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Quantum-dot cellular automata (QCA) are one of the most promising alternative platforms of the future. Recent years have
witnessed the development of basic logic structures as well as more complex processing structures, however most in the realm
of binary logic. On the grounds that future platforms should not disregard the advantages of multi-valued logic, Lebar Bajec
et al. were the first to show that quantum-dot cellular automata can be used for the implementation of ternary logic as well. In
their study the ternary AND and OR logic functions proved to be the most troublesome primitive to implement. This research

presents a revised solution that is based on adiabatic switching.
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1. Introduction

The quantum-dot cellular automaton (QCA) is one of the
few alternative computing platforms that meet most of the
desired reliability and performance criteria for computing
platforms of the future.'™® Since its introduction by Lent
et al. at the start of the 1990s the approach has advanced in
both the theoretical as well as the technological aspect.)
However, as many similar visionary ideas even the latter
bears the influence of the current development trends. Indeed
researchers that are taking advantage of this approach
usually limit themselves to binary QCA based structures,
with the intent of developing substitutes for the current
complementary metal-oxide semiconductor (CMOS) inte-
grated circuits. Due to historical technological limitations
this disregards the possibility of employing QCAs as a multi-
valued processing platform. This is a serious disadvantage
since multi-valued processing allows for greater data storage
capabilities as well as faster and more sophisticated
processing.>")

The initial work on using the QCA platform for multi-
valued processing, more precisely ternary logic, was
performed by Lebar Bajec et al.’'” The authors have
advanced the basic binary QCA cell (bQCA cell) presented
by Lent et al. in such a way that it allows the representation
of three logic values. They named the newly introduced
QCA cell as the ternary QCA cell (tQCA cell). Furthermore
the authors show that the QCA wire and QCA inverter retain
their functionality with a simple switch of the basic building
block (i.e., the substitution of bQCA cells with tQCA cells
promotes the two structures to work in a ternary domain).
This, however, is not true for the basic geometry that
implements binary conjunction and disjunction, namely the
majority gate.®*!) The authors solve this issue by develop-
ing a more complex and from the size point of view
suboptimal structure.'”’ Indeed when compared to the binary
counterpart the presented solution more than tripled in size.
In addition the new structure, although implementing both
ternary conjunction as well as disjunction, does not allow the
flexibility of the inputs (i.e., using one of the inputs as the
selector of the behaviour of the structure), which is one of
the more praised about features of the binary majority gate.

*E-mail address: primoz.pecar @fri.uni-1j.si

The complexity of the proposed structure is one of the
principal motivators of this research.

In this article we present a solution that is based on
adiabatic switching.'” The decision for its application
originates from the benefits that were presented by re-
searchers working on binary QCAs. The foremost two
are increased stability of QCA based structures and
simplification of the design of memorizing structures. The
approach is based on the quantum-mechanic version of the
adiabatic theorem. In this view a quantum-mechanic based
model was developed for modelling and simulation of tQCA
based structures. Indeed the semi-classical model employed
by Lebar Bajec ef al. due to its simplicity is easy to
implement and allows the overall estimation of the behav-
iour of tQCA based structures, but on the other hand with a
limited consideration of the quantum-mechanic properties
disables the possibility of the introduction of adiabatic
switching.'® The full range of quantum-mechanic properties
is taken into account by a quantum-mechanic model that
is based on a Hubbard-type Hamiltonian with Coulomb
repulsion. By employing this quantum-mechanic model the
article will present a simpler and in view of the inputs more
flexible structure that implements ternary conjunction and
disjunction.

In §2 we present an overview of the ternary quantum-dot
cell, followed by its quantum-mechanic description. In §3
we describe the adiabatic switching approach and its
influence on the quantum-mechanic model. Section 4 con-
cludes with the realization of a tQCA based structure that
employs adiabatic switching to implement ternary disjunc-
tion and conjunction.

2. Overview of the tQCA

A QCA is a planar array of, so called, quantum-dot cells
(also named QCA cells). Each QCA cell contains a specific
number of charges (typically electrons) and its influence on
neighbouring cells is due to Coulomb interaction between its
charges and the charges residing on them. Inside a single cell
the charges reside only at designated locations, the so called
quantum dots. They are able to tunnel between adjacent
quantum dots, but tunnelling outside of a cell is impossible.
QCA cells operate at energy levels where Coulomb
interaction prevails over tunnelling. This means that with
specific planar arrays (arrangements) of QCA cells it is
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Fig. 1. The geometry of the binary quantum-dot cell presented by Lent
et al. (a) and the denotation of the quantum dots and the tunnelling paths
(b). The geometry of the ternary quantum-dot cell presented by Lebar
Bajec et al. that was constructed by adding four additional quantum dots
to the binary cell (b). The denotation of the quantum dots and the
tunnelling paths in the ternary quantum-dot cell (c).

possible to mimic the behaviour of interconnecting wires
as well as logic gates and by interconnecting these more
complex devices capable of processing can be constructed.

The basic binary QCA, presented by Lent et al., is
constructed from bQCA cells and supports the representation
of binary information and, as such, also binary processing."
Its following advancement, the ternary QCA, presented by
Lebar Bajec et al., consists of tQCA cells and allows the
representation of ternary information and enables ternary
processing.?

2.1 The ternary quantum-dot cell

With the assumption that there are no technological
limitations to the number of quantum dots that can be
arranged over a single quantum-dot cell the tQCA cell is in
its essence an extension of the classic bQCA cell presented
by Lent ef al. [see Figs. 1(a) and 1(c)]. The tQCA cell
consists of eight circular quantum dots with diameter
D = 10nm. The quantum dots are arranged in a circular
pattern with radius D/ sin(;r/8), so that the distance between
neighbouring quantum dots equals 2D. For naming and state
representation consistency the denotation of the quantum
dots follows the pattern used in the bQCA cell [see
Figs. 1(b) and 1(d)]. Furthermore the tQCA cell also
contains two electrons, and the same tunnelling properties
apply as in the bQCA (i.e., the electrons can tunnel only
between adjacent quantum dots and not outside of the cell).
The correct inter cellular interaction is possible only if
symmetric charge neutralization is assured.'® In the case of
the tQCA cell the latter is insured by assigning each
quantum dot a fixed positive charge of p, = ey/4, where ¢,
is the electron charge.

In an isolated quantum-dot cell the contained electrons
due to Coulomb repulsion strive to localize in quantum dots
that assure their maximal separation. In the tQCA there are
four such arrangements [see Fig. 2(a)]. According to Lebar
Bajec et al. the arrangement with electrons in quantum dots
2 and 4 is marked as state A, the one with electrons in
quantum dots 1 and 3 as B, 5 and 7 as C and 6 and 8 as D. In
the absence of external electric fields these four arrange-
ments have exactly the same energy and correspond to the
tQCA cell’s ground state. This degeneracy manifests as an
equally probable localization of the electrons in every dot,
which is symbolically represented as in Fig. 2(b). It is said
that the tQCA cell is in neutral state. The presence of
external influences splits the degeneracy and causes one of
the arrangements to become the tQCA cell’s ground state.
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Fig. 2. The four distinct electron arrangements, i.e., the four possible
states marked A, B, C, and D of a ternary quantum-dot cell, that
correspond to the maximal inter electron separation (a) and the
representation of a ternary quantum-dot cell in neutral state (b).

One of the principles that define computing with QCA is
ground state computing.” This principle asserts that from the
computing point of view the only acceptable state of a QCA
cell is its ground state. The four possible electron arrange-
ments of a tQCA cell can thus be interpreted as logic values.
State A is interpreted as logic value O, state B as logic value
1 and state C as logic value 1/2. State D is for reasons that
will be explained in the following chapters allowed only as
an internal (processing) state.®~1?

Another principle, which defines computing with QCA is
edge driven computation. It asserts that the input cells, using
which data is input into the QCA for processing, are
typically situated at the borders of the structure and their
states are fixated using external electrostatic fields. Similarly
it asserts that the output cells, by means of which the
processed data is output from the QCA, are positioned at the
borders of the structure as well. Their states are read and
interpreted as logic values representing the output of the
logic function that is realized by the QCA. The rest of the
cells act as internal cells and are the only cells that perform
any data transformation.

2.2 Modelling tQCA

For the tQCA cell we employ a simple model that is
similar to the one used by Lent ef al. for the bQCA cell,
where the quantum dots are represented as sites and the
degrees of freedom internal to the quantum dots are
ignored."” The corresponding extended Hubbard-type Ham-
iltonian for the observed cell ¢ is composed of four terms
and can be written as:

A= (Eo+ V)itig + Y i8] 480 + & i)
i,0

i>jo
Enfis afi ﬁi,aﬁj,a’ 1
+ Z QR Ay + Z Va - (H
f i>j,0,0' Tij

The first term of eq. (1) deals with on-site energy, the
second term accounts for electron tunnelling between sites,
the third term is the on-site charging cost for localizing two
electrons of opposite spin at the same site and the last term
corresponds to the Coulomb interaction between electrons
localized at different sites. The number operator for site i
and spin o is represented by 7;, = &zaﬁw. Here a;, is the
annihilation operator which destroys a particle with spin o at
site i and &ZG is the creation operator for a similar particle.
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The values of the physical parameters used are based on a
simple, experimentally reasonable model. We take Ey, the
ground state energy of a quantum dot holding an electron, to
be 1 meV. The potential energy of an electron at site i in the
observed cell ¢ due to the existing charges in all other cells
of the QCA can be written as:

k

Vi = Z Vo g k,cp+ ) @)
g T

where p]’.‘ is the electron density at site j in cell k, p is the
fixed positive charge used to maintain charge neutrality and
rj’ff is the distance between site j in cell k and site i in cell c.
The Coulomb coupling strength Vo was evaluated for a
material with a dielectric constant 10 and its value is
143.8 meV. The on-site charging cost Eq = Vq/(D/3) is a
physically reasonable approximation for the Coulomb
energy of two electrons separated by one third of the
quantum dot’s diameter D. The tunnelling energy ¢;; is
associated with tunnelling between dots i and j; the selection
of its values will be explained in the following chapters.

To find the stationary states of the observed tQCA cell, we
solve the time-independent Schrodinger equation

He\Y,) = Eilyn), 3)

where [1;) is the ith eigenstate of the Hamiltonian and E; is
the corresponding eigenvalue. These eigenstates are found
using the many-particle site-ket basis for eight sites and two
electrons of opposite spins:

1000000 0 1
|¢1>=00000001>,
1000000 0 1
|d)2>=00000010>’
100000 0O
|‘1"5‘”:10000000)

In this notation the columns correspond to site (quantum dot)
indices, where the first column from the left corresponds to
site 1, the second to site 2 and so on. The rows correspond to
spin, where the upper row is for spin up and the lower row
for spin down. We calculate the Hamiltonian matrix in this
basis set by numerically evaluating each matrix element

H;j = (¢i|H|pj), ij=1,...,64 )

and finding the eigenvectors of the resulting 64 x 64 matrix.
The observed cell’s ground state, |y), is in this basis
represented as

o) = > ¥01ey). )
J

where |¢;) is the jth basis vector and WJQ is the coefficient of
that basis vector, found by direct diagonalization of the
Hamiltonian. From the two-electron ground state |y) we
calculate the single-electron density at site i, p;, by finding
the expectation value of the number operator for site i:

pi =Y _(VolAiol o). 6)

g

The single-electron density is then used for quantitative
evaluation of the arrangement of electrons in the tQCA cell.

The model described above is exact for a single cell. This
is possible because one can explicitly enumerate all possible
two-electron states and diagonalize the Hamiltonian in this
basis set. Wishing to analyse a QCA based structure
composed of a larger number of tQCA cells in the same
way would soon reach the boundaries of feasibility. Indeed
exact diagonalization methods become intractable as the
number of cells and possible many-electron states increase
rapidly (e.g., a site-ket basis for a QCA based structure
composed of k tQCA cells requires 64 ket vectors).
To overcome this problem when modelling QCA based
structures composed of bQCA cells Lent et al. proposed
a method called Intercellular Hartree Approximation
(ICHA).? The ground state of the entire system (i.e., the
QCA based structure) is found by iteratively solving for the
ground state of each cell. A single cell is observed using (3)
and the effects of that cell on the potential energies in all
other cells are then updated. The intercellular interaction is
treated self-consistently using a Hartree approximation.

3. Adiabatic Switching

As stated previously computing with QCA is ground state
computing. In view of processing the dynamics of the
system is important only in the sense of switching between
one ground state and another. This allows for a forthright
translation of the system’s ground state to the logic solution
of the problem that is being solved with it. In this sense
switching represents the transition from a cell’s state that
represents one logic value to a state that represents another.
It can be executed in an uncontrolled fashion, also denoted
as abrupt switching with dissipative coupling to the environ-
ment, or controlled one, known as adiabatic switching.

Adiabatic switching of a QCA based structure adheres to
the quantum version of the adiabatic theorem. The latter
states that if the Hamiltonian of a system undergoes a
gradual change from the initial form H' to a final form H',
and a particle starts in the nth nondegenerate eigenstate of
the initial Hamiltonian, it will be carried under the time-
dependent Schrodinger equation into the nth nondegenerate
eigenstate of H'. In our application of this theorem we
transform the Hamiltonian by lowering the inter-dot barriers
within the tQCA cell and removing the old input, followed
by applying the new input and raising the barriers. If this
translations are carried out gradually, the theorem guaranties
that the system, which starts in the ground state of the initial
Hamiltonian, will be carried smoothly into the ground state
of the new Hamiltonian.'?

The implementation of adiabatic switching in QCA is
executed with a cyclic control signal. The signal does not
affect the cells directly, but influences on them indirectly
through an electric field. The latter acts on the cells’ inter-
dot barrier heights. It either allows the tunnelling of
electrons between adjacent quantum dots and therefore the
cells to switch state with respect to their neighbours, or
disallows tunnelling and thus locks the cells in their present
state. It is desired that the number of cells being controlled
by one signal is as large as possible, as it reduces the
interconnection complexity necessary for the construction of
the required electric fields.

The cyclic control signal comprises four phases of equal
length (see Fig. 3).'> The gradual increase of barrier heights
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Fig. 3. The cyclic signal that controls the adiabatic switch is composed of
four phases, namely: switch (S), hold (H), release (R), and relax (L). In
the graph the barrier height is normalized to the interval [0, 1], where
value O denotes lowered barriers (high probability of the electrons
tunnelling between adjacent quantum dots) and value 1 denotes raised
barriers (no tunnelling of electrons possible). The four phases are of equal
length, thus each lasts 1/4 of the complete cycle.

is called the switch phase (S) and serves the cells’ gradual
update of the state with respect to their neighbours. The
phase with constant and raised barriers is called the hold
phase (H) and is intended for the stabilisation of the cells’
states when they are to be transmitted to the neighbours that
are in the switch phase (i.e., the cells act as fixated inputs for
all other cells). The gradual decrease of the barrier heights
and the constant and lowered barriers are called release (R)
and relax (L) respectively and support the cells’ gradual
preparation for a new switch (i.e., the states of the cells
gradually transit to a neutral state).

Lent et al. advanced the basic premise of adiabatic
switching even further. Since the cyclic signal is composed
of four phases larger QCA based structures can be decom-
posed to blocks or subsystems controlled by four phase
shifted cyclic signals (see Fig. 4). The obtained structure
then shows behaviour similar to a pipeline. Indeed each
subsystem is controlled by an independent signal. This
allows the decomposition of the computation problem to
a number of sub problems and each subsystem can be
designated to solve only one. The phase shifted nature of the
controlling signals allows the blocks that are in the hold
phase to act as inputs for blocks that are in the switch phase.
Therefore a subsystem after performing the computation can
be designed to lock its state and act as the input for another
subsystem. As the transaction is finished the second
subsystem can start processing while the first subsystem is
ready for processing on new inputs.

As already stated adiabatic switching in its essence
controls the tunnelling of electrons between adjacent
quantum dots. In the quantum-mechanic model of the tQCA
cell (1) this reflects in the parameter ¢. The Intercellular
Hartree Approximation (ICHA) evaluation approach is
based on two loops. The outer loop gradually changes the
value of parameter ¢ with respect to the chosen cyclic control
signal. The inner loop on the other hand performs an
iterative evaluation of the ground states of the cells
comprising the QCA based structure. Since each change of
parameter ¢ is followed by the relaxation process the
adiabatic theorem is abided by, as the rate of change in
the control signal is slower than the relaxation process.
Typical values for parameter ¢ are from the interval [#,,#],
where #, is usually OmeV and corresponds to the instant
when the barrier heights are raised and the tunnelling of
electrons impossible. The value of # is, on the other hand,

A
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Fig. 4. The four possible phase shifted cyclic signals.
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Fig. 5. The dependency of the single-electron density at individual sites,
pi, with respect to the tunnelling energy, for the case of a ternary
quantum-dot cell transiting from neutral state to the state marked as A.

more arbitrary but typically —2meV and corresponds to
lowered barriers with a high probability of electron tunnel-
ling between adjacent quantum dots.

When applied to the tQCA cells the cyclic signal
presented in Fig. 3 turned out to be too abrupt. Indeed the
signal changes the value of parameter ¢ linearly, which
compels a raising of the barriers that is too fast for proper
localization of the electrons. This, as evident from Fig. 5,
can to some degree be expected. In fact when raised barriers
correspond to O meV and lowered to —2 meV one can notice
that the switch phase of the cyclic signal is only a rough
estimate of Fig. 5 and furthermore that most of the “action”
happens when ¢ € [—0.5,0] meV. The increased number of
quantum dots leads to more possible locations for the
electrons to tunnel to, hence their localization in the desired
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Fig. 6. The cyclic signal that controls the adiabatic switch in a ternary
quantum-dot cellular automaton.

quantum dots is possible only when the barriers are
sufficiently high.

We base the cyclic control signal for the tQCA cell on a
sinusoidal function that was scaled to the interval [0, 1] (see
Fig. 6). Dividing the function into two sections of equal
length, one monotonically increasing the other decreasing
we choose the first section as the control signal in the switch
phase and the second as the control signal in the release
phase. The hold and relax phase are kept unchanged (i.e.,
both are constant; the former with barriers completely raised
and the latter with barriers absolutely lowered). The
constructed signal has a more gradual change in the vicinity
of raised barriers and thus allows more time for the electrons
to successfully localize in the appropriate quantum dots.

4. Implementing the Ternary AND and OR Logic
Functions

The initial approach that Lebar Bajec et al. took when
developing ternary QCA structures was to use simple
substitution of bQCA cells for tQCA cells.®'? With this
assumption they hoped to obtain structures that will imple-
ment the same logic functions but in a ternary domain. They
proved that using this simple approach the QCA wire and
QCA inverter structures behave as intended, however, the
structure that implements the binary logic functions AND
and OR (i.e., the majority gate) proved to be more
elusive.®!" Figure 7 presents the behaviour of the elusive
structure, when following the abrupt switching principle and
evaluating by means of the ICHA approach.

Ternary logic functions AND and OR can in the general
multi-logic form be expressed as

y = AND(x1, x3) = min(xy, x), 7

y = OR(xy, xp) = max(xy, x2), @
where x;, x, y € {0,1/2,1}.'9 Interpreting cell states A, B,
and C as logic values 0, 1 and 1/2 respectively and
comparing the behaviour of the structure presented in Fig. 7
with eq. (7) it can be noticed that with certain preconditions
it is possible to extract a close representative of the desired
truth tables. However, the preconditions that apply negate
the so praised about property of the binary majority gate
(i.e., that of using any arbitrary input as the selector of
the gate’s behaviour). Indeed in this structure it becomes
evident that the only possible choice for the selector of the
structure’s behaviour is input S, whereas inputs X; and X,
can serve only as inputs to the selected logic function.
In other words, when input S is in state A (applied the
logic value 0) and the states of inputs X;, X,, and output
Y correspond with logic values of variables x;, x, and
y respectively, a truth table similar to that of a ternary
AND logic function is obtained. The truth table similar
to the one of the ternary OR logic function is, on the
other hand, obtained when input S is in state B (applied the
logic value 1).

A closer inspection of the structure’s behaviour reveals
also that state D cannot be assigned any logic value and that
it seems not to serve any input-output function. Thus an
additional, but easily met, precondition is that of state D
being allowed only as an internal (processing) state.®)
Complying with these restrictions gives a truth table with
only two erroneous input/output transformations where
OR(1,0) = AND(0, 1) = D. Since the output is state D the
authors suggest that an additional structure is to be
constructed, which will convert this processing state to the
correct output state. In a subsequent article they do precisely
that.'” They observe that the input/output transformations
for OR(0, 1) and AND(1, 0), in other words, when the inputs
are swapped, are correct and construct a hierarchy of three
structures that produces the correct truth tables (see Fig. 8).!%)
Although the presented structure successfully implements

SX, X, Y SX, X, Y S X, X, Y SX, X, Y
S AAAA“BAAA‘ CAAA DAAD
5 AACA BACC CACC DACA
o) AADD BADD CADA DADD
3 o AABA B ABD CABC DABD
ACAA (?TITT CCAC DCAD
On® ACCC B C CC cCcCC DCCC
ACDD B CDD CCDC DCDD
O o®0 [ACBC|] [BCBB] CCBC DCBD
X |3 ol 5 ADAD B D AD CDAA DDAD
! ADCA BDC B CDCC DDCD
e 0 Og0 ADDD BDDD CDDD DDDD
ADBD BDBD CDBB DDBD
o 0 ABAD BB AB CBAC DBAD
3 5 ABCC]| | BBCB CBCC DB CB
ABDD B B D D CBDB DBDD
O ® ABBB | [BBBB] CBBB DBBD
X,
’ L] y=AND(x,x,) y=OR(x,,X,)

Fig. 7. The QCA based structure that was obtained by substituting the bQCA cells in the binary majority gate structure with tQCA
cells (left). There are three input cells named S, X; in X;, and one output cell named Y. The structure’s truth table for all possible

combinations of input cells’ states (right).
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Fig. 8. The schematics of the structure proposed by Lebar Bajec et al. that

implements the ternary AND and OR logic functions based on the
principle of abrupt switching.

the ternary AND and OR logic functions it is, in view of the
number of required cells, suboptimal. Indeed even when
disregarding interconnections of the substructures the
number of required cells tripled with respect to the binary
counterpart. We believe that as the AND and OR logic
functions are two of the most commonly used primitives
when developing more complex structures the increased size
could seriously hinder the success of ternary processing
in QCA.

4.1 The ternary AND—-OR gate

We here present a structure that is of the same size as its
binary counterpart. What is more we present a structure that
allows input flexibility (i.e., each of its inputs can be chosen
as the selector for the structure’s behaviour). We name it the
ternary AND-OR gate.

The principal idea is to use the same geometry as for the
binary majority gate, but promoted to pipelined processing
based on adiabatic switching. Indeed a thorough analysis

A
1+
~ 0 —_—
= 1
.50
[}
=
ot
L
go- >
o
0 -

cycle

of the behaviour of the majority gate, when bQCA cells
are substituted with tQCA cells, reveals that a possible
source for invalid outputs are the cornering relations of
the three inputs. The only two invalid output states are
generated when the three inputs are symmetrical — A, B, A
or B, A, B respectively. The idea is thus to first compute the
maximum of the remaining two inputs when the third is in
state A and minimum when it is in state B. After this initial
step the intermediate result can safely be transferred to the
output cell.

The above approach can be easily implemented using
three phase shifted control signals C;, C,, and C; [see
Fig. 9]. The barrier heights in the input cells obey signal C,,
the internal cell’s signal C, and the output cell’s signal Cs.
When the inputs are in the hold phase the internal cell is in
the switch phase (i.e., slowly transiting to a state that is in
accordance with the states of all three inputs) and the output
is in relaxed phase. When the internal cell is in the hold
phase the output cell is in the switch phase whereas the
inputs are in the release phase. This asserts that during the
gradual raising of the barrier heights in the output cell the
barrier heights in the input cells will be lowering and
therefore at the instant of the output cell’s highest “activity”
the influence of the input cells will be minimal (in fact their
states will be close to neutral). It is true that there is a delay
of two phases between the application of the logic inputs to
the input cells and the presence on the output logic value in
the output cell, but as this is still in the same cycle we can
observe the logic function as a time independent one. The
truth table of the ternary AND-OR gate is presented in
Table I. The restriction of state D being allowed only as an
internal (processing) state is maintained. A close inspection
of the first two columns reveals that the ternary AND-OR
gate behaves as intended. If states A, B, and C are
interpreted as logic values 0, 1, and 1/2 respectively and
input cells X; and X reflect the logic value of inputs x; and
X, then the logic value of the output cell Y is y = min(xy, x,)
when the state of input cell S is A (ternary AND) and y =
max(xy,x) when the state of input cell S is B (ternary OR).
Analysing the truth table more thoroughly reveals also that
the choice for the selector of the gate’s behaviour is not
limited solely to input cell S, but the ternary AND-OR gate

S

C, e-0
O H O
S )

©%0 || 0%
® s OB L &Y
Op® |©40

. e“0
) O H O
S )

X,

Fig. 9. The schematics of the structure that implements ternary AND and OR logic functions based on the principle of adiabatic
switching. Cells marked with H (hold phase) are controlled by the cyclic signal C;, those marked with S (switch phase) by C, and
those marked L (relax phase) by C3. A close inspection reveals that the size of the structure corresponds to the size of the structure,

which implements the binary AND and OR logic functions.
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Table I. The behaviour of the proposed structure when state D is allowed
only as an internal (processing) state.

S X X Y S X X Y S X Xo S
A A A A B A A A C A A A
A A C A B A C c cC A C C
A A B A B A B B C A B C
A C A A B C A c cC C A C
A C C C B C C c cC C C C
A C B C B C B B C C B C
A B A A B B A B C B A C
A B C C B B C B C B C C
A B B B B B B B C B B B

computes the ternary conjunction between the remaining
two inputs whenever the third is in state A and ternary
disjunction whenever it is in state B.

5. Conclusions

In this article we present a quantum-mechanic description
of the ternary quantum-dot cellular automaton. We base it on
an extended Hubbard-type Hamiltonian. The model allowed
the introduction of the adiabatic switching principle. The
intercellular Hartree approximation is employed to study
the influence of the barrier heights on the localisation of
electrons in a ternary quantum-dot cell. The knowledge
gained was applied to the design of the cyclic control signal
used in adiabatic switching. The latter allowed the develop-
ment of the ternary AND-OR gate; a ternary quantum-dot
cellular automaton that can compute the ternary AND and
OR logic functions. The advantage of the developed
structure over the existing ones is that it, with respect to
the number of required cells, equals the binary majority gate.
A further advantage is that it allows using one of its three
inputs as selector of the gates behaviour. Whenever one
input is applied the logic value O the gate computes the
conjunction of the remaining two inputs and whenever it is

applied the logic value 1 the gate computes the disjunction
of the remaining two inputs. The structure can be used as a
primitive when constructing both binary or ternary complex
structures which opens up the possibility to design advanced
ternary arithmetic-logic and memorizing units, the building
blocks of ternary processors. It has to be noted that in this
work we assume that there are no technological limitations
and neglect practical time scales of adiabatic switching
principally in favour of focusing attention on processing
architectures. Nevertheless, we are well aware of imple-
mentation problems and for this reason the switching
dynamics and material suitability are part of our current
research directive.
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