure.

5. Ternary processing using ternary QCA structures

Our research was led by the assumption that the QCA structures used to implement the

binary logic functions and wire could be, by constructing them with ternary quantum-

§ States that lead to a “thermal death” (unpredictable output or very long settling times) in large
arrays of unclocked binary quantum-dot cells.
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Figure 4. A QCA cell with eight quantum dots and the corresponding tunnelling
paths (a) and the possible arrangements of the two occupying electrons (b).

dot cells, used to implement multi-valued logic functions and wire. Thus we constructed

them with ternary quantum-dot cells and for each of the allowed input states computed

the corresponding ground state by means of the exhaustive exploration that is explained

in section 2.2. Figure 5 presents the behaviour of a wire of ternary quantum-dot cells.
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Figure 5. Behaviour of a wire of ternary quantum-dot cells.
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As said, the structure now has four possible input states. It can be noticed that when

the driver cell’s state is ‘A’ or ‘B’ all of the internal cells, as well as the target cell,

assume the same state, which corresponds perfectly with the behaviour observed in the

case of the binary wire (compare figures 3 and 5). Computing the ground state for the

case when the driver cell’s state is ‘C’ or ‘D’, however, showed that the internal and

target cells assume alternating states. This effectively meant that either wires have to

be limited to odd lengths or the two states have to be interpreted as the same logic

value. For reasons of generality the latter approach was taken, which resulted in the

wire’s capability of transmitting three logic values 0, 1, and 1
2
, hance behaving as a

ternary wire.

By committing to three logic values the next logic step was to see if the QCA

structures used to implement the binary logic functions AND, OR and NOT, when

constructed with ternary quantum-dot cells, implement their ternary counterparts. The

analysis was based on the comparison with the ternary truth tables introduced by

ÃLukasiewicz [8]. As evident from figure 6, the QCA inverter constructed by using ternary

Y
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Figure 6. Behaviour of the QCA inverter when constructed by using ternary quantum-
dot cells.

quantum-dot cells implements the ternary NOT logic function. Indeed if the driver cell’s

state is ‘A’ (logic value 0) the target cell assumes state ‘B’ (logic value 1) and vice versa.

On the other hand, if the driver cell’s state is either ‘C’ or ‘D’ (logic value 1
2
), the target

cell also assumes state ‘C’ or ‘D’ (logic value 1
2
), thus retaining both the driver cell’s

logic value, as well as state.

In the case of the majority gate structure computing the ground states for all

possible input states, however, showed that the structure does not behave as intended

(see figure 7). This negated our initial assumption of an easy transition to ternary logic.

5.1. Implementation of the ternary AND and OR logic functions

As discussed in the previous section, simulations showed that with the existing

preconditions and interpretation of electron arrangements it is not possible to implement

the ternary AND and OR logic functions as majority gates. Nevertheless, after a further

review of the structure’s behaviour it became evident that if state ‘D’ is treated as an

internal state (i.e. is allowed only for internal cells)‖, a behaviour remarkably similar to

‖ This precondition, however, has an after-effect on ternary wires also, as it indirectly states that only
wires of odd lengths (in which case the target cell assumes the same state as the driver cell) can be
constructed.
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Figure 7. Behaviour of the majority gate when constructed with ternary quantum-dot
cells.

the desired can be obtained (see shaded area in figure 7). Indeed, as presented in figure 8,

in the case when the state of the driver cell marked as S is ‘A’ the behaviour is similar
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Figure 8. Behaviour of the majority gate when constructed with ternary quantum-dot
cells and the precondition that state ‘D’ is allowed only for internal cells.

to the ternary AND logic function, and when its state is ‘B’ the behaviour resembles

the ternary OR logic function. In fact, in both cases there is only one erroneous output

(i.e. AND(1,0) and OR(0,1)). Furthermore, it can be noticed that there is an evident

symmetry between the two cases, that in both cases the target cell assumes state ‘D’, and

that in both cases, when the inputs X1 and X2 are reversed, the target cell assumes the

correct state: logic value 0 and 1 respectively. These properties aid our implementation

substantially.

The solution can thus be based on a pair of majority gate structures, where both

are subject to the same inputs S, X1 and X2, however, one of them has the inputs X1 and

X2 reversed. For most of the input combinations both structures will return the same

output, which is a direct result of the symmetry of the AND and OR logic functions.

The only cases when there are going to be differences are AND(1,0), AND(0,1) and

OR(0,1), OR(1,0). For these cases, however, the following properties apply:

• the target cell of one of the two structures will assume state ‘D’,
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• the target cell of the other structure will assume the correct state and thus give the

correct output.

In other words, this means that what is needed is a structure which will perform

two tasks. In cases when two of its driver cells are in the same state the target cell must

assume this state. In cases when one of these two driver cells is in state ‘D’ the target

cell must assume the state of the other driver cells. A further study of the unconstrained

behaviour of the majority gate constructed by using ternary quantum-dot cells presented

in figure 7 reveals that such a structure is the majority gate itself, when the driver cell

marked as S is in state ‘C’. Indeed when the driver cells marked as S, X1, and X2 are in

states (‘C’, X, X), (‘C’, X, ‘D’) or (‘C’, ‘D’, X) the target cell assumes state X.

The final implementation of the ternary AND and OR logic functions as a hierarchy

of three majority gate structures is presented in figure 9, whereas figure 10 presents
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Figure 9. Implementation of the ternary AND and OR logic functions as a hierarchy
of three majority gate structures.
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Figure 10. Behaviour of the structure implementing the ternary AND and OR logic
functions.

the completed structure’s behaviour. It is important to note that if the structure is
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constructed with binary quantum-dot cells and the input state ‘C’ substituted with

either logic value 0 or 1 the truth table of the binary AND and OR logic functions is

obtained.

6. Conclusion

This article introduces the ternary quantum-dot cell, with the intention of enriching

the processing capabilities of quantum-dot cellular automata (QCAs). By restricting to

unclocked architectures and employing numerical simulations based on the semi-classical

model [11] we have shown that electron tunnelling, associated with QCAs, can be used

not only for binary but also for ternary processing. The analysis of ternary processing

capabilities is based on the comparison with ÃLukasiewicz’s ternary truth tables. From

the computer science point of view the introduced cell and associated structures are

capable of transferring, processing, and at least in theory also storing, crisp values

in a ternary environment. In this view we find that, with the eventual increase in

reliability, associated with technological progress, the ternary QCA structures are one

of the possible candidates for the alternative processing platform of the future. Our

current research is focused on ternary clocked architectures and ternary QCA structures

capable of data storage.
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